Search results for: DC circuit breaker
763 Development of 35kV SF6 Phase-Control Circuit Breaker Equipped with EFDA
Authors: Duanlei Yuan, Guangchao Yan, Zhanqing Chen, Xian Cheng
Abstract:
This paper mainly focuses on the problem that high voltage circuit breaker’s closing and opening operation at random phase brings harmful electromagnetic transient effects on the power system. To repress the negative transient effects, a 35 kV SF6 phase-control circuit breaker equipped with electromagnetic force driving actuator is designed in this paper. Based on the constructed mathematical and structural models, the static magnetic field distribution and dynamic properties of the under loading actuator are simulated. The prototype of 35 kV SF6 phase-control circuit breaker is developed based on theories analysis and simulation. Tests are carried on to verify the operating reliability of the prototype. The developed circuit breaker can control its operating speed intelligently and switches with phase selection. Results of the tests and simulation prove that the phase-control circuit breaker is feasible for industrial applications.Keywords: phase-control, circuit breaker, electromagnetic force driving actuator, tests and simulation
Procedia PDF Downloads 396762 Thermal Interruption Performance of High Voltage Gas Circuit Breaker Operating with CO₂ Mixtures
Authors: Yacine Babou, Nitesh Ranjan, Branimir Radisavljevic , Martin Seeger, Daniel Over, Torsten Votteler, Bernardo Galletti, Paulo Cristini
Abstract:
In the frame of replacement of Sulfur hexafluoride (SF6) gas as insulating and switching medium, diverse alternative gases, offering acceptable Global Warming Potential and fulfilling requirements in terms of heat dissipation, insulation and arc quenching performances are currently investigated for High Voltage Circuit Breaker applications. Among the potential gases, CO₂ seems a promising candidate for replacing SF6, because on one hand it is environmentally friendly, harmless, non-toxic, non-corrosive, non-flammable and on the other hand previous studies have demonstrated its fair interruption capabilities. The present study aims at investigating the performance of CO₂ for the thermal interruption in high voltage self-blast circuit breakers. In particular, the correlation between thermal interruption performance and arc voltage is considered and the effect of the arc-network interaction on the performance is rigorously analyzed. For the considered designs, the thermal interruption was evaluated by varying the slope at current zero (i.e., di/dt) for which the breaker could interrupt. Besides, the characteristics of the post-arc current are examined in detail for various rated voltages and currents. The outcome of these experimental investigations will be reported and analyzed.Keywords: current zero measurement, high voltage circuit breaker, thermal arc discharge, thermal interruption
Procedia PDF Downloads 185761 Air-Blast Ultrafast Disconnectors and Solid-State Medium Voltage DC Breaker: A Modified Version to Lower Losses and Higher Speed
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
MVDC markets for green power generations, Navy, subsea oil and gas electrification, and transportation electrification are extending rapidly. The lack of fast and powerful DC circuit breakers (CB) is the most significant barrier to realizing the medium voltage DC (MVDC) networks. A concept of hybrid circuit breakers (HCBs) benefiting from ultrafast disconnectors (UFD) is proposed. A set of mechanical switches substitute the power electronic commutation switches to reduce the losses during normal operation in HCB. The success of current commutation in such breakers relies on the behaviour of elongated, wall constricted arcs during the opening across the contacts inside the UFD. The arc voltage dependencies on the contact speed of UFDs is discussed through multiphysics simulations contact opening speeds of 10, 20 and 40 m/s. The arc voltage at a given current increases exponentially with the contact opening velocity. An empirical equation for the dynamic arc characteristics is presented for the tested UFD, and the experimentally verfied characteristics for voltage-current are utilized for the current commutation simulation prior to apply on a 14 kV experimental setup. Different failures scenarios due to the current commutation are investigatedKeywords: MVDC breakers, DC circuit breaker, fast operating breaker, ultra-fast elongated arc
Procedia PDF Downloads 81760 A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker
Authors: Jong Won, Park, Sung Hyun, Kim
Abstract:
The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life.Keywords: impact energy, impact frequency, hydraulic breaker, life prediction
Procedia PDF Downloads 441759 The Response of LCC to DC System Faults and HVDC Re-Establishment
Authors: Mesbah Tarek, Kelaiaia Samia, Chiheb Sofien, Kelaiaia Mounia Samira, Labar Hocine
Abstract:
As every power systems short circuit failure can occur for HVDC at the DC link. So, the power devices should be protected against over heath produced by this over-current. This can be achieved through the power switchers or fast breaker. After short circuit the system is unable to restart, only after a time delay, because of the potential distribution along the DC link line. An appropriate fast and safety control is proposed and tested successfully. The detailed development and discussion of these faults is presented in this paper.Keywords: HVDC, DC link, switchers, short circuit, faults
Procedia PDF Downloads 574758 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark
Procedia PDF Downloads 79757 Design and Implementation of Power Generation Mechanism Using Speed Breaker
Authors: Roman Kalvin, Anam Nadeem, Saba Arif, Juntakan Taweekun
Abstract:
In the current scenario demand of power is increasing day by day with increasing population. It is needed to sort out this problem with a technique which will not only overcome this energy crisis but also should be environment friendly. This project emphasizes on idea which shows that power could be generated by specially designed speed breaker. This project shows clearly how power can be generated by using Cam Mechanism where basically linear motion is converted into rotatory motion that can be used to generate electricity. When vehicle passes over the speed breaker, presses the cam with the help of connecting rod which rotate main shaft attached with large pulley. A flywheel is coupled with the shaft whose purpose is to normalize the oscillation in the energy and to make the energy unvarying. So, the shafts will spin with firm rpm. These shafts are coupled from end to end with a belt drive. The results show that power generated from this mechanism is 12 watts. The generated electricity does not required any fuel consumption it only generates power which can be used for the street light as well as for the traffic signals.Keywords: revolution per minute, RPM, cam, speed breaker, rotatory motion
Procedia PDF Downloads 213756 Permanent Reduction of Arc Flash Energy to Safe Limit on Line Side of 480 Volt Switchgear Incomer Breaker
Authors: Abid Khan
Abstract:
A recognized engineering challenge is related to personnel protection from fatal arc flash incident energy in the line side of the 480-volt switchgear incomer breakers during maintenance activities. The incident energy is typically high due to slow fault clearance, and it can be higher than the available personnel protective equipment (PPE) ratings. A fault in this section of the switchgear is cleared by breakers or fuses in the upstream higher voltage system (4160 Volt or higher). The current reflection in the higher voltage upstream system for a fault in the 480-volt switchgear is low, the clearance time is slower, and the inversely proportional incident energy is hence higher. The installation of overcurrent protection at a 480-volt system upstream of the incomer breaker will operate fast enough and trips the upstream higher voltage breaker when a fault develops at the incomer breaker. Therefore, fault current reduction as reflected in the upstream higher voltage system is eliminated. Since the fast overcurrent protection is permanently installed, it is always functional, does not require human interventions, and eliminates exposure to human errors. It is installed at the maintenance activities location, and its operations can be locally monitored by craftsmen during maintenance activities.Keywords: arc flash, mitigation, maintenance switch, energy level
Procedia PDF Downloads 193755 Analysis of SCR-Based ESD Protection Circuit on Holding Voltage Characteristics
Authors: Yong Seo Koo, Jong Ho Nam, Yong Nam Choi, Dae Yeol Yoo, Jung Woo Han
Abstract:
This paper presents a silicon controller rectifier (SCR) based ESD protection circuit for IC. The proposed ESD protection circuit has low trigger voltage and high holding voltage compared with conventional SCR ESD protection circuit. Electrical characteristics of the proposed ESD protection circuit are simulated and analyzed using TCAD simulator. The proposed ESD protection circuit verified effective low voltage ESD characteristics with low trigger voltage and high holding voltage.Keywords: electro-static discharge (ESD), silicon controlled rectifier (SCR), holding voltage, protection circuit
Procedia PDF Downloads 379754 Cognitive Function During the First Two Hours of Spravato Administration in Patients with Major Depressive Disorder
Authors: Jocelyn Li, Xiangyang Li
Abstract:
We have employed THINC-it® to study the acute effects of Spravato on the cognitive function of patients with severe major depression disorder (MDD). The scores of the four tasks (Spotter, Symbol Check, Code Breaker, Trails) found in THINC-it® were used to measure cognitive function throughout treatment. The patients who participated in this study have tried more than 3 antidepressants without significant improvement before they began Spravato treatment. All patients received 3 doses of 28 mg Spravato 5 minutes apart (84 mg total per treatment) during this study with THINC-it®. The data were collected before the first Spravato administration (T0), 1 hour after the first Spravato administration (T1), and 2 hours after the first Spravato administration (T2) during each treatment. The following data were from 13 patients, with a total of 226 trials in a 2-3 month period. Spravato at 84 mg reduced the scores of Trails, Code Breaker, Symbol Check, and Spotter at T1 by 10-20% in all patients with one exception for a minority of patients in Spotter. At T2, the scores of Trails, Symbol Check, and Spotter were back to 97% of T0 while the score of Code Breaker was back to 92%. Interestingly, we found that the score of Spotter was consistently increased by 17% at T1 in the same 30% of patients in each treatment. We called this change reverse response while the pattern of the other patients, a decline (T1) and then recovery (T2), was called non-reverse response. We also compared the scores at T0 between the first visit and the fifth visit. The T0 scores of all four tasks were improved at visit 5 when compared to visit 1. The scores of Trails, Code Breaker, and Symbol Check at T0 were increased by 14%, 33%, and 14% respectively at visit 5. The score of Code Breaker, which had two trends, improved by 9% in reverse response patients compared to a 27% improvement in non-reverse response patients. To our knowledge, this is the first study done on the impact of Spravato on cognitive function change in major depression patients at this time frame. Whether we can predict future responses to Spravato with THINC-it® merits further study.Keywords: Spravato, THINC-it, major depressive disorder, cognitive function
Procedia PDF Downloads 116753 Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB
Authors: Ming-Ta Yang, Jyh-Cherng Gu, Chun-Wei Huang, Jin-Lung Guan
Abstract:
Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers.Keywords: circuit breaker, condition base maintenance, intelligent electronic device, time base maintenance, SCADA
Procedia PDF Downloads 328752 Design Data Sorter Circuit Using Insertion Sorting Algorithm
Authors: Hoda Abugharsa
Abstract:
In this paper we propose to design a sorter circuit using insertion sorting algorithm. The circuit will be designed using Algorithmic State Machines (ASM) method. That means converting the insertion sorting flowchart into an ASM chart. Then the ASM chart will be used to design the sorter circuit and the control unit.Keywords: insert sorting algorithm, ASM chart, sorter circuit, state machine, control unit
Procedia PDF Downloads 445751 An Application of Graph Theory to The Electrical Circuit Using Matrix Method
Authors: Samai'la Abdullahi
Abstract:
A graph is a pair of two set and so that a graph is a pictorial representation of a system using two basic element nodes and edges. A node is represented by a circle (either hallo shade) and edge is represented by a line segment connecting two nodes together. In this paper, we present a circuit network in the concept of graph theory application and also circuit models of graph are represented in logical connection method were we formulate matrix method of adjacency and incidence of matrix and application of truth table.Keywords: euler circuit and path, graph representation of circuit networks, representation of graph models, representation of circuit network using logical truth table
Procedia PDF Downloads 561750 Simulation of Surge Protection for a Direct Current Circuit
Authors: Pedro Luis Ferrer Penalver, Edmundo da Silva Braga
Abstract:
In this paper, the performance of a simple surge protection for a direct current circuit was simulated. The protection circuit was developed from modified electric macro models of a gas discharge tube and a transient voltage suppressor diode. Moreover, a combination wave generator circuit was used as source of energy surges. The simulations showed that the circuit presented ensures immunity corresponding with test level IV of the IEC 61000-4-5:2014 international standard. The developed circuit can be modified to meet the requirements of any other equipment to be protected. Similarly, the parameters of the combination wave generator can be changed to provide different surge amplitudes.Keywords: combination wave generator, IEC 61000-4-5, Pspice simulation, surge protection
Procedia PDF Downloads 325749 Realization of a Temperature Based Automatic Controlled Domestic Electric Boiling System
Authors: Shengqi Yu, Jinwei Zhao
Abstract:
This paper presents a kind of analog circuit based temperature control system, which is mainly composed by threshold control signal circuit, synchronization signal circuit and trigger pulse circuit. Firstly, the temperature feedback signal function is realized by temperature sensor TS503F3950E. Secondly, the main control circuit forms the cycle controlled pulse signal to control the thyristor switching model. Finally two reverse paralleled thyristors regulate the output power by their switching state. In the consequence, this is a modernized and energy-saving domestic electric heating system.Keywords: time base circuit, automatic control, zero-crossing trigger, temperature control
Procedia PDF Downloads 481748 Equivalent Circuit Representation of Lossless and Lossy Power Transmission Systems Including Discrete Sampler
Authors: Yuichi Kida, Takuro Kida
Abstract:
In a new smart society supported by the recent development of 5G and 6G Communication systems, the im- portance of wireless power transmission is increasing. These systems contain discrete sampling systems in the middle of the transmission path and equivalent circuit representation of lossless or lossy power transmission through these systems is an important issue in circuit theory. In this paper, for the given weight function, we show that a lossless power transmission system with the given weight is expressed by an equivalent circuit representation of the Kida’s optimal signal prediction system followed by a reactance multi-port circuit behind it. Further, it is shown that, when the system is lossy, the system has an equivalent circuit in the form of connecting a multi-port positive-real circuit behind the Kida’s optimal signal prediction system. Also, for the convenience of the reader, in this paper, the equivalent circuit expression of the reactance multi-port circuit and the positive- real multi-port circuit by Cauer and Ohno, whose information is currently being lost even in the world of the Internet.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, power transmission
Procedia PDF Downloads 122747 Design and Fabrication of Electricity Generating Speed Breaker
Authors: Haider Aamir, Muhammad Ali Khalid
Abstract:
Electricity harvesting speed bump (EHSB) is speed breaker of conventional shape, but the difference is that it is not fixed, rather it moves up and down, and electricity can be generated from its vibrating motion. This speed bump consists of an upper cover which will move up and down, a shaft mechanism which will be used to drive the generator and a rack and pinion mechanism which will connect the cover and shaft. There is a spring mechanism to return the cover to its initial state when a vehicle has passed over the bump. Produced energy in the past was up to 80 Watts. For this purpose, a clutch mechanism is used so that both the up-down movements of the cover can be used to drive the generator. Mechanical Motion Rectifier (MMR) mechanism ensures the conversion of both the linear motions into rotational motion which is used to drive the generator.Keywords: electricity harvesting, generator, rack and pinion, stainless steel shaft
Procedia PDF Downloads 272746 Metal-Oxide-Semiconductor-Only Process Corner Monitoring Circuit
Authors: Davit Mirzoyan, Ararat Khachatryan
Abstract:
A process corner monitoring circuit (PCMC) is presented in this work. The circuit generates a signal, the logical value of which depends on the process corner only. The signal can be used in both digital and analog circuits for testing and compensation of process variations (PV). The presented circuit uses only metal-oxide-semiconductor (MOS) transistors, which allow increasing its detection accuracy, decrease power consumption and area. Due to its simplicity the presented circuit can be easily modified to monitor parametrical variations of only n-type and p-type MOS (NMOS and PMOS, respectively) transistors, resistors, as well as their combinations. Post-layout simulation results prove correct functionality of the proposed circuit, i.e. ability to monitor the process corner (equivalently die-to-die variations) even in the presence of within-die variations.Keywords: detection, monitoring, process corner, process variation
Procedia PDF Downloads 524745 Testing of Complicated Bus Bar Protection Using Smart Testing Methodology
Authors: K. N. Dinesh Babu
Abstract:
In this paper, the protection of a complicated bus arrangement with a dual bus coupler and bus sectionalizer using low impedance differential protection applicable for very high voltages like 220kV and 400kV is discussed. In many power generation stations, several operational procedures are implemented to utilize the transfer bus as the main bus and to facilitate the maintenance of circuit breakers and current transformers (in each section) without shutting down the bay(s). Owing to this fact, the complications in operational philosophy have thrown challenges for the bus bar protection implementation. Many bus topologies allow any one of the main buses available in the station to be used as an auxiliary bus. In such a system, pre-defined precautions and procedures are made as guidelines, which are followed before assigning any bus as an auxiliary bus. The procedure involves shifting of links, changing rotary switches, insertion of test block, and so on, thereby causing unreliable operation. This kind of unreliable operation or inadvertent procedural lapse may result in the isolation of the bus bar from the grid due to the unpredictable operation of the bus bar protection relay, which is a commonly occurring phenomenon due to manual mistakes. With the sophisticated configuration and implementation of logic in modern intelligent electronic devices, the operator is free to select the transfer arrangement without sacrificing the protection required by a bus differential system for a reliable operation, and labor-intensive processes are completely eliminated. This paper deals with the procedure to test the security logic for such special scenarios using Megger make SMRT, bus bar protection relay to assure system stability and get rid of all the specific operational precautions/procedure.Keywords: bus bar protection, by-pass isolator, blind spot, breaker failure, intelligent electronic device, end fault, bus unification, directional principle, zones of protection, breaker re-trip, under voltage security, smart megger relay tester
Procedia PDF Downloads 68744 Electrical Dault Detection of Photovoltaic System: A Short-Circuit Fault Case
Authors: Moustapha H. Ibrahim, Dahir Abdourahman
Abstract:
This document presents a short-circuit fault detection process in a photovoltaic (PV) system. The proposed method is developed in MATLAB/Simulink. It determines whatever the size of the installation number of the short circuit module. The proposed algorithm indicates the presence or absence of an abnormality on the power of the PV system through measures of hourly global irradiation, power output, and ambient temperature. In case a fault is detected, it displays the number of modules in a short circuit. This fault detection method has been successfully tested on two different PV installations.Keywords: PV system, short-circuit, fault detection, modelling, MATLAB-Simulink
Procedia PDF Downloads 232743 The Effect of Circuit Training on Aerobic Fitness and Body Fat Percentage
Authors: Presto Tri Sambodo, Suharjana, Galih Yoga Santiko
Abstract:
Having an ideal body shape healthy body are the desire of everyone, both young and old. The purpose of this study was to determine: (1) the effect of block circuit training on aerobic fitness and body fat percentage, (2) the effect of non-block circuit training on aerobic fitness and body fat percentage, and (3) differences in the effect of exercise on block and non-circuit training block against aerobic fitness and body fat percentage. This research is an experimental research with the prestest posttest design Two groups design. The population in this study were 57 members of fat loss at GOR UNY Fitness Center. The retrieval technique uses purposive random sampling with a sample of 20 people. The instruments with rockport test (1.6 KM) and body fat percentage with a scale of bioelectrical impedance analysis omron (BIA). So it can be concluded the circuit training between block and non-block has a significant effect on aerobic fitness and body fat percentage. And for differences in the effect of circuit training between blocks and non-blocks, it is more influential on aerobic fitness than the percentage of body fat.Keywords: circuit training, aerobic fitness, body fat percentage, healthy body
Procedia PDF Downloads 252742 Genetic Algorithm Methods for Determination Over Flow Coefficient of Medium Throat Length Morning Glory Spillway Equipped Crest Vortex Breakers
Authors: Roozbeh Aghamajidi
Abstract:
Shaft spillways are circling spillways used generally for emptying unexpected floods on earth and concrete dams. There are different types of shaft spillways: Stepped and Smooth spillways. Stepped spillways pass more flow discharges through themselves in comparison to smooth spillways. Therefore, awareness of flow behavior of these spillways helps using them better and more efficiently. Moreover, using vortex breaker has great effect on passing flow through shaft spillway. In order to use more efficiently, the risk of flow pressure decreases to less than fluid vapor pressure, called cavitations, should be prevented as far as possible. At this research, it has been tried to study different behavior of spillway with different vortex shapes on spillway crest on flow. From the viewpoint of the effects of flow regime changes on spillway, changes of step dimensions, and the change of type of discharge will be studied effectively. Therefore, two spillway models with three different vortex breakers and three arrangements have been used to assess the hydraulic characteristics of flow. With regard to the inlet discharge to spillway, the parameters of pressure and flow velocity on spillway surface have been measured at several points and after each run. Using these kinds of information leads us to create better design criteria of spillway profile. To achieve these purposes, optimization has important role and genetic algorithm are utilized to study the emptying discharge. As a result, it turned out that the best type of spillway with maximum discharge coefficient is smooth spillway with ogee shapes as vortex breaker and 3 number as arrangement. Besides it has been concluded that the genetic algorithm can be used to optimize the results.Keywords: shaft spillway, vortex breaker, flow, genetic algorithm
Procedia PDF Downloads 371741 Design and Simulation Interface Circuit for Piezoresistive Accelerometers with Offset Cancellation Ability
Authors: Mohsen Bagheri, Ahmad Afifi
Abstract:
This paper presents a new method for read out of the piezoresistive accelerometer sensors. The circuit works based on instrumentation amplifier and it is useful for reducing offset in Wheatstone bridge. The obtained gain is 645 with 1 μv/°c equivalent drift and 1.58 mw power consumption. A Schmitt trigger and multiplexer circuit control output node. A high speed counter is designed in this work. The proposed circuit is designed and simulated in 0.18 μm CMOS technology with 1.8 v power supply.Keywords: piezoresistive accelerometer, zero offset, Schmitt trigger, bidirectional reversible counter
Procedia PDF Downloads 310740 Equivalent Circuit Modelling of Active Reflectarray Antenna
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents equivalent circuit modeling of active planar reflectors which can be used for the detailed analysis and characterization of reflector performance in terms of lumped components. Equivalent circuit representation has been proposed for PIN diodes and liquid crystal based active planar reflectors designed within X-band frequency range. A very close agreement has been demonstrated between equivalent circuit results, 3D EM simulated results as well as measured scattering parameter results. In the case of measured results, a maximum discrepancy of 1.05dB was observed in the reflection loss performance, which can be attributed to the losses occurred during measurement process.Keywords: Equivalent circuit modelling, planar reflectors, reflectarray antenna, PIN diode, liquid crystal
Procedia PDF Downloads 286739 On-Chip Aging Sensor Circuit Based on Phase Locked Loop Circuit
Authors: Ararat Khachatryan, Davit Mirzoyan
Abstract:
In sub micrometer technology, the aging phenomenon starts to have a significant impact on the reliability of integrated circuits by bringing performance degradation. For that reason, it is important to have a capability to evaluate the aging effects accurately. This paper presents an accurate aging measurement approach based on phase-locked loop (PLL) and voltage-controlled oscillator (VCO) circuit. The architecture is rejecting the circuit self-aging effect from the characteristics of PLL, which is generating the frequency without any aging phenomena affects. The aging monitor is implemented in low power 32 nm CMOS technology, and occupies a pretty small area. Aging simulation results show that the proposed aging measurement circuit improves accuracy by about 2.8% at high temperature and 19.6% at high voltage.Keywords: aging effect, HCI, NBTI, nanoscale
Procedia PDF Downloads 359738 A Novel Idea to Benefit of the Load Side’s Harmonics
Authors: Hussein Al-bayaty
Abstract:
This paper presents a novel idea to show the ability to benefit of the harmonic currents which are produced on the load side of the power grid. The proposed circuit contributes in reduction of the total harmonic distortion (THD) percentage through adding a high pass filter to draw harmonic currents with 150 Hz and multiple frequencies a and convert them to DC current and then reconvert it to AC current with 50 Hz frequency in order to feed different loads. The circuit has been designed, investigated and simulated in the MATLAB, Simulink program; the results will be assessed and compared the two cases: firstly, the system without adding the new circuit. Secondly, with adding the high pas filter circuit to the power system.Keywords: harmonics elimination, passive filters, Total Harmonic Distortion (THD), filter circuit
Procedia PDF Downloads 413737 Effect of Feed Rate on Grinding Circuits and Cyclone Efficiency
Authors: Patel Himeshkumar Ashokbhai, Suchit Sharma, Arvind Kumar Garg
Abstract:
The purpose of this paper is to study the effect of change in feed rate on grinding circuit and cyclone efficiency in case of lead-zinc ore. The following experiments and analysis were conducted on beneficiation circuit of Sindesar Khurd (SK) mines under Hindustan Zinc Ltd. subsidiary of Vedanta Group of Companies, a leading producer of lead-Zinc, silver and cadmium (as by products) in India. Feed rate is an important variable in beneficiation circuit operation. Optimizing feed rate is indispensable for any grinding circuit and directly effects cyclone efficiency. The size analysis of ore in grinding circuit along with cyclone efficiency on varying feed rates establishes their interdependence. Feed rate determines retention time ore gets within grinding circuit. Retention time in turn determines degree of liberation of mineral. Inadequate liberation causes decreased circuit efficiency. In this paper we have studied the effect of varying feed rate on (1) D80 particle size of different sections of different streams of grinding circuit (2) Re-circulating load (3) Cyclone efficiency. As a conclusion, this study gives some clues to operate grinding circuits and hydro-cyclones in more efficient way regarding beneficiation of Lead-zinc ore.Keywords: cyclone efficiency, feed rate, grinding circuit, re-circulating load
Procedia PDF Downloads 398736 Combined Influence of Charge Carrier Density and Temperature on Open-Circuit Voltage in Bulk Heterojunction Organic Solar Cells
Authors: Douglas Yeboah, Monishka Narayan, Jai Singh
Abstract:
One of the key parameters in determining the power conversion efficiency (PCE) of organic solar cells (OSCs) is the open-circuit voltage, however, it is still not well understood. In order to examine the performance of OSCs, it is necessary to understand the losses associated with the open-circuit voltage and how best it can be improved. Here, an analytical expression for the open-circuit voltage of bulk heterojunction (BHJ) OSCs is derived from the charge carrier densities without considering the drift-diffusion current. The open-circuit voltage thus obtained is dependent on the donor-acceptor band gap, the energy difference between the highest occupied molecular orbital (HOMO) and the hole quasi-Fermi level of the donor material, temperature, the carrier density (electrons), the generation rate of free charge carriers and the bimolecular recombination coefficient. It is found that open-circuit voltage increases when the carrier density increases and when the temperature decreases. The calculated results are discussed in view of experimental results and agree with them reasonably well. Overall, this work proposes an alternative pathway for improving the open-circuit voltage in BHJ OSCs.Keywords: charge carrier density, open-circuit voltage, organic solar cells, temperature
Procedia PDF Downloads 373735 Exploration of Cone Foam Breaker Behavior Using Computational Fluid Dynamic
Authors: G. St-Pierre-Lemieux, E. Askari Mahvelati, D. Groleau, P. Proulx
Abstract:
Mathematical modeling has become an important tool for the study of foam behavior. Computational Fluid Dynamic (CFD) can be used to investigate the behavior of foam around foam breakers to better understand the mechanisms leading to the ‘destruction’ of foam. The focus of this investigation was the simple cone foam breaker, whose performance has been identified in numerous studies. While the optimal pumping angle is known from the literature, the contribution of pressure drop, shearing, and centrifugal forces to the foam syneresis are subject to speculation. This work provides a screening of those factors against changes in the cone angle and foam rheology. The CFD simulation was made with the open source OpenFOAM toolkits on a full three-dimensional model discretized using hexahedral cells. The geometry was generated using a python script then meshed with blockMesh. The OpenFOAM Volume Of Fluid (VOF) method was used (interFOAM) to obtain a detailed description of the interfacial forces, and the model k-omega SST was used to calculate the turbulence fields. The cone configuration allows the use of a rotating wall boundary condition. In each case, a pair of immiscible fluids, foam/air or water/air was used. The foam was modeled as a shear thinning (Herschel-Buckley) fluid. The results were compared to our measurements and to results found in the literature, first by computing the pumping rate of the cone, and second by the liquid break-up at the exit of the cone. A 3D printed version of the cones submerged in foam (shaving cream or soap solution) and water, at speeds varying between 400 RPM and 1500 RPM, was also used to validate the modeling results by calculating the torque exerted on the shaft. While most of the literature is focusing on cone behavior using Newtonian fluids, this works explore its behavior in shear thinning fluid which better reflects foam apparent rheology. Those simulations bring new light on the cone behavior within the foam and allow the computation of shearing, pressure, and velocity of the fluid, enabling to better evaluate the efficiency of the cones as foam breakers. This study contributes to clarify the mechanisms behind foam breaker performances, at least in part, using modern CFD techniques.Keywords: bioreactor, CFD, foam breaker, foam mitigation, OpenFOAM
Procedia PDF Downloads 202734 A Silicon Controlled Rectifier-Based ESD Protection Circuit with High Holding Voltage and High Robustness Characteristics
Authors: Kyoung-il Do, Byung-seok Lee, Hee-guk Chae, Jeong-yun Seo Yong-seo Koo
Abstract:
In this paper, a Silicon Controlled Rectifier (SCR)-based Electrostatic Discharge (ESD) protection circuit with high holding voltage and high robustness characteristics is proposed. Unlike conventional SCR, the proposed circuit has low trigger voltage and high holding voltage and provides effective ESD protection with latch-up immunity. In addition, the TCAD simulation results show that the proposed circuit has better electrical characteristics than the conventional SCR. A stack technology was used for voltage-specific applications. Consequentially, the proposed circuit has a trigger voltage of 17.60 V and a holding voltage of 3.64 V.Keywords: ESD, SCR, latch-up, power clamp, holding voltage
Procedia PDF Downloads 394