Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30982
Effect of Mean Stress on Fatigue Crack Growth Behavior of Stainless Steel 304L

Authors: M. Benachour, N. Benachour

Abstract:

Stainless steel has been employed in many engineering applications ranging from pharmaceutical equipment to piping in the nuclear reactors and storage to chemical products. In this attempt, simulation of fatigue crack growth based on experimental results of austenitic stainless steel 304L was presented using AFGROW code when NASGRO mode laws adopted. Double through crack at hole specimen is used in this investigation under constant amplitude loading. Effect of mean stress is highlighted. Results show that fatigue crack growth rate (FCGR) and fatigue life were affected by maximum applied load and dimension of hole. An equivalent of Paris law for this material was estimated.

Keywords: mean stress, stainless steel, fatigue crack, amplitudeloading

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1330665

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2819

References:


[1] Lee WS, Lin CF., "Impact properties and microstructure evolution of 304L stainless steel". Mater Sci Engg A 2001; A308:124-35.
[2] Kimura M., Yamaguchi K., Hayakawa M., Kobayashi K., Matsuoka S., Takeuchi E., "Fatigue fracture mechanism maps for a type 304 stainless steel". Metall. Mat. Transf. A, vol. 35A, April 2004, p 1311.
[3] Maas E., Pineau A., "Creep crack growth behaviour of type 316L steel". Engineering Fracture Mechanics, Vol. 22, Issue 2, 1985, Pages 307- 325.
[4] Singh P. Johan, Guha B., Achar D.R.G., "Fatigue life prediction for stainless steel welded plate CCT geometry based on Lawrence-s localstress approach". Engng Fail. Anal. 10, 655-665, 2003.
[5] M. Benachour, A. Hadjoui, M. Benguediab and N. Benachour. Stress ratio effect on fatigue behavior of aircraft aluminum Alloy 2024T351. MRS Proceedings, 1276, 7 doi:10.1557/PROC-1276-7, (2010).
[6] Kalnaus S., Fan F., Jiang Y., Vasudevan A.K., "An experimental investigation on fatigue crack growth of AL6XN stainless steel". Engineering Fracture Mechanics 75 (2008) 2002-2019.
[7] Kalnaus S., Fan F., Jiang Y., Vasudevan A.K., "An experimental investigation of fatigue crack growth of stainless steel 304L". Int. Journal of Fatigue 31 (2009) 840-849.
[8] Duyi Ye, Yuandong Xu, Lei Xiao, Haibo Cha,. "Effects of low-cycle fatigue on static mechanical properties, microstructures and fracture behavior of 304 stainless steel". Material Science and Engineering A, 527, n┬░ 16-17 (2010), 4082-4102.
[9] Yahiaoui B., Petrequin P., "├ëtude de la propagation de fissures par fatigue dans des aciers inoxydables austénitiques ├á bas carbone du type 304L et 316L". Rev. Phys. Appl. (Paris) Vol. 9(4), 1974. 683-690.
[10] Park HB, Lee BW., "Effect of specimen thickness on fatigue crack growth rate". Nuclear Engng Des 2000; 197:197-203.
[11] Newman, J.C., 1984, "A crack opening stress equation for fatigue crack growth". International Journal of Fracture, 24(3), R131-135.
[12] Harter, J.A, "AFGROW users guide and technical manual: AFGROW for Windows 2K/XP". Version 4.0011.14, Air Force Research Laboratory.
[13] M. Benachour, A. Hadjoui, N. Benachour, "Effect of geometrical and loading parameters on fatigue crack growth of stainless steel 316L". Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis (ESDA 2010), Vol. 1, n┬░ ESDA2010-24055, pp 351-355.
[14] M. Benachour, N. Benachour, "Comparative study of FCG of stainless steel 304L and 316L". Submitted and Accepted to Eurosteel 2011 Conference, August 31 to September 2, 2011, Budapest, Hungary.