Search results for: tensile crack.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 563

Search results for: tensile crack.

533 The Relationship between Fatigue Crack Growth and Residual Stress in Rails

Authors: F. Husem, M. E. Turan, Y. Sun, H. Ahlatci, I. Tozlu

Abstract:

Residual stress and fatigue crack growth rates are important to determine mechanical behavior of rails. This study aims to make relationship between residual stress and fatigue crack growth values in rails. For this purpose, three R260 quality rails (0.6-0.8% C, 0.6-1.25 Mn) were chosen. Residual stress of samples was measured by cutting method that is related in railway standard. Then samples were machined for fatigue crack growth test and analyze was completed according to the ASTM E647 standard which gives information about parameters of rails for this test. Microstructure characterizations were examined by Light Optic Microscope (LOM). The results showed that residual stress change with fatigue crack growth rate. The sample has highest residual stress exhibits highest crack growth rate and pearlitic structure can be seen clearly for all samples by microstructure analyze.

Keywords: Residual stress, fatigue crack growth, R260, LOM, ASTM E647.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
532 Estimation of Tensile Strength for Granitic Rocks by Using Discrete Element Approach

Authors: Aliakbar Golshani, Armin Ramezanzad

Abstract:

Tensile strength which is an important parameter of the rock for engineering applications is difficult to measure directly through physical experiment (i.e. uniaxial tensile test). Therefore, indirect experimental methods such as Brazilian test have been taken into consideration and some relations have been proposed in order to obtain the tensile strength for rocks indirectly. In this research, to calculate numerically the tensile strength for granitic rocks, Particle Flow Code in three-dimension (PFC3D) software were used. First, uniaxial compression tests were simulated and the tensile strength was determined for Inada granite (from a quarry in Kasama, Ibaraki, Japan). Then, by simulating Brazilian test condition for Inada granite, the tensile strength was indirectly calculated again. Results show that the tensile strength calculated numerically agrees well with the experimental results obtained from uniaxial tensile tests on Inada granite samples.

Keywords: Numerical Simulation, PFC, Tensile Strength, Brazilian Test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
531 An Adaptive Dynamic Fracture for 3D Fatigue Crack Growth Using X-FEM

Authors: S. Lecheb, A. Nour, A. Chellil, A. Basta, D. Belmiloud, H. Kebi

Abstract:

In recent years, a new numerical method has been developed, the extended finite element method (X-FEM). The objective of this work is to exploit the (X-FEM) for the treatment of the fracture mechanics problems on 3D geometries, where we showed the ability of this method to simulate the fatigue crack growth into two cases: edge and central crack. In the results we compared the six first natural frequencies of mode shapes uncracking with the cracking initiation in the structure, and showed the stress intensity factor (SIF) evolution function as crack size propagation into structure, the analytical validation of (SIF) is presented. For to evidence the aspects of this method, all result is compared between FEA and X-FEM.

Keywords: 3D fatigue crack growth, FEA, natural frequencies, stress intensity factor (SIF), X-FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
530 Behavior Fatigue Life of Wind Turbine Rotor with Longitudinal Crack Growth

Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Hamad, H. Kebir

Abstract:

This study concerned the dynamic behavior of the wind turbine rotor. Before all we have studied the loads applied to the rotor, which allows the knowledge their effect on the fatigue, also studied the rotor with longitudinal crack in order to determine stress, strain and displacement. Firstly we compared the first six modes shapes between cracking and uncracking of HAWT rotor. Secondly we show show evolution of first six natural frequencies with longitudinal crack propagation. Finally we conclude that the residual change in the natural frequencies can be used as in shaft crack diagnosis predictive maintenance.

Keywords: Wind turbine rotor, natural frequencies, longitudinal crack growth, life time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
529 Composite Patch Repair of Central Crack Growth in Aluminium Alloy Plate

Authors: S. Lecheb, A. Chellil, H. Mechakra, A. Zeggane, H. Kebir

Abstract:

In this work, repaired crack in 6061- T6 aluminum plate with composite patches presented, firstly we determine the displacement, strain and stress, also the first six mode shape of the plate, secondly we took the same model adding central crack initiation, which is located in the center of the plate, its seize vary from 20 mm to 60 mm and we compare the first results with second. Thirdly we repair various cracks with composite patch (carbon/ epoxy) and for (2 layers, 4 layers). Finally the comparison of stress, strain, displacement and six first natural frequencies between un-cracked specimen, crack propagation and composite patch repair.

Keywords: Composite patch repair, crack growth, aluminum alloy plate, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
528 Mechanical Properties of Ultra High Performance Concrete

Authors: Prabhat Ranjan Prem, B.H.Bharatkumar, Nagesh R Iyer

Abstract:

A research program is conducted to evaluate the mechanical properties of Ultra High Performance Concrete, target compressive strength at the age of 28 days being more than 150 MPa. The methodology to develop such mix has been explained. The material properties, mix design and curing regime are determined. The material attributes are understood by studying the stress strain behaviour of UHPC cylinders under uniaxial compressive loading. The load –crack mouth opening displacement (cmod) of UHPC beams, flexural strength and fracture energy was evaluated using third point loading test. Compressive strength and Split tensile strength results are determined to find out the compressive and tensile behaviour. Residual strength parameters are presented vividly explaining the flexural performance, toughness of concrete.Durability studies were also done to compare the effect of fibre to that of a control mix For all the studies the Mechanical properties were evaluated by varying the percentage and aspect ratio of steel fibres The results reflected that higher aspect ratio and fibre volume produced drastic changes in the cube strength, cylinder strength, post peak response, load-cmod, fracture energy flexural strength, split tensile strength, residual strength and durability. In regards to null application of UHPC in India, an initiative is undertaken to comprehend the mechanical behaviour of UHPC, which will be vital for longer run in commercialization for structural applications.

Keywords: Ultra High Performance Concrete, Reinforcement Index, Compressive Strength, Tensile Strength, Flexural Strength, Residual Strength, Fracture Energy, Stress-Strain Relationships, Load-Crack Mouth Opening Displacement and Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10533
527 Effect of Mean Stress on Fatigue Crack Growth Behavior of Stainless Steel 304L

Authors: M. Benachour, N. Benachour

Abstract:

Stainless steel has been employed in many engineering applications ranging from pharmaceutical equipment to piping in the nuclear reactors and storage to chemical products. In this attempt, simulation of fatigue crack growth based on experimental results of austenitic stainless steel 304L was presented using AFGROW code when NASGRO mode laws adopted. Double through crack at hole specimen is used in this investigation under constant amplitude loading. Effect of mean stress is highlighted. Results show that fatigue crack growth rate (FCGR) and fatigue life were affected by maximum applied load and dimension of hole. An equivalent of Paris law for this material was estimated.

Keywords: Fatigue crack, stainless steel, mean stress, amplitudeloading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3112
526 Finite Element Analysis of Crack Welding Process

Authors: Thomas Jin-Chee Liu

Abstract:

The numerical simulation of the crack welding process is reported in this paper. The thermo-electro-structural coupled-field finite element analysis is adopted to investigate the welding process of crack surfaces. In the simulation, the pressure-dependent and temperature-dependent electrical contact conditions are considered. From the results, the crack surfaces can melt and weld together under the compressive load and electric current. The contact pressure effect must be considered in the finite element analysis to obtain more practical results.

Keywords: Crack welding, contact pressure, Joule heating, finite element, coupled-field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314
525 Waterproofing Agent in Concrete for Tensile Improvement

Authors: Muhamad Azani Yahya, Umi Nadiah Nor Ali, Mohammed Alias Yusof, Norazman Mohamad Nor, Vikneswaran Munikanan

Abstract:

In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost.

Keywords: High tensile concrete, waterproofing agent, concrete, rheology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
524 The Estimation of Semi Elliptical Surface Cracks Advancement via Fuzzy Logic

Authors: Gürol Önal, Ahmet Avcı

Abstract:

This paper presented the results of an experimental investigation into the axial fatigue behavior of a 5086 aluminum alloy which have several notch-aspect ratios a0/c0 and notch thickness ratio a/t with semi-elliptical surface cracks. Tests were conducted in la b air for stress levels of 50 % of their yield strength. Experiments were carried out for various notch to thickness ratios. Crack growth rates of test specimens both in surface and depth directions were determined by using die penetration method. Fuzzy Logic method was used to predict the deep direction crack growth because the dept of the crack is considerably difficult to measure.

Keywords: Axial fatigue, Crack growth rate, surface crack, Al-Mg alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
523 Mechanical Properties of Fibre Reinforced Concrete - A Comparative Experimental Study

Authors: Amir M. Alani, Morteza Aboutalebi

Abstract:

This paper in essence presents comparative experimental data on the mechanical performance of steel and synthetic fibre-reinforced concrete under compression, tensile split and flexure. URW1050 steel fibre and HPP45 synthetic fibre, both with the same concrete design mix, have been used to make cube specimens for a compression test, cylinders for a tensile split test and beam specimens for a flexural test. The experimental data demonstrated steel fibre reinforced concrete to be stronger in flexure at early stages, whilst both fibre reinforced concrete types displayed comparatively the same performance in compression, tensile splitting and 28-day flexural strength. In terms of post-crack controlHPP45 was preferable.

Keywords: Steel Fibre, Synthetic Fibre, Fibre Reinforced Concrete, Failure, Ductility, Experimental Study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7372
522 Mechanical Characteristics on Fatigue Crack Propagation in Aluminium Plate

Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, L. Addar, H. Kebir

Abstract:

This paper present a mechanical characteristics on fatigue crack propagation in Aluminium Plate based on strain and stress distribution using the abaqus software. The changes in shear strain and stress distribution during the fatigue cycle with crack growth is identified. In progressive crack in the strain distribution and the stress is increase in the critical zone. Numerical Modal analysis of the model developed, prove that the Eigen frequencies of aluminium plate were decreased after cracking, and this reduce is nonlinear. These results can provide a reference for analysts and designers of aluminium alloys in aeronautical systems.

Therefore, the modal analysis is an important factor for monitoring the aeronautic structures.

Keywords: Aluminium alloys, plate, crack, failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
521 Obtain the Stress Intensity Factor (SIF) in a Medium Containing a Penny-Shaped Crack by the Ritz Method

Authors: A. Tavangari, N. Salehzadeh

Abstract:

In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, the mode I stress intensity factor (SIF) of three-dimensional penny- Shaped crack is obtained in an isotropic elastic cylindrical medium with arbitrary dimensions under arbitrary loading at the top of the cylinder, by the semi-analytical method based on the Rayleigh-Ritz method. This method that is based on minimizing the potential energy amount of the whole of the system, gives a very close results to the previous studies. Defining the displacements (elastic fields) by hypothetical functions in a defined coordinate system is the base of this research. So for creating the singularity conditions at the tip of the crack the appropriate terms should be found.

Keywords: Penny-shaped crack, Stress intensity factor, Fracture mechanics, Ritz method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
520 Mode III Interlaminar Fracture in Woven Glass/Epoxy Composite Laminates

Authors: Farhad Asgari Mehrabadi, Mohammad Reza Khoshravan

Abstract:

In the present study, fracture behavior of woven fabric-reinforced glass/epoxy composite laminates under mode III crack growth was experimentally investigated and numerically modeled. Two methods were used for the calculation of the strain energy release rate: the experimental compliance calibration (CC) method and the Virtual Crack Closure Technique (VCCT). To achieve this aim ECT (Edge Crack Torsion) was used to evaluate fracture toughness in mode III loading (out of plane-shear) at different crack lengths. Load–displacement and associated energy release rates were obtained for various case of interest. To calculate fracture toughness JIII, two criteria were considered including non-linearity and maximum points in load-displacement curve and it is observed that JIII increases with the crack length increase. Both the experimental compliance method and the virtual crack closure technique proved applicable for the interpretation of the fracture mechanics data of woven glass/epoxy laminates in mode III.

Keywords: Mode III, Fracture, Composite, Crack growth Finite Element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
519 Application of a Fracture-Mechanics Approach to Gas Pipelines

Authors: Ľubomír Gajdoš, Martin Šperl

Abstract:

This study offers a new simple method for assessing an axial part-through crack in a pipe wall. The method utilizes simple approximate expressions for determining the fracture parameters K, J, and employs these parameters to determine critical dimensions of a crack on the basis of equality between the J-integral and the J-based fracture toughness of the pipe steel. The crack tip constraint is taken into account by the so-called plastic constraint factor C, by which the uniaxial yield stress in the J-integral equation is multiplied. The results of the prediction of the fracture condition are verified by burst tests on test pipes.

Keywords: Axial crack, Fracture-mechanics, J integral, Pipeline wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905
518 Investigating the Fatigue Crack Initiation Location in Interference Fitted and/or bolt Clamped Al 2024-T3 Double Shear Lap Joints

Authors: Babak Abazadeh, Hadi Rezghi Maleki

Abstract:

In this paper the fatigue crack initiation location of double shear lap joints, treated by interference fit and bolt clamping, have been investigated both experimentally and numerically. To do so, using the fracture section of available fatigue tested specimens of interference fitted and torque tightened Aluminum 2024-T3 plates, the crack initiation location was determined. The stress distribution attained from the finite element analysis was used to help explain the results observed in the experimental tests. The results showed that the fatigue crack initiation location changes from top and mid plane at the hole edge to somewhere far from the hole edge (stress concentration region) in different combination of clamping force, interference fit size and applied cyclic load ranges. It is worth mentioning that the fatigue crack initiation location affects the fatigue life of the specimens too.

Keywords: Fatigue crack initiation, interference fit, bolt clamping, double shear lap joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
517 Stress Ratio and Notch Effect on Fatigue Crack Initiation and Propagation in 2024 Al-alloy

Authors: N. Benachour, A. Hadjoui, M. Benachour, M. Benguediab

Abstract:

This study reports an empirical investigation of fatigue crack initiation and propagation in 2024 T351 aluminium alloy using constant amplitude loading. In initiation stage, local strain approach at the notch was used and in stable propagation stage NASGRO model was applied. In this investigation, the flat plate of double through crack at hole is used. Based on experimental results (AFGROW Database), effect of stress ratio, R, is highlights on fatigue initiation life (FIL) and fatigue crack growth rate (FCGR). The increasing of dimension of hole characterizing the notch effect decrease the fatigue life.

Keywords: Fatigue crack growth, initiation life, Al-Alloy, stressratio, notch effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3207
516 Comparative Study of Tensile Properties of Cortical Bone Using Sub-size Specimens and Finite Element Simulation

Authors: N. K. Sharma, J. Nayak, D. K. Sehgal, R. K. Pandey

Abstract:

Bone material is treated as heterogeneous and hierarchical in nature therefore appropriate size of bone specimen is required to analyze its tensile properties at a particular hierarchical level. Tensile properties of cortical bone are important to investigate the effect of drug treatment, disease and aging as well as for development of computational and analytical models. In the present study tensile properties of buffalo as well as goat femoral and tibiae cortical bone are analyzed using sub-size tensile specimens. Femoral cortical bone was found to be stronger in tension as compared to the tibiae cortical bone and the tensile properties obtained using sub-size specimens show close resemblance with the tensile properties of full-size cortical specimens. A two dimensional finite element (FE) modal was also applied to simulate the tensile behavior of sub-size specimens. Good agreement between experimental and FE model was obtained for sub-size tensile specimens of cortical bone.

Keywords: Cortical bone, sub-size specimen, full size specimen, finite element modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
515 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

This paper presents a 4-DOF nonlinear model of a cracked de Laval rotor-stator system derived based on Energy Principles. The model has been used to simulate coupled torsionallateral response of the faulty system with multiple parametric excitations; rotor-stator-rub, a breathing transverse crack, eccentric mass and an axial force. Nonlinearity of a “breathing” crack is incorporated in the model using a simple hinge mechanism suitable for a shallow crack. Response of the system while passing via its critical speed with intermittent rotor-stator rub is analyzed. Effects of eccentricity with phase and acceleration are investigated. Features of crack, rub and eccentricity in vibration response are explored for condition monitoring. The presence of a crack and rub are observable in the power spectrum despite excitations by an axial force and rotor unbalance. Obtained results are consistent with existing literature and could be adopted into rotor condition monitoring strategies.

Keywords: Axial force, Crack, Nonlinear, Rotor-Stator, Rub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
514 Method of Moments for Analysis of Multiple Crack Interaction in an Isotropic Elastic Solid

Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding

Abstract:

The problem of N cracks interaction in an isotropic elastic solid is decomposed into a subproblem of a homogeneous solid without crack and N subproblems with each having a single crack subjected to unknown tractions on the two crack faces. The unknown tractions, namely pseudo tractions on each crack are expanded into polynomials with unknown coefficients, which have to be determined by the consistency condition, i.e. by the equivalence of the original multiple cracks interaction problem and the superposition of the N+1 subproblems. In this paper, Kachanov-s approach of average tractions is extended into the method of moments to approximately impose the consistence condition. Hence Kachanov-s method can be viewed as the zero-order method of moments. Numerical results of the stress intensity factors are presented for interactions of two collinear cracks, three collinear cracks, two parallel cracks, and three parallel cracks. As the order of moment increases, the accuracy of the method of moments improves.

Keywords: Crack interaction, stress intensity factor, multiplecracks, method of moments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
513 Elastic Failure of Web-Cracked Plate Girder

Authors: Sebastian B. Mendes

Abstract:

The presence of a vertical fatigue crack in the web of a plate girder subjected to pure bending influences the bending moment capacity of the girder. The growth of the crack may lead to premature elastic failure due to flange local yielding, flange local buckling, or web local buckling. Approximate expressions for the bending moment capacities corresponding to these failure modes were formulated. Finite element analyses were then used to validate the expressions. The expressions were employed to assess the effects of crack length on the capacity. Neglecting brittle fracture, tension buckling, and ductile failure modes, it was found that typical girders are governed by the capacity associated with flange local yielding as influenced by the crack. Concluding, a possible use of the capacity expressions in girder design was demonstrated.

Keywords: Fatigue crack, flange yielding, flange buckling, web buckling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
512 Study on Distortion of Bi-Steel Concrete Beam

Authors: G. W. Ni, Y. M. Zhang, D. L. Jiang, J. N. Chen, X. G. Wang

Abstract:

As an economic and safe structure, Bi-steel is widely used in reinforced concrete with less consumption of steel. In this paper, III Bi-steel concrete beam has been analyzed. Through careful observation and theoretical analysis, the new calculating formulae for structural rigidity and crack have been formulated for this Bi-steel concrete beam. And structural rigidity and the crack features have also been theoretically analyzed.

Keywords: Bi-steel, concrete beam, crack, rigidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
511 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium

Authors: Nidhal Jamia, Sami El-Borgi

Abstract:

In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.

Keywords: Functionally graded piezoelectric material, mixed-mode crack, non-local theory, Schmidt method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 954
510 Stress Intensity Factor for Dynamic Cracking of Composite Material by X-FEM Method

Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Hamad, H. Kebir

Abstract:

The work involves develops attended by a numerical execution of the eXtend Finite Element Method premises a measurement by the fracture process cracked so many cracked plates an application will be processed for the calculation of the stress intensity factor SIF. In the first we give in statically part the distribution of stress, displacement field and strain of composite plate in two cases uncrack/edge crack, also in dynamical part the first six modes shape. Secondly, we calculate Stress Intensity Factor SIF for different orientation angle θ of central crack with length (2a=0.4mm) in plan strain condition, KI and KII are obtained for mode I and mode II respectively using X-FEM method. Finally from crack inclined involving mixed modes results, the comparison we chose dangerous inclination and the best crack angle when K is minimal.

Keywords: Stress Intensity Factor (SIF), Crack orientation, Glass/Epoxy, natural Frequencies, X-FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2848
509 Effect of 2wt% Cu Addition on the Tensile Properties and Fracture Behavior of Peak Aged Al-6Si-0.5Mg-2Ni Alloy at Various Strain Rates

Authors: A. Hossain, A. S. W. Kurny, M. A. Gafur

Abstract:

Effect of 2wt% Cu addition on tensile properties and fracture behavior of Al-6Si-0.5Mg-2Ni alloy at various strain rates were studied. The solution treated Al-6Si-0.5Mg-2Ni (-2Cu) alloys, were aged isochronally for 1 hour at temperatures up to 300oC. The uniaxial tension test was carried out at strain rate ranging from 10-4s-1 to 10-2s-1 in order to investigate the strain rate dependence of tensile properties. Tensile strengths were found to increase with ageing temperature and the maximum being attained ageing for 1 hr at 225oC (peak aged condition). Addition of 2wt% Cu resulted in an increase in tensile properties at all strain rates. Evaluation of tensile properties at three different strain rates (10-4, 10-3 and 10-2 s-1) showed that strain rates affected the tensile properties significantly. At higher strain rates the strength was better but ductility was poor. Microstructures of broken specimens showed that both the void coalescence and the interface debonding affect the fracture behavior of the alloys

Keywords: Al-Si-Mg-Ni-Cu alloy, tensile properties, strain rate, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
508 Effect of Mode Loading on FCRG Plate with Double Through Crack at Hole

Authors: M. Benachour, N. Benachour, M. Benguediab, A. Hadjoui

Abstract:

The knowledge of the nature of loading is very important in order to hold account on the total behavior such as vibration, shock, fatigue, etc. Fatigue present 90% of failure when loadings fatigues are very complex. In this paper a study of double through crack at hole for plate subjected to fatigue loading is presented. Various modes loading are studied where the applied load is the same one. The fatigue life is given where the effect of stress ratio is highlighted. This work is conducted on aluminum alloy 2024 T351 used for much aerospace and aeronautics applications. The fatigue crack growth behavior with constant amplitude is studied using the AFGROW code when Forman model is applied. The fatigue crack growth rate and fatigue life for different loading modes are compared with variation of others geometrical parameter such as thickness and dimensions of notch hole.

Keywords: Fatigue crack, mode loading, aluminum alloy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
507 Numerical and Experimental Studies of Joule Heating Effects around Crack and Notch Tips

Authors: Thomas Jin-Chee Liu, Ji-Fu Tseng, Yu-Shen Chen

Abstract:

This paper investigates the thermo-electric effects around the crack and notch tips under the electric current load. The research methods include the finite element analysis and thermal imaging experiment. The finite element solutions show that the electric current density field concentrates at the crack tip. Due to the Joule heating, this electric concentration causes the hot spot at the tip zone. From numerical and experimental results, this hot spot is identified. The temperature of the hot spot is affected by the electric load, operation time and geometry of the sample.

Keywords: Thermo-electric, Joule heating, crack tip, notch tip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
506 Fatigue Life Prediction on Steel Beam Bridges under Variable Amplitude Loading

Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho

Abstract:

Steel bridges are normally subjected to random loads with different traffic frequencies. They are structures with dynamic behavior and are subject to fatigue failure process, where the nucleation of a crack, growth and failure can occur. After locating and determining the size of an existing fault, it is important to predict the crack propagation and the convenient time for repair. Therefore, fracture mechanics and fatigue concepts are essential to the right approach to the problem. To study the fatigue crack growth, a computational code was developed by using the root mean square (RMS) and the cycle-by-cycle models. One observes the variable amplitude loading influence on the life structural prediction. Different loads histories and initial crack length were considered as input variables. Thus, it was evaluated the dispersion of results of the expected structural life choosing different initial parameters.

Keywords: Fatigue crack propagation, life prediction, variable loadings, steel bridges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 459
505 Effect of Single Overload Ratio and Stress Ratio on Fatigue Crack Growth

Authors: M. Benachour, N. Benachour, M. Benguediab

Abstract:

In this investigation variation of cyclic loading effect on fatigue crack growth is the studied. This study is performed on 2024 T351 and 7050-T74 aluminum alloys, used in aeronautical structures. The propagation model used in this study is NASGRO model. In constant amplitude loading (CA), effect of stress ratio has been investigated. Fatigue life and fatigue crack growth rate were affected by this factor. Results showed an increasing in fatigue crack growth rates (FCGRs) with increasing stress ratio. Variable amplitude loading (VAL) can take many forms i.e. with a single overload, overload band… etc. The shape of these loads affects strongly the fracture life and FCGRs. The application of a single overload (ORL) decrease the FCGR and increase the delay crack length caused by the formation of a larger plastic zone compared to the plastic zone due without VAL. The fatigue behavior of the both material under single overload has been compared.

Keywords: Fatigue crack growth, overload ratio, stress ratio, generalized willenborg model, retardation, Al-alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3552
504 Effect of Welding Processes on Tensile Behavior of Aluminum Alloy Joints

Authors: Chaitanya Sharma, Vikas Upadhyay, A. Tripathi

Abstract:

Friction stir welding and tungsten inert gas welding techniques were employed to weld armor grade aluminum alloy to investigate the effect of welding processes on tensile behavior of weld joints. Tensile tests, Vicker microhardness tests and optical microscopy were performed on developed weld joints and base metal. Welding process influenced tensile behavior and microstructure of weld joints. Friction stir welded joints showed tensile behavior better than tungsten inert gas weld joints.

Keywords: Friction stir welding, microstructure, tensile properties and fracture locations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289