Abstracts | Civil and Environmental Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2572

World Academy of Science, Engineering and Technology

[Civil and Environmental Engineering]

Online ISSN : 1307-6892

2272 Utilization of Treated Spend Pot Lining by Product from the Primary Aluminum Production in Cement and Concrete

Authors: Hang Tran, Victor Brial, Luca Sorelli, Claudiane Ouellet-Plamondon, David Conciatori, Laurent Birry

Abstract:

Spend pot lining (SPL) is a by-product generated from primary aluminum production. SPL consists of two parts, the first cut is rich in carbonaceous materials, and the second cut is rich in aluminum and silicon oxides. After treating by the hydrometallurgical Low Caustic Leaching and Liming process, the refractory part of SPL becomes an inert material, called LCLL ash in this project. LCLL ash was calcined at different temperatures (800 and 1000°C) and Calcined LCLL ash ground as fines of cement and replacement a part of cement in concrete production. The effect of LCLL ash on the chemical properties, mechanical properties and fresh behavior of concrete was evaluated by isothermal calorimetry, compressive test, and slump test. These results were compared to the reference mixture.

Keywords: spend pot lining, concrete, cement, compressive strength, calorimetry

Procedia PDF Downloads 186
2271 FE Modelling of Structural Effects of Alkali-Silica Reaction in Reinforced Concrete Beams

Authors: Mehdi Habibagahi, Shami Nejadi, Ata Aminfar

Abstract:

A significant degradation factor that impacts the durability of concrete structures is the alkali-silica reaction. Engineers are frequently charged with the challenges of conducting a thorough safety assessment of concrete structures that have been impacted by ASR. The alkali-silica reaction has a major influence on the structural capacities of structures. In most cases, the reduction in compressive strength, tensile strength, and modulus of elasticity is expressed as a function of free expansion and crack widths. Predicting the effect of ASR on flexural strength is also relevant. In this paper, a nonlinear three-dimensional (3D) finite-element model was proposed to describe the flexural strength degradation induced byASR.Initial strains, initial stresses, initial cracks, and deterioration of material characteristics were all considered ASR factors in this model. The effects of ASR on structural performance were evaluated by focusing on initial flexural stiffness, force–deformation curve, and load-carrying capacity. Degradation of concrete mechanical properties was correlated with ASR growth using material test data conducted at Tech Lab, UTS, and implemented into the FEM for various expansions. The finite element study revealed a better understanding of the ASR-affected RC beam's failure mechanism and capacity reduction as a function of ASR expansion. Furthermore, in this study, decreasing of the residual mechanical properties due to ASRisreviewed, using as input data for the FEM model. Finally, analysis techniques and a comparison of the analysis and the experiment results are discussed. Verification is also provided through analyses of reinforced concrete beams with behavior governed by either flexural or shear mechanisms.

Keywords: alkali-silica reaction, analysis, assessment, finite element, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 140
2270 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence

Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar

Abstract:

This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.

Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves

Procedia PDF Downloads 162
2269 A Post-Occupancy Evaluation of LEED-Certified Residential Communities Using Structural Equation Modeling

Authors: Mohsen Goodarzi, George Berghorn

Abstract:

Despite the rapid growth in the number of green building and community development projects, the long-term performance of these projects has not yet been sufficiently evaluated from the users’ points of view. This is partially due to the lack of post-occupancy evaluation tools available for this type of project. In this study, a post-construction evaluation model is developed to evaluate the relationship between the perceived performance and satisfaction of residents in LEED-certified residential buildings and communities. To develop this evaluation model, a primary five-factor model was developed based on the existing models and residential satisfaction theories. Each factor of the model included several measures that were adopted from LEED certification systems such as LEED-BD+C New Construction, LEED-BD+C Multifamily Midrise, LEED-ND, as well as the UC Berkeley’s Center for the Built Environment survey tool. The model included four predictor variables (factors), including perceived building performance (8 measures), perceived infrastructure performance (9 measures), perceived neighborhood design (6 measures), and perceived economic performance (4 measures), and one dependent variable (factor), which was residential satisfaction (6 measures). An online survey was then conducted to collect the data from the residents of LEED-certified residential communities (n=192) and the validity of the model was tested through Confirmatory Factor Analysis (CFA). After modifying the CFA model, 26 measures, out of the initial 33 measures, were retained to enter into a Structural Equation Model (SEM) and to find the relationships between the perceived buildings performance, infrastructure performance, neighborhood design, economic performance and residential Satisfaction. The results of the SEM showed that the perceived building performance was the most influential factor in determining residential satisfaction in LEED-certified communities, followed by the perceived neighborhood design. On the other hand, perceived infrastructure performance and perceived economic performance did not show any significant relationship with residential satisfaction in these communities. This study can benefit green building researchers by providing a model for the evaluation of the long-term performance of these projects. It can also provide opportunities for green building practitioners to determine priorities for future residential development projects.

Keywords: green building, residential satisfaction, perceived performance, confirmatory factor analysis, structural equation modeling

Procedia PDF Downloads 206
2268 Numerical Investigation of Beam-Columns Subjected to Non-Proportional Loadings under Ambient Temperature Conditions

Authors: George Adomako Kumi

Abstract:

The response of structural members, when subjected to various forms of non-proportional loading, plays a major role in the overall stability and integrity of a structure. This research seeks to present the outcome of a finite element investigation conducted by the use of finite element programming software ABAQUS to validate the experimental results of elastic and inelastic behavior and strength of beam-columns subjected to axial loading, biaxial bending, and torsion under ambient temperature conditions. The application of the rigorous and highly complicated ABAQUS finite element software will seek to account for material, non-linear geometry, deformations, and, more specifically, the contact behavior between the beam-columns and support surfaces. Comparisons of the three-dimensional model with the results of actual tests conducted and results from a solution algorithm developed through the use of the finite difference method will be established in order to authenticate the veracity of the developed model. The results of this research will seek to provide structural engineers with much-needed knowledge about the behavior of steel beam columns and their response to various non-proportional loading conditions under ambient temperature conditions.

Keywords: beam-columns, axial loading, biaxial bending, torsion, ABAQUS, finite difference method

Procedia PDF Downloads 144
2267 A Predictive MOC Solver for Water Hammer Waves Distribution in Network

Authors: A. Bayle, F. Plouraboué

Abstract:

Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.

Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer

Procedia PDF Downloads 190
2266 Reliability Assessment Using Full Probabilistic Modelling for Carbonation and Chloride Exposures, Including Initiation and Propagation Periods

Authors: Frank Papworth, Inam Khan

Abstract:

Fib’s model code 2020 has four approaches for design life verification. Historically ‘deemed to satisfy provisions have been the principal approach, but this has limited options for materials and covers. The use of an equation in fib’s model code for service life design to predict time to corrosion initiation has become increasingly popular to justify further options, but in some cases, the analysis approaches are incorrect. Even when the equations are computed using full probabilistic analysis, there are common mistakes. This paper reviews the work of recent fib commissions on implementing the service life model to assess the reliability of durability designs, including initiation and propagation periods. The paper goes on to consider the assessment of deemed to satisfy requirements in national codes and considers the influence of various options, including different steel types, various cement systems, quality of concrete and cover, on reliability achieved. As modelling is based on achieving agreed target reliability, consideration is given to how a project might determine appropriate target reliability.

Keywords: chlorides, marine, exposure, design life, reliability, modelling

Procedia PDF Downloads 203
2265 Effects of Peakedness of Bimodal Waves on Overtopping of Sloping Seawalls

Authors: Stephen Orimoloye, Jose Horrillo-Caraballo, Harshinie Karunarathna, Dominic E. Reeve

Abstract:

Prediction of wave overtopping is an essential component of coastal seawall designing and management. Not only that excessive overtopping is reported for impermeable seawalls under bimodal waves, but overtopping is also showing a high sensitivity to the peakedness of the random wave propagation patterns. In the present study, we present a comprehensive analysis of the effects of peakedness of bimodal wave patterns of the overtopping of sloping seawalls. An energy-conserved bimodal spectrum with four different spectra peak periods and swell percentages was applied to estimate wave overtopping in both numerical and experimental flumes. Results of incident surface elevations and bimodal spectra were accurately captured across the flume domain using sets of well-positioned resistant-type wave gauges. Peakedness characteristics of the wave patterns were extracted to derive a relationship between the non-dimensional overtopping and the peakedness across the wave groups in the wave series. The full paper will briefly describe the development of the spectrum and present a comprehensive results analysis leading to the derivation of the relationship between dimensionless overtopping and peakedness of bimodal waves.

Keywords: wave overtopping, peakedness, bimodal waves, swell percentages

Procedia PDF Downloads 152
2264 Transformable Lightweight Structures for Short-term Stay

Authors: Anna Daskalaki, Andreas Ashikalis

Abstract:

This is a conceptual project that suggests an alternative type of summer camp in the forest of Rouvas in the island of Crete. Taking into account some feasts that are organised by the locals or mountaineering clubs near the church of St. John, we created a network of lightweight timber structures that serve the needs of the visitor. These structures are transformable and satisfy the need for rest, food, and sleep – this means a seat, a table and a tent are embodied in each structure. These structures blend in with the environment as they are being installed according to the following parameters: (a) the local relief, (b) the clusters of trees, and (c) the existing paths. Each timber structure could be considered as a module that could be totally independent or part of a bigger construction. The design showcases the advantages of a timber structure as it can be quite adaptive to the needs of the project, but also it is a sustainable and environmentally friendly material that can be recycled. Finally, it is important to note that the basic goal of this project is the minimum alteration of the natural environment.

Keywords: lightweight structures, timber, transformable, tent

Procedia PDF Downloads 140
2263 Enhancement of Recycled Concrete Aggregates Properties by Mechanical Treatment and Verification in Concrete Mixes with Replacement up to 100%

Authors: Iveta Nováková, Martin-Andrè S. Husby, Boy-Arne Buyle

Abstract:

The building industry has one of the most significant contributions to global warming due to the production of building materials, transportation, building activities, and demolition of structures when they reach the end of their life. Implementation of circular material flow and circular economy can significantly reduce greenhouse gasses and simultaneously reduce the need for natural resources. The use of recycled concrete aggregates (RCA) is one of the possibilities for reducing the depletion of raw materials for concrete production. Concrete is the most used building material worldwide, and aggregates constitute 70% of its volume. RCA can replace a certain amount of natural aggregates (NA), and concrete will still perform as required. The aim of this scientific paper is to evaluate RCA properties with and without mechanical treatment. Analysis of RCA itself will be followed by compressive strength of concrete containing various amounts of treated and non-treated RCA. Results showed improvement in compressive strength of the mix with mechanically treated RCA compared to standard RCA, and even the strength of concrete with mechanically treated RCA in dose 50% of coarse aggregates was higher than the reference mix by 4%. Based on obtained results, it can be concluded that integration of RCA in industrial concrete production is feasible, at a replacement ratio of 50% for mechanically treated RCA and 30% if untreated RCA is used, without affecting the compressive strength negatively.

Keywords: recycled concrete aggregates, mechanical treatment, aggregate properties, compression strength

Procedia PDF Downloads 206
2262 Analyses of Copper Nanoparticles Impregnated Wood and Its Fungal Degradation Performance

Authors: María Graciela Aguayo, Laura Reyes, Claudia Oviedo, José Navarrete, Liset Gómez, Hugo Torres

Abstract:

Most wood species used in construction deteriorate when exposed to environmental conditions that favor wood-degrading organisms’ growth. Therefore, chemical protection by impregnation allows more efficient use of forest resources extending the wood useful life. A wood protection treatment which has attracted considerable interest in the scientific community during the last decade is wood impregnation with nano compounds. Radiata pine is the main wood species used in the Chilean construction industry, with total availability of 8 million m³ sawn timber. According to the requirements of the American Wood Protection Association (AWPA) and the Chilean Standards (NCh) radiata pine timber used in construction must be protected due to its low natural durability. In this work, the impregnation with copper nanoparticles (CuNP) was studied in terms of penetration and its protective effect against wood rot fungi. Two concentrations: 1 and 3 g/L of NPCu were applied by impregnation on radiata pine sapwood. Test penetration under AWPA A3-91 standard was carried out, and wood decay tests were performed according to EN 113, with slight modifications. The results of penetration for 1 g/L CuNP showed an irregular total penetration, and the samples impregnated with 3 g/L showed a total penetration with uniform concentration (blue color in all cross sections). The impregnation wood mass losses due to fungal exposure were significantly reduced, regardless of the concentration of the solution or the fungus. In impregnated wood samples, exposure to G. trabeum resulted ML values of 2.70% and 1.19% for 1 g/L and 3 g/L CuNP, respectively, and exposure to P. placenta resulted in 4.02% and 0.70%-ML values for 1 g/L and 3 g/L CuNP, respectively. In this study, the penetration analysis confirmed a uniform distribution inside the wood, and both concentrations were effective against the tested fungi, giving mass loss values lower than 5%. Therefore, future research in wood preservatives should focus on new nanomaterials that are more efficient and environmentally friendly. Acknowledgments: CONICYT FONDEF IDeA I+D 2019, grant number ID19I10122.

Keywords: copper nanoparticles, fungal degradation, radiata pine wood, wood preservation

Procedia PDF Downloads 167
2261 Condition Monitoring of Railway Earthworks using Distributed Rayleigh Sensing

Authors: Andrew Hall, Paul Clarkson

Abstract:

Climate change is predicted to increase the number of extreme weather events intensifying the strain on Railway Earthworks. This paper describes the use of Distributed Rayleigh Sensing to monitor low frequency activity on a vulnerable earthworks sectionprone to landslides alongside a railway line in Northern Spain. The vulnerable slope is instrumented with conventional slope stability sensors allowing an assessment to be conducted of the application of Distributed Rayleigh Sensing as an earthwork condition monitoring tool to enhance the resilience of railway networks.

Keywords: condition monitoring, railway earthworks, distributed rayleigh sensing, climate change

Procedia PDF Downloads 172
2260 Risk Analysis in Off-Site Construction Manufacturing in Small to Medium-Sized Projects

Authors: Atousa Khodadadyan, Ali Rostami

Abstract:

The objective of off-site construction manufacturing is to utilise the workforce and machinery in a controlled environment without external interference for higher productivity and quality. The usage of prefabricated components can save up to 14% of the total energy consumption in comparison with the equivalent number of cast-in-place ones. Despite the benefits of prefabrication construction, its current project practices encompass technical and managerial issues. Building design, precast components’ production, logistics, and prefabrication installation processes are still mostly discontinued and fragmented. Furthermore, collaboration among prefabrication manufacturers, transportation parties, and on-site assemblers rely on real-time information such as the status of precast components, delivery progress, and the location of components. From the technical point of view, in this industry, geometric variability is still prevalent, which can be caused during the transportation or production of components. These issues indicate that there are still many aspects of prefabricated construction that can be developed using disruptive technologies. Practical real-time risk analysis can be used to address these issues as well as the management of safety, quality, and construction environment issues. On the other hand, the lack of research about risk assessment and the absence of standards and tools hinder risk management modeling in prefabricated construction. It is essential to note that no risk management standard has been established explicitly for prefabricated construction projects, and most software packages do not provide tailor-made functions for this type of projects.

Keywords: project risk management, risk analysis, risk modelling, prefabricated construction projects

Procedia PDF Downloads 148
2259 Development and Application of an Intelligent Masonry Modulation in BIM Tools: Literature Review

Authors: Sara A. Ben Lashihar

Abstract:

The heritage building information modelling (HBIM) of the historical masonry buildings has expanded lately to meet the urgent needs for conservation and structural analysis. The masonry structures are unique features for ancient building architectures worldwide that have special cultural, spiritual, and historical significance. However, there is a research gap regarding the reliability of the HBIM modeling process of these structures. The HBIM modeling process of the masonry structures faces significant challenges due to the inherent complexity and uniqueness of their structural systems. Most of these processes are based on tracing the point clouds and rarely follow documents, archival records, or direct observation. The results of these techniques are highly abstracted models where the accuracy does not exceed LOD 200. The masonry assemblages, especially curved elements such as arches, vaults, and domes, are generally modeled with standard BIM components or in-place models, and the brick textures are graphically input. Hence, future investigation is necessary to establish a methodology to generate automatically parametric masonry components. These components are developed algorithmically according to mathematical and geometric accuracy and the validity of the survey data. The main aim of this paper is to provide a comprehensive review of the state of the art of the existing researches and papers that have been conducted on the HBIM modeling of the masonry structural elements and the latest approaches to achieve parametric models that have both the visual fidelity and high geometric accuracy. The paper reviewed more than 800 articles, proceedings papers, and book chapters focused on "HBIM and Masonry" keywords from 2017 to 2021. The studies were downloaded from well-known, trusted bibliographic databases such as Web of Science, Scopus, Dimensions, and Lens. As a starting point, a scientometric analysis was carried out using VOSViewer software. This software extracts the main keywords in these studies to retrieve the relevant works. It also calculates the strength of the relationships between these keywords. Subsequently, an in-depth qualitative review followed the studies with the highest frequency of occurrence and the strongest links with the topic, according to the VOSViewer's results. The qualitative review focused on the latest approaches and the future suggestions proposed in these researches. The findings of this paper can serve as a valuable reference for researchers, and BIM specialists, to make more accurate and reliable HBIM models for historic masonry buildings.

Keywords: HBIM, masonry, structure, modeling, automatic, approach, parametric

Procedia PDF Downloads 138
2258 Cost Comparison between R.C.C. Structures and Composite Columns Structures

Authors: Assad Rashid, Umair Ahmed, Zafar Baig

Abstract:

A new trend in construction is widely influenced by the use of Steel-Concrete Composite Columns. The rapid growth in Steel-Concrete Composite construction has widely decreased the conventional R.C.C structures. Steel Concrete composite construction has obtained extensive receiving around the globe. It is considering the fact that R.C.C structures construction is most suitable and economical for low-rise construction, so it is used in farming systems in most of the buildings. However, increased dead load, span restriction, less stiffness and risky formwork make R.C.C construction uneconomical and not suitable when it comes to intermediate to high-rise buildings. A Base + Ground +11 storey commercial building was designed on ETABS 2017 and made a comparison between conventional R.C.C and encased composite column structure. After performing Equivalent Static non-linear analysis, it has been found that construction cost is 13.01% more than R.C.C structure but encased composite column building has 7.7% more floor area. This study will help in understanding the behavior of conventional R.C.C structure and Encased Composite column structure.

Keywords: composite columns structure, equivalent static non-linear analysis, comparison between R.C.C and encased composite column structures, cost-effective structure

Procedia PDF Downloads 165
2257 Seepage Analysis through Earth Dam Embankment: Case Study of Batu Dam

Authors: Larifah Mohd Sidik, Anuar Kasa

Abstract:

In recent years, the demands for raw water are increasing along with the growth of the economy and population. Hence, the need for the construction and operation of dams is one of the solutions for the management of water resources problems. The stability of the embankment should be taken into consideration to evaluate the safety of retaining water. The safety of the dam is mostly based on numerous measurable components, for instance, seepage flowrate, pore water pressure and deformation of the embankment. Seepage and slope stability is the primary and most important reason to ascertain the overall safety behavior of the dams. This research study was conducted to evaluate static condition seepage and slope stability performances of Batu dam which is located in Kuala Lumpur capital city. The numerical solution Geostudio-2012 software was employed to analyse the seepage using finite element method, SEEP/W and slope stability using limit equilibrium method, SLOPE/W for three different cases of reservoir level operations; normal and flooded condition. Results of seepage analysis using SEEP/W were utilized as parental input for the analysis of SLOPE/W. Sensitivity analysis on hydraulic conductivity of material was done and calibrated to minimize the relative error of simulation SEEP/W, where the comparison observed field data and predicted value were also carried out. In seepage analysis, such as leakage flow rate, pore water distribution and location of a phreatic line are determined using the SEEP/W. The result of seepage analysis shows the clay core effectively lowered the phreatic surface and no piping failure is shown in the result. Hence, the total seepage flux was acceptable and within the permissible limit.

Keywords: earth dam, dam safety, seepage, slope stability, pore water pressure

Procedia PDF Downloads 191
2256 Life Cycle Assessment of Mass Timber Structure, Construction Process as System Boundary

Authors: Mahboobeh Hemmati, Tahar Messadi, Hongmei Gu

Abstract:

Today, life cycle assessment (LCA) is a leading method in mitigating the environmental impacts emerging from the building sector. In this paper, LCA is used to quantify the Green House Gas (GHG) emissions during the construction phase of the largest mass timber residential structure in the United States, Adohi Hall. This building is a 200,000 square foot 708-bed complex located on the campus of the University of Arkansas. The energy used for buildings’ operation is the most dominant source of emissions in the building industry. Lately, however, the efforts were successful at increasing the efficiency of building operation in terms of emissions. As a result, the attention is now shifted to the embodied carbon, which is more noticeable in the building life cycle. Unfortunately, most of the studies have, however, focused on the manufacturing stage, and only a few have addressed to date the construction process. Specifically, less data is available about environmental impacts associated with the construction of mass timber. This study presents, therefore, an assessment of the environmental impact of the construction processes based on the real and newly built mass timber building mentioned above. The system boundary of this study covers modules A4 and A5 based on building LCA standard EN 15978. Module A4 includes material and equipment transportation. Module A5 covers the construction and installation process. This research evolves through 2 stages: first, to quantify materials and equipment deployed in the building, and second, to determine the embodied carbon associated with running equipment for construction materials, both transported to, and installed on, the site where the edifice is built. The Global Warming Potential (GWP) of the building is the primary metric considered in this research. The outcomes of this study bring to the front a better understanding of hotspots in terms of emission during the construction process. Moreover, the comparative analysis of the mass timber construction process with that of a theoretically similar steel building will enable an effective assessment of the environmental efficiency of mass timber.

Keywords: construction process, GWP, LCA, mass timber

Procedia PDF Downloads 141
2255 Strengths and Weaknesses of Tally, an LCA Tool for Comparative Analysis

Authors: Jacob Seddlemeyer, Tahar Messadi, Hongmei Gu, Mahboobeh Hemmati

Abstract:

The main purpose of this first tier of the study is to quantify and compare the embodied environmental impacts associated with alternative materials applied to Adohi Hall, a residence building at the University of Arkansas campus, Fayetteville, AR. This 200,000square foot building has5 stories builtwith mass timber and is compared to another scenario where the same edifice is built with a steel frame. Based on the defined goal and scope of the project, the materials respectivetothe respective to the two building options are compared in terms of Global Warming Potential (GWP), starting from cradle to the construction site, which includes the material manufacturing stage (raw material extract, process, supply, transport, and manufacture) plus transportation to the site (module A1-A4, based on standard EN 15804 definition). The consumedfossil fuels and emitted CO2 associated with the buildings are the major reason for the environmental impacts of climate change. In this study, GWP is primarily assessed to the exclusion of other environmental factors. The second tier of this work is to evaluate Tally’s performance in the decision-making process through the design phases, as well as determine its strengths and weaknesses. Tally is a Life Cycle Assessment (LCA) tool capable of conducting a cradle-to-grave analysis. As opposed to other software applications, Tally is specifically targeted at buildings LCA. As a peripheral application, this software tool is directly run within the core modeling application platform called Revit. This unique functionality causes Tally to stand out from other similar tools in the building sector LCA analysis. The results of this study also provide insights for making more environmentally efficient decisions in the building environment and help in the move forward to reduce Green House Gases (GHGs) emissions and GWP mitigation.

Keywords: comparison, GWP, LCA, materials, tally

Procedia PDF Downloads 198
2254 Soil-Structure Interaction Models for the Reinforced Foundation System – A State-of-the-Art Review

Authors: Ashwini V. Chavan, Sukhanand S. Bhosale

Abstract:

Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model.’ The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models.

Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil

Procedia PDF Downloads 96
2253 Intercultural Urbanism: Interpreting Cultural Inclusion in Traditional Precincts of Contemporary Cities: A Case of Mattancherry

Authors: Amrutha Jayan

Abstract:

The cities are attractors of the human population, offering opportunities for economic activities for different linguistic, cultural, and ethnic groups. The urban form and design of the city impact the life of these people. Social and cultural exclusions result in spatial segregation and gentrification. The spaces provided in cities must be inclusive for all these communities for them to feel part of the city and contribute to society. Intercultural urbanism is a theory and practice of city building, planning, and design of urban spaces and architectures that are cognizant of the social impact of the built environment. The postulate acknowledges cultural differences and opportunities for cultural exchange. Literature on intercultural urbanism, culture and space, spatial justice, and cultural inclusion are analyzed to identify parameters contributing to intercultural placemaking. A qualitative study on Mattancherry shows how the precinct has sustained throughout the years with different communities living together within a radius of 5 km, creating a diverse and vibrant environment. The research identifies the urban elements that contribute to intercultural interactions and maintain the synergy between these communities. The public spaces, porous edges, built-form, streets, and accessibility contribute to chance encounters and intercultural interactivity. The research seeks to find the factors that contribute to intercultural placemaking.

Keywords: intercultural urbanism, cultural inclusion, spatial justice, public space

Procedia PDF Downloads 179
2252 A Simple Design Procedure for Calculating the Column Ultimate Load of Steel Frame Structures

Authors: Abdul Hakim Chikho

Abstract:

Calculating the ultimate load of a column in a sway framed structure involves, in the currently used design method, the calculation of the column effective length and utilizing the interaction formulas or tables. Therefore, no allowance is usually made for the effects of the presence of semi rigid connections or the presence of infill panels. In this paper, a new and simple design procedure is recommend to calculate the ultimate load of a framed Column allowing for the presence of rotational end restraints, semi rigid connections, the column end moments resulted from the applied vertical and horizontal loading and infill panels in real steel structure. In order to verify the accuracy of the recommended method to predict good and safe estimations of framed column ultimate loads, several examples have been solved utilizing the recommended procedure, and the results were compared to those obtained using a second order computer program, and good correlation had been obtained. Therefore, the accuracy of the proposed method to predict the Behaviour of practical steel columns in framed structures has been verified.

Keywords: column ultimate load, semi rigid connections, steel column, infill panel, steel structure

Procedia PDF Downloads 145
2251 Improved Whale Algorithm Based on Information Entropy and Its Application in Truss Structure Optimization Design

Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun

Abstract:

Given the limitations of the original whale optimization algorithm (WAO) in local optimum and low convergence accuracy in truss structure optimization problems, based on the fundamental whale algorithm, an improved whale optimization algorithm (SWAO) based on information entropy is proposed. The information entropy itself is an uncertain measure. It is used to control the range of whale searches in path selection. It can overcome the shortcomings of the basic whale optimization algorithm (WAO) and can improve the global convergence speed of the algorithm. Taking truss structure as the optimization research object, the mathematical model of truss structure optimization is established; the cross-sectional area of truss is taken as the design variable; the objective function is the weight of truss structure; and an improved whale optimization algorithm (SWAO) is used for optimization design, which provides a new idea and means for its application in large and complex engineering structure optimization design.

Keywords: information entropy, structural optimization, truss structure, whale algorithm

Procedia PDF Downloads 209
2250 Infrastructure Project Management and Implementation: A Case Study Of the Mokolo-Crocodile Water Augmentation Project in South Africa

Authors: Elkington Sibusiso Mnguni

Abstract:

The Mokolo-Crocodile Water Augmentation Project (MCWAP) is located in the Limpopo Province in the northern-western part of South Africa. Its purpose is to increase water supply by 30 million cubic meters per year to meet current and future demand for users, including power stations, mining houses, and the local municipality in the Lephalale area. This paper documents the planning and implementation aspects of the MCWAP infrastructure project. The study will add to the body of knowledge with respect to bulk water infrastructure development in water-scarce regions. The method used to gather and collate relevant data and information was the desktop study. The key finding was that the project was successfully completed in 2015 using conventional project management and construction methods. The project is currently being operated and maintained by the National Department of Water and Sanitation.

Keywords: construction, contract management, infrastructure project, project management

Procedia PDF Downloads 269
2249 Mitigating Acid Mine Drainage Pollution: A Case Study In the Witwatersrand Area of South Africa

Authors: Elkington Sibusiso Mnguni

Abstract:

In South Africa, mining has been a key economic sector since the discovery of gold in 1886 in the Witwatersrand region, where the city of Johannesburg is located. However, some mines have since been decommissioned, and the continuous pumping of acid mine drainage (AMD) also stopped causing the AMD to rise towards the ground surface. This posed a serious environmental risk to the groundwater resources and river systems in the region. This paper documents the development and extent of the environmental damage as well as the measures implemented by the government to alleviate such damage. The study will add to the body of knowledge on the subject of AMD treatment to prevent environmental degradation. The method used to gather and collate relevant data and information was the desktop study. The key findings include the social and environmental impact of the AMD, which include the pollution of water sources for domestic use leading to skin and other health problems and the loss of biodiversity in some areas. It was also found that the technical intervention of constructing a plant to pump and treat the AMD using the high-density sludge technology was the most effective short-term solution available while a long-term solution was being explored. Some successes and challenges experienced during the implementation of the project are also highlighted. The study will be a useful record of the current status of the AMD treatment interventions in the region.

Keywords: acid mine drainage, groundwater resources, pollution, river systems, technical intervention, high density sludge

Procedia PDF Downloads 164
2248 Numerical Modeling of Phase Change Materials Walls under Reunion Island's Tropical Weather

Authors: Lionel Trovalet, Lisa Liu, Dimitri Bigot, Nadia Hammami, Jean-Pierre Habas, Bruno Malet-Damour

Abstract:

The MCP-iBAT1 project is carried out to study the behavior of Phase Change Materials (PCM) integrated in building envelopes in a tropical environment. Through the phase transitions (melting and freezing) of the material, thermal energy can be absorbed or released. This process enables the regulation of indoor temperatures and the improvement of thermal comfort for the occupants. Most of the commercially available PCMs are more suitable to temperate climates than to tropical climates. The case of Reunion Island is noteworthy as there are multiple micro-climates. This leads to our key question: developing one or multiple bio-based PCMs that cover the thermal needs of the different locations of the island. The present paper focuses on the numerical approach to select the PCM properties relevant to tropical areas. Numerical simulations have been carried out with two softwares: EnergyPlusTM and Isolab. The latter has been developed in the laboratory, with the implicit Finite Difference Method, in order to evaluate different physical models. Both are Thermal Dynamic Simulation (TDS) softwares that predict the building’s thermal behavior with one-dimensional heat transfers. The parameters used in this study are the construction’s characteristics (dimensions and materials) and the environment’s description (meteorological data and building surroundings). The building is modeled in accordance with the experimental setup. It is divided into two rooms, cells A and B, with same dimensions. Cell A is the reference, while in cell B, a layer of commercial PCM (Thermo Confort of MCI Technologies) has been applied to the inner surface of the North wall. Sensors are installed in each room to retrieve temperatures, heat flows, and humidity rates. The collected data are used for the comparison with the numerical results. Our strategy is to implement two similar buildings at different altitudes (Saint-Pierre: 70m and Le Tampon: 520m) to measure different temperature ranges. Therefore, we are able to collect data for various seasons during a condensed time period. The following methodology is used to validate the numerical models: calibration of the thermal and PCM models in EnergyPlusTM and Isolab based on experimental measures, then numerical testing with a sensitivity analysis of the parameters to reach the targeted indoor temperatures. The calibration relies on the past ten months’ measures (from September 2020 to June 2021), with a focus on one-week study on November (beginning of summer) when the effect of PCM on inner surface temperatures is more visible. A first simulation with the PCM model of EnergyPlus gave results approaching the measurements with a mean error of 5%. The studied property in this paper is the melting temperature of the PCM. By determining the representative temperature of winter, summer and inter-seasons with past annual’s weather data, it is possible to build a numerical model of multi-layered PCM. Hence, the combined properties of the materials will provide an optimal scenario for the application on PCM in tropical areas. Future works will focus on the development of bio-based PCMs with the selected properties followed by experimental and numerical validation of the materials. 1Materiaux ´ a Changement de Phase, une innovation pour le B ` ati Tropical

Keywords: energyplus, multi-layer of PCM, phase changing materials, tropical area

Procedia PDF Downloads 64
2247 Case Studies of Mitigation Methods against the Impacts of High Water Levels in the Great Lakes

Authors: Jennifer M. Penton

Abstract:

Record high lake levels in 2017 and 2019 (2017 max lake level = 75.81 m; 2018 max lake level = 75.26 m; 2019 max lake level = 75.92 m) combined with a number of severe storms in the Great Lakes region, have resulted in significant wave generation across Lake Ontario. The resulting large wave heights have led to erosion of the natural shoreline, overtopping of existing revetments, backshore erosion, and partial and complete failure of several coastal structures, which in turn have led to further erosion of the shoreline and damaged existing infrastructure. Such impacts can be seen all along the coast of Lake Ontario. Three specific locations have been chosen as case studies for this paper, each addressing erosion and/or flood mitigation methods, such as revetments and sheet piling with increased land levels. Varying site conditions and the resulting shoreline damage are compared herein. The results are reflected in the case-specific design components of the mitigation and adaptation methods and are presented in this paper.

Keywords: erosion mitigation, flood mitigation, great lakes, high water levels

Procedia PDF Downloads 138
2246 Experimental Set-up for the Thermo-Hydric Study of a Wood Chips Bed Crossed by an Air Flow

Authors: Dimitri Bigot, Bruno Malet-Damour, Jérôme Vigneron

Abstract:

Many studies have been made about using bio-based materials in buildings. The goal is to reduce its environmental footprint by analyzing its life cycle. This can lead to minimize the carbon emissions or energy consumption. A previous work proposed to numerically study the feasibility of using wood chips to regulate relative humidity inside a building. This has shown the capability of a wood chips bed to regulate humidity inside the building, to improve thermal comfort, and so potentially reduce building energy consumption. However, it also shown that some physical parameters of the wood chips must be identified to validate the proposed model and the associated results. This paper presents an experimental setup able to study such a wood chips bed with different solicitations. It consists of a simple duct filled with wood chips and crossed by an air flow with variable temperature and relative humidity. Its main objective is to study the thermal behavior of the wood chips bed by controlling temperature and relative humidity of the air that enters into it and by observing the same parameters at the output. First, the experimental set up is described according to previous results. A focus is made on the particular properties that have to be characterized. Then some case studies are presented in relation to the previous results in order to identify the key physical properties. Finally, the feasibility of the proposed technology is discussed, and some model validation paths are given.

Keywords: wood chips bed, experimental set-up, bio-based material, desiccant, relative humidity, water content, thermal behaviour, air treatment

Procedia PDF Downloads 92
2245 Influence of Wall Stiffness and Embedment Depth on Excavations Supported by Cantilever Walls

Authors: Muhammad Naseem Baig, Abdul Qudoos Khan, Jamal Ali

Abstract:

Ground deformations in deep excavations are affected by wall stiffness and pile embedment ratio. This paper presents the findings of a parametric study of 64ft deep excavation in mixed stiff soil conditions supported by a cantilever pile wall. A series of finite element analyses have been carried out in Plaxis 2D by varying pile embedment ratio and wall stiffness. It has been observed that maximum wall deflections decrease by increasing the embedment ratio up to 1.50; however, any further increase in pile length does not improve the performance of wall. Similarly, increasing wall stiffness reduces the wall deformations and affects the deflection patterns of wall. The finite element analysis results are compared with field data of 25 case studies of cantilever walls. Analysis results fall within the range of normalized wall deflections of 25 case studies. It has been concluded that deep excavations can be supported by cantilever walls provided the system stiffness is increased significantly.

Keywords: excavations, support systems, wall stiffness, cantilever walls

Procedia PDF Downloads 176
2244 Engineering Analysis for Fire Safety Using Computational Fluid Dynamic (CFD)

Authors: Munirajulu M, Srikanth Modem

Abstract:

A large cricket stadium with the capacity to accommodate several thousands of spectators has the seating arena consisting of a two-tier arrangement with an upper and a lower bowl and an intermediate concourse podium level for pedestrian movement to access the bowls. The uniqueness of the stadium is that spectators can have an unobstructed view from all around the podium towards the field of play. Upper and lower bowls are connected by stairs. The stairs landing is a precast slab supported by cantilevered steel beams. These steel beams are fixed to precast columns supporting the stadium structure. The stair slabs are precast concrete supported on a landing slab and cantilevered steel beams. During an event of a fire at podium level between two staircases, fire resistance of steel beams is very critical to life safety. If the steel beam loses its strength due to lack of fire resistance, it will be weak in supporting stair slabs and may lead to a hazard in evacuating occupants from the upper bowl to the lower bowl. In this study, to ascertain fire rating and life safety, a performance-based design using CFD analysis is used to evaluate the steel beams' fire resistance. A fire size of 3.5 MW (convective heat output of fire) with a wind speed of 2.57 m/s is considered for fire and smoke simulation. CFD results show that the smoke temperature near the staircase/ around the staircase does not exceed 1500 C for the fire duration considered. The surface temperature of cantilevered steel beams is found to be less than or equal to 1500 C. Since this temperature is much less than the critical failure temperature of steel (5200 C), it is concluded that the design of structural steel supports on the staircase is adequate and does not need additional fire protection such as fire-resistant coating. CFD analysis provided an engineering basis for the performance-based design of steel structural elements and an opportunity to optimize fire protection requirements. Thus, performance-based design using CFD modeling and simulation of fire and smoke is an innovative way to evaluate fire rating requirements, ascertain life safety and optimize the design with regard to fire protection on structural steel elements.

Keywords: fire resistance, life safety, performance-based design, CFD analysis

Procedia PDF Downloads 164
2243 Bearing Capacity Improvement in a Silty Clay Soil with Crushed Polyethylene Terephthalate

Authors: Renzo Palomino, Alessandra Trujillo, Lidia Pacheco

Abstract:

The document presents a study based on the incremental bearing capacity of silty clay soil with the incorporation of crushed PET fibers. For a better understanding of the behavior of soil, it is necessary to know its origin. The analyzed samples came from the subgrade layer of a highway that connects the cities of Muniches and Yurimaguas in Loreto, Peru. The material in this area usually has properties such as low support index, medium to high plasticity, and other characteristics that make it considered a ‘problematic’ soil due to factors such as climate, humidity, and geographical location. In addition, PET fibers are obtained from the decomposition of plastic bottles that are polluting agents with a high production rate in our country; in that sense, their use in a construction process represents a considerable reduction in environmental impact. Moreover, to perform a precise analysis of the behavior of this soil mixed with PET, tests such as the hydrometer test, Proctor and CBR with 15%, 10%, 5%, 4%, 3%, and 1% of PET with respect to the mass of the sample of natural soil were carried out. The results show that when a low percentage of PET is used, the support index increases.

Keywords: environmental impact, geotechnics, PET, silty clay soil

Procedia PDF Downloads 203