Search results for: thermal enhancement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1759

Search results for: thermal enhancement

1519 Investigating the Influence of Porosity on Thermal and Mechanical Properties of a C/C Composite Using Image Based FE Modelling

Authors: Abdulrahman A. Alghamdi, Paul M. Mummery, Mohammad A. Sheikh

Abstract:

In this paper, 3D image based composite unit cell is constructed from high resolution tomographic images. Through-thickness thermal diffusivity and in-plane Young’s modulus are predicted for the composite unit cell. The accuracy of the image based composite unit cell is tested by comparing its results with the experimental results obtained from laser flash and tensile test. The FE predictions are in close agreement with experimental results. Through-thickness thermal diffusivity and in-plane Young’s modulus of a virgin C/C composite are predicted by replacing the properties of air (porosity) with the properties of carbon matrix. The effect of porosity was found to be more profound on thermal diffusivity than young’s modulus.

Keywords: Porosity, C/C composite, image based FE modelling, CMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
1518 Experimental and Numerical Study of A/C Outletsand Its Impact on Room Airflow Characteristics

Authors: Mohammed A. Aziz, Ibrahim A. M. Gad, El Shahat F. A. Mohammed, Ramy H. Mohammed

Abstract:

This paper investigates experimental and numerical study of the airflow characteristics for vortex, round and square ceiling diffusers and its effect on the thermal comfort in a ventilated room. Three different thermal comfort criteria namely; Mean Age of the Air (MAA), ventilation effectiveness (E), and Effective Draft Temperature (EDT) have been used to predict the thermal comfort zone inside the room. In experimental work, a sub-scale room is set-up to measure the temperature field in the room. In numerical analysis, unstructured grids have been used to discretize the numerical domain. Conservation equations are solved using FLUENT commercial flow solver. The code is validated by comparing the numerical results obtained from three different turbulence models with the available experimental data. The comparison between the various numerical models shows that the standard k-ε turbulence model can be used to simulate these cases successfully. After validation of the code, effect of supply air velocity on the flow and thermal field could be investigated and hence the thermal comfort. The results show that the pressure coefficient created by the square diffuser is 1.5 times greater than that created by the vortex diffuser. The velocity decay coefficient is nearly the same for square and round diffusers and is 2.6 times greater than that for the vortex diffuser.

Keywords: Ceiling diffuser, Thermal Comfort, MAA, EDT, Fluent, Turbulence model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
1517 Physicochemical and Thermal Characterization of Starch from Three Different Plantain Cultivars in Puerto Rico

Authors: Carmen E. Pérez-Donado, Fernando Pérez-Muñoz, Rosa N. Chávez-Jáuregui

Abstract:

Plantain contains starch as the main component and represents a relevant source of this carbohydrate. Starches from different cultivars of plantain and bananas have been studied for industrialization purposes due to their morphological and thermal characteristics and their influence in food products. This study aimed to characterize the physical, chemical, and thermal properties of starch from three different plantain cultivated in Puerto Rico: Maricongo, Maiden and FHIA 20. Amylose and amylopectin content, color, granular size, morphology, and thermal properties were determined. According to the amylose content in starches, FHIA 20 presented lowest content of the three cultivars studied. In terms of color, Maiden and FHIA 20 starches exhibited significantly higher whiteness indexes compared to Maricongo starch. Starches of the three cultivars had an elongated-ovoid morphology, with a smooth surface and a non-porous appearance. Regardless of similarities in their morphology, FHIA 20 exhibited a lower aspect ratio since its granules tended to be more elongated. Comparison of the thermal properties of starches showed that initial starch gelatinization temperature was similar among cultivars. However, FHIA 20 starch presented a noticeably higher final gelatinization temperature (87.95°C) and transition enthalpy than Maricongo (79.69°C) and Maiden (77.40°C). Despite similarities, starches from plantain cultivars showed differences in their composition and thermal behavior. This represents an opportunity to diversify plantain starch use in food-related applications.

Keywords: aspect ratio, morphology, Musa spp., starch, thermal properties, amylose content

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
1516 Modeling of Fluid Flow in 2D Triangular, Sinusoidal, and Square Corrugated Channels

Authors: Abdulbasit G. A. Abdulsayid

Abstract:

The main focus of the work was concerned with hydrodynamic and thermal analysis of the plate heat exchanger channel with corrugation patterns suggested to be triangular, sinusoidal, and square corrugation. This study was to numerically model and validate the triangular corrugated channel with dimensions/parameters taken from open literature, and then model/analyze both sinusoidal, and square corrugated channel referred to the triangular model. Initially, 2D modeling with local extensive analysis for triangular corrugated channel was carried out. By that, all local pressure drop, wall shear stress, friction factor, static temperature, heat flux, Nusselt number, and surface heat coefficient, were analyzed to interpret the hydrodynamic and thermal phenomena occurred in the flow. Furthermore, in order to facilitate confidence in this model, a comparison between the values predicted, and experimental results taken from literature for almost the same case, was done. Moreover, a holistic numerical study for sinusoidal and square channels together with global comparisons with triangular corrugation under the same condition, were handled. Later, a comparison between electric, and fluid cooling through varying the boundary condition was achieved. The constant wall temperature and constant wall heat flux boundary conditions were employed, and the different resulted Nusselt numbers as a consequence were justified. The results obtained can be used to come up with an optimal design, a 'compromise' between heat transfer and pressure drop.

Keywords: Corrugated Channel, CFD, Heat Exchanger, Heat Enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3132
1515 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils

Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul

Abstract:

In this study, an application was carried out to determine the Volcanic Soils by using remote sensing.  The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.

Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046
1514 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: Semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
1513 Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling

Authors: M. Capocelli, A. Caputo, M. De Falco, D. Mazzei, V. Piemonte

Abstract:

This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell & tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies.

Keywords: Thermocline, modelling, heat exchange, spiral, shell, tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
1512 Simplified 3R2C Building Thermal Network Model: A Case Study

Authors: S. M. Mahbobur Rahman

Abstract:

Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control.  Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the “Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program”, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows.

Keywords: ASHRAE case study, clear sky solar radiation model, energy modeling, thermal network model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1144
1511 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model

Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth

Abstract:

This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.

Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
1510 Throughput Optimization on Wireless Networks by Increasing the Maximum Transmission Unit

Authors: Edward Guillén, Stephanne Rodríguez, Jhordany Rodríguez

Abstract:

Throughput enhancement can be achieved with two main approaches. The first one is by the increase of transmission rate and the second one is reducing the control traffic. This paper focuses on how the throughput can be enhanced by increasing Maximum Transmission Unit -MTU. Transmission of larger packets can cause a throughput improvement by reducing IP overhead. Analysis results are obtained by a mathematical model and simulation tools with a main focus on wireless channels.

Keywords: 802.11, Maximum Transfer Unit, throughput enhancement, wireless networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3521
1509 Numerical Investigation of Flow Patterns and Thermal Comfort in Air-Conditioned Lecture Rooms

Authors: Taher M. Abou-deif, Mahmoud A. Fouad, Essam E. Khalil

Abstract:

The present paper was concerned primarily with the analysis, simulation of the air flow and thermal patterns in a lecture room. The paper is devoted to numerically investigate the influence of location and number of ventilation and air conditioning supply and extracts openings on air flow properties in a lecture room. The work focuses on air flow patterns, thermal behaviour in lecture room where large number of students. The effectiveness of an air flow system is commonly assessed by the successful removal of sensible and latent loads from occupants with additional of attaining air pollutant at a prescribed level to attain the human thermal comfort conditions and to improve the indoor air quality; this is the main target during the present paper. The study is carried out using computational fluid dynamics (CFD) simulation techniques as embedded in the commercially available CFD code (FLUENT 6.2). The CFD modelling techniques solved the continuity, momentum and energy conservation equations in addition to standard k – ε model equations for turbulence closure. Throughout the investigations, numerical validation is carried out by way of comparisons of numerical and experimental results. Good agreement is found among both predictions.

Keywords: Air Conditioning, CFD, Lecture Rooms, Thermal Comfort

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
1508 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs

Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim

Abstract:

A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.

Keywords: Exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
1507 Identification of Non-Lexicon Non-Slang Unigrams in Body-enhancement Medicinal UBE

Authors: Jatinderkumar R. Saini, Apurva A. Desai

Abstract:

Email has become a fast and cheap means of online communication. The main threat to email is Unsolicited Bulk Email (UBE), commonly called spam email. The current work aims at identification of unigrams in more than 2700 UBE that advertise body-enhancement drugs. The identification is based on the requirement that the unigram is neither present in dictionary, nor is a slang term. The motives of the paper are many fold. This is an attempt to analyze spamming behaviour and employment of wordmutation technique. On the side-lines of the paper, we have attempted to better understand the spam, the slang and their interplay. The problem has been addressed by employing Tokenization technique and Unigram BOW model. We found that the non-lexicon words constitute nearly 66% of total number of lexis of corpus whereas non-slang words constitute nearly 2.4% of non-lexicon words. Further, non-lexicon non-slang unigrams composed of 2 lexicon words, form more than 71% of the total number of such unigrams. To the best of our knowledge, this is the first attempt to analyze usage of non-lexicon non-slang unigrams in any kind of UBE.

Keywords: Body Enhancement, Lexicon, Medicinal, Slang, Unigram, Unsolicited Bulk e-mail (UBE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
1506 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian

Abstract:

In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.

Keywords: Bio-heat, Boussinesq, conduction, convection, eye.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
1505 Toward Sustainable Building Design in Hot and Arid Climate with Reference to Riyadh City, Saudi Arabia

Authors: M. Alwetaishi

Abstract:

One of the most common and traditional strategies in architecture is to design buildings passively. This is a way to ensure low building energy reliance with respect to specific micro-building locations. There are so many ways where buildings can be designed passively, some of which are applying thermal insulation, thermal mass, courtyard and glazing to wall ratio. This research investigates the impact of each of these aspects with respect to the hot and dry climate of the capital of Riyadh. Thermal Analysis Simulation (TAS) will be utilized which is powered by Environmental Design Simulation Limited company (EDSL). It is considered as one of the most powerful tools to predict energy performance in buildings. There are three primary building designs and methods which are using courtyard, thermal mass and thermal insulation. The same building size and fabrication properties have been applied to all designs. Riyadh city which is the capital of the country was taken as a case study of the research. The research has taken into account various zone directions within the building as it has a large contribution to indoor energy and thermal performance. It is revealed that it is possible to achieve nearly zero carbon building in the hot and dry region in winter with minimum reliance on energy loads for building zones facing south, west and east. Moreover, using courtyard is more beneficial than applying construction materials into building envelope. Glazing to wall ratio is recommended to be 10% and not exceeding 30% in all directions in hot and arid regions.

Keywords: Sustainable buildings, hot and arid climates, passive building design, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
1504 Homogeneous and Heterogeneous Catalysis: Teachings of the Thermal Energy and Power Engineering Course

Authors: Junjie Chen

Abstract:

It is usually difficult for students to understand some basic theories in learning thermal energy and power engineering course. A new teaching method was proposed that we should introduce the comparison research method of those theories to help them being understood. “Homogeneous and heterogeneous catalysis” teaching is analyzed as an example by comparison research method.

Keywords: Homogeneous catalysis, heterogeneous catalysis, thermal energy and power engineering, teaching method, comparison research method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5524
1503 Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use

Authors: Naci Kalkan, Ihsan Dagtekin

Abstract:

Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentally friendly and cheap cooling for domestic use.

Keywords: Passive Solar Systems, Heating, Cooling, Thermal Comfort, Ventilation Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
1502 Investigation on Nanoparticle Velocity in Two Phase Approach

Authors: E. Mat Tokit, Yusoff M. Z, Mohammed H.

Abstract:

Numerical investigation on the generality of nanoparticle velocity equation had been done on the previous published work. The three dimensional governing equations (continuity, momentum and energy) were solved using finite volume method (FVM). Parametric study of thermal performance between pure water-cooled and nanofluid-cooled are evaluated for volume fraction in the range of 1% to 4%, and nanofluid type of gamma-Al2O3 at Reynolds number range of 67.41 to 286.77. The nanofluid is modeled using single and two phase approach. Three different existing Brownian motion velocities are applied in comparing the generality of the equation for a wide parametric condition. Deviation in between the Brownian motion velocity is identified to be due to the different means of mean free path and constant value used in diffusion equation.

Keywords: Brownian nanoparticle velocity, heat transfer enhancement, nanofluid, two phase model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463
1501 Thermal Characterization of Graphene Oxide-Epoxy Nanocomposites Produced by Aqueous Emulsion

Authors: H. A. Brandão Cordeiro, M. G. Bocardo, N. C. Penteado, V. T. de Moraes, S. M. Giampietri Lebrão, G. W. Lebrão

Abstract:

The present study desired to obtain a nanocomposite of epoxy resin reinforced with graphene oxide (OG), for aerospace application, produced by aqueous emulsion. It was obtained proof bodies with 0.00 wt%, 0.10 wt%, 0.25 wt% and 0.50 wt% in weight of nanoparticles, to check the influence of it in the final quality of the obtained product. The validation of the results was done by the application thermal characterization by differential scanning calorimetry (DSC). It was seen that the nanocomposite reinforced with 0.10 wt% of OG showed the best results, the average glass transition temperature, at 2 °C, compared to the pure resin.

Keywords: Aqueous emulsion, graphene, nanocomposites, thermal characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
1500 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents

Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna Mohd Zain

Abstract:

Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 150oC.Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.

Keywords: Activated carbon, Palm shell-PEEK, Regeneration, thermal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
1499 Enhancement of Stereo Video Pairs Using SDNs To Aid In 3D Reconstruction

Authors: Lewis E. Hibell, Honghai Liu, David J. Brown

Abstract:

This paper presents the results of enhancing images from a left and right stereo pair in order to increase the resolution of a 3D representation of a scene generated from that same pair. A new neural network structure known as a Self Delaying Dynamic Network (SDN) has been used to perform the enhancement. The advantage of SDNs over existing techniques such as bicubic interpolation is their ability to cope with motion and noise effects. SDNs are used to generate two high resolution images, one based on frames taken from the left view of the subject, and one based on the frames from the right. This new high resolution stereo pair is then processed by a disparity map generator. The disparity map generated is compared to two other disparity maps generated from the same scene. The first is a map generated from an original high resolution stereo pair and the second is a map generated using a stereo pair which has been enhanced using bicubic interpolation. The maps generated using the SDN enhanced pairs match more closely the target maps. The addition of extra noise into the input images is less problematic for the SDN system which is still able to out perform bicubic interpolation.

Keywords: Genetic Evolution, Image Enhancement, Neuron Networks, Stereo Vision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
1498 Thermo-Elastic Properties of Artificial Limestone Bricks with Wood Sawdust

Authors: Paki Turgut, Mehmet Gumuscu

Abstract:

In this study, artificial limestone brick samples are produced by using wood sawdust wastes (WSW) having different grades of sizes and limestone powder waste (LPW). The thermo-elastic properties of produced brick samples in various WSW amounts are investigated. At 30% WSW replacement with LPW in the brick sample the thermal conductivity value is effectively reduced and the reduction in the thermal conductivity value of brick sample at 30% WSW replacement with LPW is about 38.9% as compared with control sample. The energy conservation in buildings by using LPW and WSW in masonry brick material production having low thermal conductivity reduces energy requirements. A strong relationship is also found among the thermal conductivity, unit weight and ultrasonic pulse velocity values of brick samples produced. It shows a potential to be used for walls, wooden board substitute, alternative to the concrete blocks, ceiling panels, sound barrier panels, absorption materials etc.

Keywords: Limestone dust, masonry brick, thermo-elastic properties, wood sawdust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
1497 Field Study on Thermal Performance of a Green Office in Bangkok, Thailand: A Possibility of Increasing Temperature Set-Points

Authors: T. Sikram, M. Ichinose, R. Sasaki

Abstract:

In the tropics, indoor thermal environment is usually provided by a cooling mode to maintain comfort all year. Indoor thermal environment performance is sometimes different from the standard or from the first design process because of operation, maintenance, and utilization. The field study of thermal environment in the green building is still limited in this region, while the green building continues to increase. This study aims to clarify thermal performance and subjective perception in the green building by testing the temperature set-points. A Thai green office was investigated twice in October 2018 and in May 2019. Indoor environment variables (temperature, relative humidity, and wind velocity) were collected continuously. The temperature set-point was normally set as 23 °C, and it was changed into 24 °C and 25 °C. The study found that this gap of temperature set-point produced average room temperature from 22.7 to 24.6 °C and average relative humidity from 55% to 62%. Thermal environments slight shifted out of the ASHRAE comfort zone when the set-point was increased. Based on the thermal sensation vote, the feeling-colder vote decreased by 30% and 18% when changing +1 °C and +2 °C, respectively. Predicted mean vote (PMV) shows that most of the calculated median values were negative. The values went close to the optimal neutral value (0) when the set-point was set at 25 °C. The neutral temperature was slightly decreased when changing warmer temperature set-points. Building-related symptom reports were found in this study that the number of votes reduced continuously when the temperature was warmer. The symptoms that occurred by a cooler condition had the number of votes more than ones that occurred by a warmer condition. In sum, for this green office, there is a possibility to adjust a higher temperature set-point to +1 °C (24 °C) in terms of reducing cold sensitivity, discomfort, and symptoms. All results could support the policy of changing a warmer temperature of this office to become “a better green building”.

Keywords: Thermal environment, green office, temperature set-point, comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621
1496 Experimental and Computational Analysis of Hygrothermal Performance of an Interior Thermal Insulation System

Authors: Z. Pavlík, J. Kočí, M. Pavlíková, R. Černý

Abstract:

Combined experimental and computational analysis of hygrothermal performance of an interior thermal insulation system applied on a brick wall is presented in the paper. In the experimental part, the functionality of the insulation system is tested at simulated difference climate conditions using a semi-scale device. The measured temperature and relative humidity profiles are used for the calibration of computer code HEMOT that is finally applied for a long-term hygrothermal analysis of the investigated structure.

Keywords: Additional thermal insulation, hygrothermal analysis, semi-scale testing, long-term computational analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
1495 Ionanofluids as Novel Fluids for Advanced Heat Transfer Applications

Authors: S. M. Sohel Murshed, C. A. Nieto de Castro, M. J. V. Lourenço, J. França, A. P. C. Ribeiro, S. I. C.Vieira, C. S. Queirós

Abstract:

Ionanofluids are a new and innovative class of heat transfer fluids which exhibit fascinating thermophysical properties compared to their base ionic liquids. This paper deals with the findings of thermal conductivity and specific heat capacity of ionanofluids as a function of a temperature and concentration of nanotubes. Simulation results using ionanofluids as coolants in heat exchanger are also used to access their feasibility and performance in heat transfer devices. Results on thermal conductivity and heat capacity of ionanofluids as well as the estimation of heat transfer areas for ionanofluids and ionic liquids in a model shell and tube heat exchanger reveal that ionanofluids possess superior thermal conductivity and heat capacity and require considerably less heat transfer areas as compared to those of their base ionic liquids. This novel class of fluids shows great potential for advanced heat transfer applications.

Keywords: Heat transfer, Ionanofluids, Ionic liquids, Nanotubes, Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
1494 Proposals for the Thermal Regulation of Buildings in Algeria: An Energy Label for Social Housing

Authors: Marco Morini, Nicolandrea Calabrese, Dario Chello

Abstract:

Despite the international commitment of Algeria towards the development of energy efficiency and renewable energy in the country, the internal energy demand has been continuously growing during the last decade due to the substantial increase of population and of living conditions, which in turn has led to an unprecedented expansion of the residential building sector. The RTB (Thermal Building Regulation) is the technical document that establishes the calculation framework for the thermal performance of buildings in Algeria, setting up minimum obligatory targets for the thermal performance of new buildings. An update of this regulation is due in the coming years and this paper discusses some proposals in this regard, with the aim to improve the energy efficiency of the building sector, particularly with regard to social housing. In particular, it proposes a methodology for drafting an energy performance label of new Algerian residential buildings, moving from the results of the thermal compliance verification and sizing of technical systems as defined in the RTB. Such an energy performance label – whose calculation method is briefly described in the paper – aims to raise citizens' awareness of the benefits of energy efficiency. It can represent the first step in a process of integrating technical installations into the calculation of the energy performance of buildings in Algeria.

Keywords: building, energy certification, energy efficiency, social housing, international cooperation, Mediterranean Region

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 522
1493 Contrast Enhancement of Color Images with Color Morphing Approach

Authors: Javed Khan, Aamir Saeed Malik, Nidal Kamel, Sarat Chandra Dass, Azura Mohd Affandi

Abstract:

Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques.

Keywords: Contrast enhancement, normalized RGB, adaptive histogram equalization, cumulative variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
1492 Acoustic and Thermal Insulating Materials Based On Natural Fibres Used in Floor Construction

Authors: J. Hroudova, J. Zach

Abstract:

The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.

Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3150
1491 Babbitt Casting and Babbitt Spraying Processes Case Study

Authors: M. Jalali Azizpour, S.Norouzi H. Mohammadi Majd

Abstract:

In this paper, the babbitting of a bearing in boiler feed pump of an electromotor has been studied. These bearings have an important role in reducing the shut down times in the pumps, compressors and turbines. The most conventional method in babbitting is casting as a melting method. The comparison between thermal spray and casting methods in babbitting shows that the thermal spraying babbitt layer has better performance and tribological behavior. The metallurgical and tribological analysis such as SEM, EDS and wet chemical analysis has been made in the Babbitt alloys and worn surfaces. Two type of babbitt materials: tinbase and lead-base babbitt was used. The benefits of thermally sprayed babbitt layers are completely clear especially in large bearings.

Keywords: Thermal spray, Babbitting, Bonding, Bearing, BFP, CWP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4567
1490 Comparison of Processing Conditions for Plasticized PVC and PVB

Authors: Michael Tupý, Jaroslav Císař, Pavel Mokrejš, Dagmar Měřínská, Alice Tesaříková-Svobodová

Abstract:

It is the worldwide problem that the recycled PVB is not recycled and it is wildly stored in landfills. However, PVB has similar chemical properties such as PVC. Moreover, both of these polymers are plasticized. Therefore, the study of thermal properties of plasticized PVC and the recycled PVB obtained by recycling of windshields is carried out. This work has done in order to find nondegradable processing conditions applicable for both polymers. Tested PVC contained 38% of plasticizer diisononyl phthalate (DINP) and PVB was plasticized with 28% of triethylene glycol, bis(2-ethylhexanoate) (3GO). The thermal and thermo-oxidative decomposition of both vinyl polymers are compared by calorimetric analysis and by tensile strength analysis.

Keywords: Poly(vinyl chloride), Poly(vinyl butyral), Recycling, Reprocessing, Thermal analysis, Decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5256