Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31903
Physicochemical and Thermal Characterization of Starch from Three Different Plantain Cultivars in Puerto Rico

Authors: Carmen E. Pérez-Donado, Fernando Pérez-Muñoz, Rosa N. Chávez-Jáuregui


Plantain contains starch as the main component and represents a relevant source of this carbohydrate. Starches from different cultivars of plantain and bananas have been studied for industrialization purposes due to their morphological and thermal characteristics and their influence in food products. This study aimed to characterize the physical, chemical, and thermal properties of starch from three different plantain cultivated in Puerto Rico: Maricongo, Maiden and FHIA 20. Amylose and amylopectin content, color, granular size, morphology, and thermal properties were determined. According to the amylose content in starches, FHIA 20 presented lowest content of the three cultivars studied. In terms of color, Maiden and FHIA 20 starches exhibited significantly higher whiteness indexes compared to Maricongo starch. Starches of the three cultivars had an elongated-ovoid morphology, with a smooth surface and a non-porous appearance. Regardless of similarities in their morphology, FHIA 20 exhibited a lower aspect ratio since its granules tended to be more elongated. Comparison of the thermal properties of starches showed that initial starch gelatinization temperature was similar among cultivars. However, FHIA 20 starch presented a noticeably higher final gelatinization temperature (87.95°C) and transition enthalpy than Maricongo (79.69°C) and Maiden (77.40°C). Despite similarities, starches from plantain cultivars showed differences in their composition and thermal behavior. This represents an opportunity to diversify plantain starch use in food-related applications.

Keywords: aspect ratio, morphology, Musa spp., starch, thermal properties, amylose content

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332


[1] J. Tchango, A. Bikoï, R. Achard, J.V. Escalant, and J.A. Ngalani. “Plantain: Post-harvest Operations. Centre de Recherches Regionales sur Bananiers et Plantains, Cameroon (CRBP)”, FAO, 1999, p.1.
[2] FAO. FAOSTAT: Food and Agriculture Data, 2019.
[3] TRADEMAP. Trade statistics for international business development. 2019.
[4] H. Irizarry, J. Rodriguez-Garcia and N. Diaz, “Selection and evaluation of high yielding horn-type plantain clones in Puerto Rico. An explanation for their behavior”. The Journal of Agriculture of the University of Puerto Rico, 1985, vol. 69, no 3, pp. 407-420.
[5] A. Krikorian, H. Irizarry and S.S. Cronauer and E. Rivera, “Clonal fidelity and variation in plantain (Musa AAB) regenerated from vegetative stem and floral axis tips in vitro”. Annals of Botany, 1993, vol. 71, no 6, pp. 519-535.
[6] H. Irrizary, R. Goenaga, and O. Gonzalez, “Characterization and grouping of plantain clones on the basis of their genomic constitution and morphological traits of economic importance”. The Journal of Agriculture of the University of Puerto Rico, 2001, vol. 85, no 3-4, pp. 105-126.
[7] R. Goenaga and H, Irrizary, “Yield performance of two French-type plantain clones subjected to bunch pruning”. The Journal of agriculture of the University of Puerto Rico, 2001, vol. 90, no. 3-4, pp. 173-182.
[8] A. O. Ketiku, “Chemical composition of unripe (green) and ripe plantain (Musa paradisiaca)”. Journal of the Science of Food and Agriculture, 1973, vol. 24, no. 6, pp. 703-707.
[9] I. S. M. Zaidul, N. Absar, S. J. Kim, T. Suzuki, A. A. Karim, H., Yamauchi, and T. Noda, “DSC study of mixtures of wheat flour and potato, sweet potato, cassava, and yam starches”. Journal of Food Engineering, 2008, vol.86, no. 1, pp. 68-73.
[10] A. Chávez-Salazar, L. A. Bello-Pérez, E. Agama-Acevedo, F.J. Castellanos-Galeano, C.I. Álvarez-Barreto, and G. Pacheco-Vargas, “Isolation and partial characterization of starch from banana cultivars grown in Colombia”, International Journal of Biological Macromolecules, 2017, vol. 98, pp. 240-246.
[11] E. Flores-Gorosquera, F.J. García-Suárez, E. Flores-Huicochea, M. C. Núñez-Santiago, R. A. González-Soto, and L. A. Bello-Pérez, “Rendimiento del proceso de extracción de almidón a partir de frutos de plátano (Musa paradisiaca) Estudio en planta piloto” Acta Científica Venezolana, 2004, vol. 55, no. 1, pp. 86-90.
[12] N. Vatanasuchart, B. Niyomwit, and K. Wongkrajang, “Resistant starch content, in vitro starch digestibility and physico-chemical properties of flour and starch from Thai bananas”. Maejo Int. J. Sci. Technol., vol. 6, no. 2, pp. 259–271.
[13] S. Sadasivam, and A. Manickam. Carbohydrates. In Biochemical Methods, 2nd Edition, New Age International, 2006, p. 10.
[14] Association of Official Analytical Chemists. “Method 61-03.01 Amylose Content of Milled Rice” in Approved Methods of Analysis, 11th edition, St Paul, MN: AACC International, 2010b.
[15] C. Palomino, Y. Molina, and E. Pérez, “Atributos físicos y composición química de harinas y almidones de los tubérculos de Colocasia esculenta (L.) Schott y Xanthosoma sagittifolium (L.) Schott”. Rev. Fac. Agron. (UCV), 2010, vol. 36, no. 2, pp. 58-66.
[16] E. Pérez‐Sira, “Characterization of starch isolated from plantain (Musa paradisiaca normalis)”. Starch‐Stärke, 1997, vol. 49, no. 2, pp. 45-49.
[17] T. J. Gutiérrez. “Plantain flours as potential raw materials for the development of gluten-free functional foods”. Carbohydrate polymers, 2018, vol. 202, pp. 265-279.
[18] R. Shittu, O. Lasekan, R. Karim, and R. Sulaiman, R, “Plantain‐starch: Microstructural, physicochemical, and morphological characteristics of two cultivars grown in Malaysia”. Starch‐Stärke, 2016, vol. 68, no. 11-12, pp. 1187-1195.
[19] K. Englyst, S. Vinoy, H. Englyst, and V. Lang, “Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose”. British Journal of Nutrition, 2003, vol. 89, pp. 329–339.
[20] P. Regmi, T. Kempen, J. Matte, and R. Zijlstra. “Starch with High Amylose and Low in Vitro Digestibility Increases Short-Chain Fatty Acid Absorption, Reduces Peak Insulin Secretion, and Modulates Incretin Secretion in Pigs”. The Journal of Nutrition, 2011, vol. 141, no. 3, pp. 398–405.
[21] J. Zheng, F. Enright, M. Keenan, J. Finley, J. Zhou, J. Ye, F. Greenway, R.N. Senevirathne, C.R. Gissendanner, R. Manaois, A. Prudente, J.M. King and R. Martin, “Resistant starch fermented resistant starch, and short-chain fatty acids reduce intestinal fat deposition in Caenorhabditis elegans”. Journal of Agricultural and Food Chemistry, 2010, vol. 58, no. 8, pp. 4744–4748.
[22] P. B. Zamudio-Flores, A. Vargas-Torres, F. Gutiérrez-Meraz, and L. A. Bello-Pérez, “Caracterización fisicoquímica de almidones doblemente modificados de plátano”. Agrociencia, 2010, vol. 44, no. 3, pp. 283-295.
[23] F. M. Pelissari, M. M. Andrade‐Mahecha, P. J. D. A. Sobral, and F.C. Menegalli. “Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca)”. Starch‐Stärke, 2012, vol. 64, no. 5, pp. 382-391.
[24] R. Shittu, O. Lasekan, R. Karim, and R. Sulaiman, “Plantain‐starch: Microstructural, physicochemical, and morphological characteristics of two cultivars grown in Malaysia”. Starch‐Stärke, 2016, vol. 68, no. 11-12, pp. 1187-1195.
[25] N. Boudries, N. Belhaneche, B. Nadjemi, C. Deroanne, M. Mathlouthi, B. Roger, and M. Sindic, “Physicochemical and functional properties of starches from sorghum cultivated in the Sahara of Algeria”. Carbohydrate Polymers, 2009, vol. 78, no. 3, pp. 475-480.
[26] D. Agredo, “Evaluación de las propiedades nutricionales de productos preparados a base de almidón resistente modificado del cormo de la yautía (Xanthosoma sagittifolium) del cultivar nazareno”. Master Thesis. University of Puerto Rico Mayagüez Campus, 2019.
[27] L. Alvira-Manios L, “Obtención y caracterización del almidón del cormo de la yautía (Xanthosoma spp.) del cultivar nazareno para la elaboración de láminas comestibles”. Master Thesis. University of Puerto Rico Mayagüez Campus, 2015.
[28] R. M. Astuti, N. Asiah, A. Setyowati, and R. Fitriawati, “Effect of physical modification on granule morphology, pasting behavior, and functional properties of arrowroot (Marantha arundinacea L) starch”. Food Hydrocolloids, 2018, vol. 81, pp. 23-30.
[29] O. García, M. Pinzón, and S. Sánchez, “Extracción y propiedades funcionales del almidón de yuca, Manihot esculenta, variedad ICA, como materia prima para la elaboración de películas comestibles”. @limentech, Ciencia y Tecnología Alimentaria, 2013, vol. 11, no. 1, pp. 13–21.
[30] P. B. Pathare, U. L. Opara, and F. A. J. Al-Said, “Colour measurement and analysis in fresh and processed foods: a review”. Food and bioprocess technology, 2013, vol. 6, no. 1, pp. 36-60.
[31] R. Ramírez‐Cortes, L. A. Bello‐Pérez, R.A. Gonzalez‐Soto, F. Gutierrez‐Meraz, and J. Alvarez‐Ramirez, “Isolation of plantain starch on a large laboratory scale”. Starch‐Stärke, 2016, vol. 68, no. 5-6, pp. 488-495.
[32] K. Kayisu, and L. F. Hood, “Molecular structure of banana starch”. Journal of Food Science, 1981, vol. 46, pp. 1894–1897.
[33] G. Eggleston, R. Swennen, and S.Akoni, “Physicochemical studies on starches isolated from plantain cultivars, plantain hybrids and cooking bananas”. Starch‐Stärke,1992, vol. 44, pp. 121–128.
[34] C. V. Bezerra, E. R., Amante, D. C. De Oliveira, A. M. Rodrigues and L. H. M. Da-Silva, “Green banana (Musa cavendishii) flour obtained in spouted bed – Effect of drying on physico-chemical, functional, and morphological characteristics of the starch”. Ind. Crop. Prod, 2013, vol. 41, pp. 241-249.
[35] D. Cooke and M. J. Gidley. “Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition” Carbohydrate research, 1992, vol. 227, p. 103-112.