Search results for: wearable knee exoskeletons.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 95

Search results for: wearable knee exoskeletons.

65 Investigation of New Gait Representations for Improving Gait Recognition

Authors: Chirawat Wattanapanich, Hong Wei

Abstract:

This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.

Keywords: Convolutional image, lower knee, gait.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
64 Kinematic Gait Analysis of Upper and Lower Limbs Joints in Hemiplegic Children

Authors: Zeinab A.Hussein, Manal S. Abd El-Wahab, Shorouk A. W. El-Shennawy

Abstract:

Children with hemiplgic cerebral palsy often walk with diminished reciprocal arm swing so the purpose of this study was to describe kinematic characteristics in children with hemiplegic cerebral palsy (CP) during the gait suphases, and find if there is a correlation between upper(shoulder and elbow) and lower(hip, knee, and ankle) limb joints either in involved or uninvolved.48 children with hemiplegic cerebral palsy (18boys, 30girls) with an average age of (5.1±0.87) years were selected randomly to evaluate joint angles during gait by 3D motion analysis system with 6 pro reflex cameras in a sagittal plane for both sides of the body. The results showed increased shoulder and elbow flexion, increased hip angular displacement, decreased knee and ankle arcs during gait cycle, also there is correlation between shoulder and elbow to hip, knee, and ankle joints during various subphases of gait.

Keywords: Cerebral palsy, Gait, Hemiplegia, Motion analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
63 Enhancing Seamless Communication Through a user Co-designed Wearable Device

Authors: A. Marcengo, A. Rapp, E. Guercio

Abstract:

This work aims to describe the process of developing services and applications of seamless communication within a Telecom Italia long-term research project, which takes as central aim the design of a wearable communication device. In particular, the objective was to design a wrist phone integrated into everyday life of people in full transparency. The methodology used to design the wristwatch was developed through several subsequent steps also involving the Personas Layering Framework. The data collected in this phases have been very useful for designing an improved version of the first two concepts of wrist phone going to change aspects related to the four critical points expressed by the users.

Keywords: Design, Interaction, User Centred Design, Wristphone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
62 Investigation of a Wearable Textile Monopole Antenna on Specific Absorption Rate at 2.45 GHz

Authors: Hasliza A. Rahim, Fareq Malek, Ismahayati Adam, Ahmad Sahadah, Nur B. M. Hashim, Nur A. M. Affendi, Azuwa Ali, Norshafinash Saudin, Latifah Mohamed

Abstract:

This paper discusses the investigation of a wearable textile monopole antenna on specific absorption rate (SAR) for bodycentric wireless communication applications at 2.45 GHz. The antenna is characterized on a realistic 8 x 8 x 8 mm3 resolution truncated Hugo body model in CST Microwave Studio software. The result exhibited that the simulated SAR values were reduced significantly by 83.5% as the position of textile monopole was varying between 0 mm and 15 mm away from the human upper arm. A power absorption reduction of 52.2% was also noticed as the distance of textile monopole increased.

Keywords: Monopole antenna, specific absorption rate, textile antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
61 The Applications of Four Fingers Theory: The Proof of 66 Acupoints under the Human Elbow and Knee

Authors: Chih-I. Tsai, Yu-Chien. Lin

Abstract:

Through experiences of clinical practices, it is discovered that locations on the body at a level of four fingerbreadth above and below the joints are the points at which muscles connect to tendons, and since the muscles and tendons possess opposite characteristics, muscles are full of blood but lack qi, while tendons are full of qi but lack blood, these points on our body become easily blocked. It is proposed that through doing acupuncture or creating localized pressure to the areas four fingerbreadths above and below our joints, with an elastic bandage, we could help the energy, also known as qi, to flow smoothly in our body and further improve our health. Based on the Four Fingers Theory, we understand that human height is 22 four fingerbreadths. In addition, qi and blood travel through 24 meridians, 50 times each day, and they flow through 6 cun with every human breath. We can also understand the average number of human heartbeats is 75 times per minute. And the function of qi-blood circulation system in Traditional Chinese Medicine is the same as the blood circulation in Western Medical Science. Informed by Four Fingers Theory, this study further examined its applications in acupuncture practices. The research question is how Four Fingers Theory proves what has been mentioned in Nei Jing that there are 66 acupoints under a human’s elbow and knee. In responding to the research question, there are 66 acupoints under a human’s elbow and knee. Four Fingers Theory facilitated the creation of the acupuncture naming and teaching system. It is expected to serve as an approachable and effective way to deliver knowledge of acupuncture to the public worldwide.

Keywords: Four Fingers theory, Meridians circulation, 66 Acupoints under a human’s elbow and knee, acupuncture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
60 Dynamic Balance, Pain and Functional Performance in Cruciate Retaining, Posterior Stabilized and Uni-Compartmental Knee Arthroplasty

Authors: Ahmed R. Z. Baghdadi, Amira A. A. Abdallah

Abstract:

Background: With the perceived pain and poor function experienced following knee arthroplasty, patients usually feel un-satisfied. Yet, a controversy still persists on the appropriate operative technique that doesn’t affect proprioception much.

Purpose: This study compared the effects of Cruciate Retaining (CR) and Posterior Stabilized (PS) total knee arthroplasty (TKA) and uni-compartmental knee arthroplasty (UKA) on dynamic balance, pain and functional performance following rehabilitation.

Methods: Fifteen patients with CRTKA (group I), fifteen with PSTKA (group II), fifteen with UKA (group III) and fifteen indicated for arthroplasty but weren’t operated on yet (group IV) participated in the study. The mean age was 54.53±3.44, 55.13±3.48, 52.8±1.93 and 55.33±2.32 years and BMI 35.7±3.03, 35.7±1.99, 35.6±1.88 and 35.73±1.03 kg/m2 for group I, II, III and IV respectively. The Berg Balance Scale (BBS), WOMAC pain subscale and Timed Up-and-Go (TUG) and Stair-Climbing (SC) tests were used for assessment. Assessments were conducted four and eight weeks pre- and post-operatively with the control group being assessed at the same time intervals. The post-operative rehabilitation involved hospitalization (1st week), home-based (2nd-4th weeks), and outpatient clinic (5th-8th weeks) programs.

Results: The Mixed design MANOVA revealed that group III had significantly higher BBS scores, and lower pain scores and TUG and SC time than groups I and II four and eight weeks post-operatively. In addition, group I had significantly lower pain scores and SC time compared with group II eight weeks post-operatively. Moreover, the BBS scores increased significantly and the pain scores and TUG and SC time decreased significantly eight weeks post-operatively compared with the three other assessments in group I, II and III with the opposite being true four weeks post-operatively.

Interpretation/Conclusion: CRTKA is preferable to PSTKA with UKA being generally superior to TKA, possibly due to the preserved human proprioceptors in the un-excised compartmental articular surface.

Keywords: Dynamic Balance, Functional Performance, Knee Arthroplasty, Pain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
59 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery

Authors: Chang, Chun-Lang, Liu, Chun-Kai

Abstract:

This study, for its research subjects, uses patients who had undergone total knee replacement surgery from the database of the National Health Insurance Administration. Through the review of literatures and the interviews with physicians, important factors are selected after careful screening. Then using Cross Entropy Method, Genetic Algorithm Logistic Regression, and Particle Swarm Optimization, the weight of each factor is calculated and obtained. In the meantime, Excel VBA and Case Based Reasoning are combined and adopted to evaluate the system. Results show no significant difference found through Genetic Algorithm Logistic Regression and Particle Swarm Optimization with over 97% accuracy in both methods. Both ROC areas are above 0.87. This study can provide critical reference to medical personnel as clinical assessment to effectively enhance medical care quality and efficiency, prevent unnecessary waste, and provide practical advantages to resource allocation to medical institutes.

Keywords: Total knee replacement, Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
58 Analysis of Design Structuring and Performance of CPW Fed UWB Antenna in Presence of Human Arm Model

Authors: Narbada Prasad Gupta, Mithilesh Kumar

Abstract:

A compact Ultra Wide Band (UWB) antenna with coplanar waveguide feed has been designed and results are verified in this paper. The antenna has been designed on FR4 substrate with dielectric constant (εr) of 4.4 and dimensions of 32mm x 26mm x 0.8mm. The presented antenna shows return loss characteristics in the band of 3.1 to 10.6 GHz as prescribed by FCC, USA. Parametric studies have been done and results thus obtained have been presented. Simulated results have been verified on Rohde & Swartz VNA. The measured results are in good agreement with simulated results which make the presented antenna suitable to be used for wearable applications. Performance analysis of antenna has also been shown in the presence of three layered Human Arm model. Results obtained in presence of Human Arm model has been compared with that in free space.

Keywords: CPW feed, Human Arm model, UWB, wearable antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
57 Directionally-Sensitive Personal Wearable Radiation Dosimeter

Authors: Hai Huu Le, Paul Junor, Moshi Geso, Graeme O’Keefe

Abstract:

In this paper, the authors propose a personal wearable directionally-sensitive radiation dosimeter using multiple semiconductor CdZnTe detectors. The proposed dosimeter not only measures the real-time dose rate but also provide the direction of the radioactive source. A linear relationship between radioactive source direction and the radiation intensity measured by each detectors is established and an equation to determine the source direction is derived by the authors. The efficiency and accuracy of the proposed dosimeter is verified by simulation using Geant4 package. Results have indicated that in a measurement duration of about 7 seconds, the proposed dosimeter was able to estimate the direction of a 10μCi 137/55Cs radioactive source to within 2 degrees.

Keywords: Dose rate, Geant4 package, radiation detectors, radioactive source direction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
56 Alertness States Classification By SOM and LVQ Neural Networks

Authors: K. Ben Khalifa, M.H. Bédoui, M. Dogui, F. Alexandre

Abstract:

Several studies have been carried out, using various techniques, including neural networks, to discriminate vigilance states in humans from electroencephalographic (EEG) signals, but we are still far from results satisfactorily useable results. The work presented in this paper aims at improving this status with regards to 2 aspects. Firstly, we introduce an original procedure made of the association of two neural networks, a self organizing map (SOM) and a learning vector quantization (LVQ), that allows to automatically detect artefacted states and to separate the different levels of vigilance which is a major breakthrough in the field of vigilance. Lastly and more importantly, our study has been oriented toward real-worked situation and the resulting model can be easily implemented as a wearable device. It benefits from restricted computational and memory requirements and data access is very limited in time. Furthermore, some ongoing works demonstrate that this work should shortly results in the design and conception of a non invasive electronic wearable device.

Keywords: Electroencephalogram interpretation, artificialneural networks, vigilance states, hardware implementation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
55 Quality Evaluation of Compressed MRI Medical Images for Telemedicine Applications

Authors: Seddeq E. Ghrare, Salahaddin M. Shreef

Abstract:

Medical image modalities such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), X-ray are adapted to diagnose disease. These modalities provide flexible means of reviewing anatomical cross-sections and physiological state in different parts of the human body. The raw medical images have a huge file size and need large storage requirements. So it should be such a way to reduce the size of those image files to be valid for telemedicine applications. Thus the image compression is a key factor to reduce the bit rate for transmission or storage while maintaining an acceptable reproduction quality, but it is natural to rise the question of how much an image can be compressed and still preserve sufficient information for a given clinical application. Many techniques for achieving data compression have been introduced. In this study, three different MRI modalities which are Brain, Spine and Knee have been compressed and reconstructed using wavelet transform. Subjective and objective evaluation has been done to investigate the clinical information quality of the compressed images. For the objective evaluation, the results show that the PSNR which indicates the quality of the reconstructed image is ranging from (21.95 dB to 30.80 dB, 27.25 dB to 35.75 dB, and 26.93 dB to 34.93 dB) for Brain, Spine, and Knee respectively. For the subjective evaluation test, the results show that the compression ratio of 40:1 was acceptable for brain image, whereas for spine and knee images 50:1 was acceptable.

Keywords: Medical Image, Magnetic Resonance Imaging, Image Compression, Discrete Wavelet Transform, Telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932
54 Workstation Design Based On Ergonomics in Animal Feed Packing Process

Authors: Pirutchada Musigapong, Wantanee Phanprasit

Abstract:

The intention of this study to design the probability optimized sewing sack-s workstation based on ergonomics for productivity improvement and decreasing musculoskeletal disorders. The physical dimensions of two workers were using to design the new workstation. The physical dimensions are (1) sitting height, (2) mid shoulder height sitting, (3) shoulder breadth, (4) knee height, (5) popliteal height, (6) hip breadth and (7) buttock-knee length. The 5th percentile of buttock knee length sitting (51 cm), the 50th percentile of mid shoulder height sitting (62 cm) and the 95th percentile of popliteal height (43 cm) and hip breadth (45 cm) applied to design the workstation for sewing sack-s operator and the others used to adjust the components of this workstation. The risk assessment by RULA before and after using the probability optimized workstation were 7 and 7 scores and REBA scores were 11 and 5, respectively. Body discomfort-abnormal index was used to assess muscle fatigue of operators before adjustment workstation found that neck muscles, arm muscles area, muscles on the back and the lower back muscles fatigue. Therefore, the extension and flexion exercise was applied to relief musculoskeletal stresses. The workers exercised 15 minutes before the beginning and the end of work for 5 days. After that, the capability of flexion and extension muscles- workers were increasing in 3 muscles (arm, leg, and back muscles).

Keywords: Animal feed, anthropometry, ergonomics, sewing sack, workstation design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
53 The Current State of Human Gait Simulator Development

Authors: V. Musalimov, I. Stepanov, Y. Monahov, A. Safonov

Abstract:

This report examines the current state of human gait simulator development based on the human hip joint model. This unit will create a database of human gait types, useful for setting up and calibrating Mechano devices, as well as the creation of new systems of rehabilitation, exoskeletons and walking robots. The system has many opportunities to configure the dimensions and stiffness, while maintaining relative simplicity.

Keywords: Hip joint, human gait, physiotherapy, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
52 Long-Term Follow-up of Dynamic Balance, Pain and Functional Performance in Cruciate Retaining and Posterior Stabilized Total Knee Arthroplasty

Authors: Ahmed R. Z. Baghdadi, Mona H. Gamal Eldein

Abstract:

Background: With the perceived pain and poor function experienced following knee arthroplasty, patients usually feel un-satisfied. Yet, a controversy still persists on the appropriate operative technique that doesn’t affect proprioception much. Purpose: This study compared the effects of Cruciate Retaining (CR) and Posterior Stabilized (PS) total knee arthroplasty (TKA on dynamic balance, pain and functional performance following rehabilitation. Methods: Thirty patients with CRTKA (group I), thirty with PSTKA (group II) and fifteen indicated for arthroplasty but weren’t operated on yet (group III) participated in the study. The mean age was 54.53±3.44, 55.13±3.48 and 55.33±2.32 years and BMI 35.7±3.03, 35.7±1.99 and 35.73±1.03 kg/m2 for groups I, II and III respectively. The Berg Balance Scale (BBS), WOMAC pain subscale and Timed Up-and-Go (TUG) and Stair-Climbing (SC) tests were used for assessment. Assessments were conducted four weeks preand post-operatively, three, six and twelve months post-operatively with the control group being assessed at the same time intervals. The post-operative rehabilitation involved hospitalization (1st week), home-based (2nd-4th weeks), and outpatient clinic (5th-12th weeks) programs, follow-up to all groups for twelve months. Results: The Mixed design MANOVA revealed that group I had significantly lower pain scores and SC time compared with group II three, six and twelve months post-operatively. Moreover, the BBS scores increased significantly and the pain scores and TUG and SC time decreased significantly six months post-operatively compared with four weeks pre- and post-operatively and three months postoperatively in groups I and II with the opposite being true four weeks post-operatively. But no significant differences in BBS scores, pain scores and TUG and SC time between six and twelve months postoperatively in groups I and II. Interpretation/Conclusion: CRTKA is preferable to PSTKA, possibly due to the preserved human proprioceptors in the un-excised PCL.

Keywords: Dynamic Balance, Functional Performance, Knee Arthroplasty, Long-Term.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
51 Effect of Muscle Loss on Hip Muscular Effort during the Swing Phase of Transfemoral Amputee Gait: A Simulation Study

Authors: Dabiri Y, Najarian S, Eslami M R., Zahedi S, Moser D, Shirzad E, Allami M

Abstract:

The effect of muscle loss due to transfemoral amputation, on energy expenditure of hip joint and individual residual muscles was simulated. During swing phase of gait, with each muscle as an ideal force generator, the lower extremity was modeled as a two-degree of freedom linkage, for which hip and knee were joints. According to results, muscle loss will not lead to higher energy expenditure of hip joint, as long as other parameters of limb remain unaffected. This finding maybe due to the role of biarticular muscles in hip and knee joints motion. Moreover, if hip flexors are removed from the residual limb, residual flexors, and if hip extensors are removed, residual extensors will do more work. In line with the common practice in transfemoral amputation, this result demonstrates during transfemoral amputation, it is important to maintain the length of residual limb as much as possible.

Keywords: Amputation Level, Simulation, Transfemoral Amputee.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
50 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance

Authors: Binnur Sagbas

Abstract:

Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.

Keywords: Artificial joints, plasma surface modification, UHMWPE, vitamin E, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
49 Biomechanics Analysis of Bicross Start

Authors: M. Kalichová, S. Hřebíčková, R. Labounková, P. Hedbávný, G. Bago

Abstract:

The article deals with a biomechanics analysis of the classic bicross start with a backward movement of the bike. This is a case study analyzing this type of start in two bicross riders representing the Czech Republic. Based on the 3D kinematic analysis and with a special emphasis on the ankle movement we have divided the start into five phases – phase n. 1 – reaction time, phase n. 2 – preparation movements time, phase n. 3 – first pedal stroke time, phase n. 4 – dead point pedal passage time, phase n. 5 – second pedal stroke time. Further we have demonstrated the significance of kinematic characteristics in various stages of the bicross start including their values and the extent of change. These primarily include the vector of the instantaneous velocity of the head, wrists, elbows, shoulders, hip and knee joints. The significant angle characteristics have been noted in elbow, shoulder, hip and knee joints. The results of this work indicate the types of movement prevailing in the respective phases and as such are expected to serve as a basis for further analyses of this movement structure performed, however, on a large research sample.

Keywords: Bicross, start, kinematic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
48 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System

Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma

Abstract:

Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.

Keywords: Machine learning, user interface, user experience, Internet of things, health promotion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
47 Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties

Authors: Raouf Mbarki, Fadi Al Khatib, Malek Adouni

Abstract:

Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules.

Keywords: Multiscale model, tropocollagen, fibrils, ligaments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 558
46 Heat Treatment and Rest-Inserted Exercise Enhances EMG Activity of the Lower Limb

Authors: Jae Kyun Bang, Sung Jae Hwang, Chang Yong Ko, Chi Hyun Kim

Abstract:

Prolonged immobilization leads to significant weakness and atrophy of the skeletal muscle and can also impair the recovery of muscle strength following injury. Therefore, it is important to minimize the period under immobilization and accelerate the return to normal activity. This study examined the effects of heat treatment and rest-inserted exercise on the muscle activity of the lower limb during knee flexion/extension. Twelve healthy subjects were assigned to 4 groups that included: (1) heat treatment + rest-inserted exercise; (2) heat + continuous exercise; (3) no heat + rest-inserted exercise; and (4) no heat + continuous exercise. Heat treatment was applied for 15 mins prior to exercise. Continuous exercise groups performed knee flexion/extension at 0.5 Hz for 300 cycles without rest whereas rest-inserted exercise groups performed the same exercise but with 2 mins rest inserted every 60 cycles of continuous exercise. Changes in the rectus femoris and hamstring muscle activities were assessed at 0, 1, and 2 weeks of treatment by measuring the electromyography signals of isokinetic maximum voluntary contraction. Significant increases in both the rectus femoris and hamstring muscles were observed after 2 weeks of treatment only when both heat treatment and rest-inserted exercise were performed. These results suggest that combination of various treatment techniques, such as heat treatment and rest-inserted exercise, may expedite the recovery of muscle strength following immobilization.

Keywords: Electromyography, Heat Treatment, Muscle, Rest-Inserted Exercise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
45 Exoskeleton for Hemiplegic Patients: Mechatronic Approach to Move One Disabled Lower Limb

Authors: Alaoui Hamza, Moutacalli Mohamed Tarik, Chebak Ahmed

Abstract:

The number of people suffering from hemiplegia is growing each year. This lower limb disability affects all the aspects of their lives by taking away their autonomy. This implicates their close relatives, as well as the health system to provide the necessary care they need. The integration of exoskeletons in the medical field became a promising solution to resolve this issue. This paper presents an exoskeleton designed to help hemiplegic people get back the sensation and ability of normal walking. For this purpose, three step models have been created. The first step allows a simple forward movement of the leg. The second method is designed to overcome some obstacles in the patient path, and finally the third step model gives the patient total control over the device. Each of the control methods was designed to offer a solution to the challenges that the patients may face during the walking process.

Keywords: Ability of normal walking, exoskeleton, hemiplegic patients, lower limb motion, mechatronics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
44 Obesity and Bone Mineral Density in Patients with Large Joint Osteoarthritis

Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Zaverukha, Roksolana Povoroznyuk

Abstract:

Along with the global aging of population, the number of people with somatic diseases is increasing, including such interrelated pathologies as obesity, osteoarthritis (OA) and osteoporosis (OP). The objective of the study is to examine the connection between body mass index (BMI), OA and bone mineral density (BMD) of lumbar spine, femoral neck and trabecular bone score (TBS) in postmenopausal women with OA. We have observed 359 postmenopausal women (50-89 years old) and divided them into four groups by age: 50-59 yrs, 60-69 yrs, 70-79 yrs and over 80 years old. In addition, according to the American College of Rheumatology (ACR) Clinical classification criteria for knee and hip OA, we divided them into 2 groups: group I – 117 females with symptomatic OA (including 89 patients with knee OA, 28 patients with hip OA) and group II –242 women with a normal functional activity of large joints. Analysis of data was performed taking into account their BMI, classified by World Health Organization (WHO). Diagnosis of obesity was established when BMI was above 30 kg/m2. In woman with obesity, a symptomatic OA was detected in 44 postmenopausal women (41.1%), a normal functional activity of large joints - in 63 women (58.9%). However, in women with normal BMI – 73 women, who account for 29.0% of cases, a symptomatic OA was detected. According to a chi-squared (χ2) test, a significantly higher level of BMI was detected in postmenopausal women with OA (χ2 = 5.05, p = 0.02). Women with a symptomatic OA had a significantly higher BMD of lumbar spine compared with women who had a normal functional activity of large joints. No significant differences of BMD of femoral necks or TBS were detected in either the group with OA or with a normal functional activity of large joints.

Keywords: Bone mineral density, BMD, body mass index, BMI, obesity, overweight, postmenopausal women, osteoarthritis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
43 Measurements of MRI R2* Relaxation Rate in Liver and Muscle: Animal Model

Authors: Chiung-Yun Chang, Po-Chou Chen, Jiun-Shiang Tzeng, Ka-Wai Mac, Chia-Chi Hsiao, Jo-Chi Jao

Abstract:

This study was aimed to measure effective transverse relaxation rates (R2*) in the liver and muscle of normal New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the constituents of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterwards, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) to acquire images for R2* measurements. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(sı) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8 ± 10.9 s-1 and 37.4 ± 9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, the more the iron contents in tissue, the higher the R2*. The correlations between R2* and iron content in NZW rabbits might be valuable for further exploration.

Keywords: Liver, MRI, multi-planar fast gradient echo, muscle, R2* relaxation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
42 Decreasing Power Consumption of a Medical E-textile

Authors: E. Shahhaidar

Abstract:

In this paper we present a novel design of a wearable electronic textile. After defining a special application, we used the specifications of some low power, tiny elements including sensors, microcontrollers, transceivers, and a fault tolerant special topology to have the most reliability as well as low power consumption and longer lifetime. We have considered two different conditions as normal and bodily critical conditions and set priorities for using different sensors in various conditions to have a longer effective lifetime.

Keywords: ECG, E-Textile, Fault Tolerance, Powerconsumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
41 An Ergonomic Evaluation of Three Load Carriage Systems for Reducing Muscle Activity of Trunk and Lower Extremities during Giant Puppet Performing Tasks

Authors: Cathy SW. Chow, Kristina Shin, Faming Wang, B. C. L. So

Abstract:

During some dynamic giant puppet performances, an ergonomically designed load carrier system is necessary for the puppeteers to carry a giant puppet body’s heavy load with minimum muscle stress. A load carrier (i.e. prototype) was designed with two small wheels on the foot; and a hybrid spring device on the knee in order to assist the sliding and knee bending movements respectively. Thus, the purpose of this study was to evaluate the effect of three load carriers including two other commercially available load mounting systems, Tepex and SuitX, and the prototype. Ten male participants were recruited for the experiment. Surface electromyography (sEMG) was used to collect the participants’ muscle activities during forward moving and bouncing and with and without load of 11.1 kg that was 60 cm above the shoulder. Five bilateral muscles including the lumbar erector spinae (LES), rectus femoris (RF), bicep femoris (BF), tibialis anterior (TA), and gastrocnemius (GM) were selected for data collection. During forward moving task, the sEMG data showed smallest muscle activities by Tepex harness which exhibited consistently the lowest, compared with the prototype and SuitX which were significantly higher on left LES 68.99% and 64.99%, right LES 26.57% and 82.45%; left RF 87.71% and 47.61%, right RF 143.57% and 24.28%; left BF 80.21% and 22.23%, right BF 96.02% and 21.83%; right TA 6.32% and 4.47%; left GM 5.89% and 12.35% respectively. The result above reflected mobility was highly restricted by tested exoskeleton devices. On the other hand, the sEMG data from bouncing task showed the smallest muscle activities by prototype which exhibited consistently the lowest, compared with the Tepex harness and SuitX which were significantly lower on lLES 6.65% and 104.93, rLES 23.56% and 92.19%; lBF 33.21% and 93.26% and rBF 24.70% and 81.16%; lTA 46.51% and 191.02%; rTA 12.75% and 125.76%; IGM 31.54% and 68.36%; rGM 95.95% and 96.43% respectively.

Keywords: Exoskeleton, load carriage aid, giant puppet performers, electromyography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
40 Preliminary Study on Analysis of Pinching Motion Actuated by Electro-Active Polymers

Authors: Doo W. Lee, Soo J. Lee, Bye R. Yoon, Jae Y. Jho, Kyehan Rhee

Abstract:

Hand exoskeletons have been developed in order to assist daily activities for disabled and elder people. A figure exoskeleton was developed using ionic polymer metal composite (IPMC) actuators, and the performance of it was evaluated in this study. In order to study dynamic performance of a finger dummy performing pinching motion, force generating characteristics of an IPMC actuator and pinching motion of a thumb and index finger dummy actuated by IMPC actuators were analyzed. The blocking force of 1.54 N was achieved under 4 V of DC. A thumb and index finger dummy, which has one degree of freedom at the proximal joint of each figure, was manufactured by a three dimensional rapid prototyping. Each figure was actuated by an IPMC actuator, and the maximum fingertip force was 1.18 N. Pinching motion of a dummy was analyzed by two video cameras in vertical top and horizontal left end view planes. A figure dummy powered by IPMC actuators could perform flexion and extension motion of an index figure and a thumb.

Keywords: Finger exoskeleton, ionic polymer metal composite, flexion and extension, motion analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
39 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product

Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu

Abstract:

The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.

Keywords: Aesthetics, crease line, cropped straight leg pants, knee width.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730
38 State of the Art: A Study on Fall Detection

Authors: Goh Yongli, Ooi Shih Yin, Pang Ying Han

Abstract:

Unintentional falls are rife throughout the ages and have been the common factor of serious or critical injuries especially for the elderly society. Fortunately, owing to the recent rapid advancement in technology, fall detection system is made possible, enabling detection of falling events for the elderly, monitoring the patient and consequently provides emergency support in the event of falling. This paper presents a review of 3 main categories of fall detection techniques, ranging from year 2005 to year 2010. This paper will be focusing on discussing the techniques alongside with summary and conclusion for them.

Keywords: State of the art, fall detection, wearable devices, ambient analyser, motion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
37 Robotic Arm Allowing a Diabetic Quadriplegic Patient to Self-Administer Insulin

Authors: L. Parisi

Abstract:

A method which allows a diabetic quadriplegic patient that has had four limb amputations (above the knee and elbow) to self-administer injections of insulin has been designed. The aim of this research project is to improve a quadriplegic patient’s selfmanagement, affected by diabetes, by designing a suitable device for self-administering insulin. The quadriplegic patient affected by diabetes has to be able to selfadminister insulin safely and independently to guarantee stable healthy conditions. The device also should be designed to adapt to a number of different varying personal characteristics such as height and body weight.

Keywords: Robotics, diabetes, quadriplegia, self-management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
36 Interactive Garments: Flexible Technologies for Textile Integration

Authors: Anupam Bhatia

Abstract:

Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.

Keywords: Ambient Intelligence, Proximity Sensors, Shape Memory Materials, Sound sensing garments, Wearable Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3214