Search results for: steel plates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 932

Search results for: steel plates

782 The Effect of High-speed Milling on Surface Roughness of Hardened Tool Steel

Authors: Manop Vorasri, Komson Jirapattarasilp, Sittichai Kaewkuekool

Abstract:

The objective of this research was to study factors, which were affected on surface roughness in high speed milling of hardened tool steel. Material used in the experiment was tool steel JIS SKD 61 that hardened on 60 ±2 HRC. Full factorial experimental design was conducted on 3 factors and 3 levels (3 3 designs) with 2 replications. Factors were consisted of cutting speed, feed rate, and depth of cut. The results showed that influenced factor affected to surface roughness was cutting speed, feed rate and depth of cut which showed statistical significant. Higher cutting speed would cause on better surface quality. On the other hand, higher feed rate would cause on poorer surface quality. Interaction of factor was found that cutting speed and depth of cut were significantly to surface quality. The interaction of high cutting speed associated with low depth of cut affected to better surface quality than low cutting speed and high depth of cut.

Keywords: High-speed milling, Tool steel, SKD 61 Steel, Surface roughness, Cutting speed, Feed rate, Depth of cut

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
781 Time-Dependent Behavior of Damaged Reinforced Concrete Shear Walls Strengthened with Composite Plates Having Variable Fibers Spacing

Authors: R. Yeghnem, L. Boulefrakh, S. A. Meftah, A. Tounsi, E. A. Adda Bedia

Abstract:

In this study, the time-dependent behavior of damaged reinforced concrete shear wall structures strengthened with composite plates having variable fibers spacing was investigated to analyze their seismic response. In the analytical formulation, the adherent and the adhesive layers are all modeled as shear walls, using the mixed Finite Element Method (FEM). The anisotropic damage model is adopted to describe the damage extent of the Reinforced Concrete shear walls. The phenomenon of creep and shrinkage of concrete has been determined by Eurocode 2. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes) have been tested to demonstrate the accuracy of the proposed method. Numerical results are obtained for non-uniform distributions of carbon fibers in epoxy matrices. The effects of damage extent and the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied.

Keywords: RC shear wall structures, composite plates, creep and shrinkage, damaged reinforced concrete structures, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
780 Conductivity and Selection of Copper Clad Steel Wires for Grounding Applications

Authors: George Eduful, Kingsford J. A. Atanga

Abstract:

Copper clad steel wire (CCS) is primarily used for grounding applications to reduce the high incidence of copper ground conductor theft in electrical installations. The cross sectional area of the CCS is selected by relating the diameter equivalence to a copper conductor. The main difficulty is how to use a simple analytical relation to determine the right conductivity of CCS for a particular application. The use of Eddy-Current instrument for measuring conductivity is known but in most cases, the instrument is not readily available. The paper presents a simplified approach on how to size and determine CCS conductivity for a given application.

Keywords: Copper clad steel wire, conductivity, grounding, skin effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 647
779 First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams

Authors: Saruhan Kartal, Ilker Kalkan

Abstract:

The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens.

Keywords: Cracking moment, four-point bending, hybrid use of reinforcement, polymer reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
778 Torsion Behavior of Steel Fibered High Strength Self Compacting Concrete Beams Reinforced by GFRB Bars

Authors: Khaled S. Ragab, Ahmed S. Eisa

Abstract:

This paper investigates experimentally and analytically the torsion behavior of steel fibered high strength self compacting concrete beams reinforced by GFRP bars. Steel fibered high strength self compacting concrete (SFHSSCC) and GFRP bars became in the recent decades a very important materials in the structural engineering field. The use of GFRP bars to replace steel bars has emerged as one of the many techniques put forward to enhance the corrosion resistance of reinforced concrete structures. High strength concrete and GFRP bars attract designers and architects as it allows improving the durability as well as the esthetics of a construction. One of the trends in SFHSSCC structures is to provide their ductile behavior and additional goal is to limit development and propagation of macro-cracks in the body of SFHSSCC elements. SFHSSCC and GFRP bars are tough, improve the workability, enhance the corrosion resistance of reinforced concrete structures, and demonstrate high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents. Three types of volume fraction from hooked shape steel fibers are used in this study, the hooked steel fibers were evaluated in volume fractions ranging between 0.0%, 0.75% and 1.5%. The beams shape is chosen to create the required forces (i.e. torsion and bending moments simultaneously) on the test zone. A total of seven beams were tested, classified into three groups. All beams, have 200cm length, cross section of 10×20cm, longitudinal bottom reinforcement of 3

Keywords: Self compacting concrete, torsion behavior, steel fiber, steel fiber reinforced high strength self compacting concrete (SFRHSCC), GFRP bars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3314
777 Mechanical Properties of Fibre Reinforced Concrete - A Comparative Experimental Study

Authors: Amir M. Alani, Morteza Aboutalebi

Abstract:

This paper in essence presents comparative experimental data on the mechanical performance of steel and synthetic fibre-reinforced concrete under compression, tensile split and flexure. URW1050 steel fibre and HPP45 synthetic fibre, both with the same concrete design mix, have been used to make cube specimens for a compression test, cylinders for a tensile split test and beam specimens for a flexural test. The experimental data demonstrated steel fibre reinforced concrete to be stronger in flexure at early stages, whilst both fibre reinforced concrete types displayed comparatively the same performance in compression, tensile splitting and 28-day flexural strength. In terms of post-crack controlHPP45 was preferable.

Keywords: Steel Fibre, Synthetic Fibre, Fibre Reinforced Concrete, Failure, Ductility, Experimental Study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7371
776 Tool Wear of Titanium/Tungsten/Silicon/Aluminum-based-coated end Mill Cutters in Millin Hardened Steel

Authors: Tadahiro Wada, Koji Iwamoto

Abstract:

In turning hardened steel, polycrystalline cubic boron nitride (cBN) compacts are widely used, due to their higher hardness and higher thermal conductivity. However, in milling hardened steel, fracture of cBN cutting tools readily occurs because they have poor fracture toughness. Therefore, coated cemented carbide tools, which have good fracture toughness and wear resistance, are generally widely used. In this study, hardened steel (ASTM D2, JIS SKD11, 60HRC) was milled with three physical vapor deposition (PVD)-coated cemented carbide end mill cutters in order to determine effective tool materials for cutting hardened steel at high cutting speeds. The coating films used were (Ti,W)N/(Ti,W,Si)N and (Ti,W)N/(Ti,W,Si,Al)N coating films. (Ti,W,Si,Al)N is a new type of coating film. The inner layer of the (Ti,W)N/(Ti,W,Si)N and (Ti,W)N/(Ti,W,Si,Al)N coating system is (Ti,W)N coating film, and the outer layer is (Ti,W,Si)N and (Ti,W,Si,Al)N coating films, respectively. Furthermore, commercial (Ti,Al)N-based coating film was also used. The following results were obtained: (1) In milling hardened steel at a cutting speed of 3.33 m/s, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the (Ti,W)N/(Ti,W,Si)N-coated tool. And, compared with the commercial (Ti,Al)N, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the (Ti,Al)N-coated tool. (2) The tool wear of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool increased with an increase in cutting speed. (3) The (Ti,W)N/(Ti,W,Si,Al)N-coated cemented carbide was an effective tool material for high-speed cutting below a cutting speed of 3.33 m/s.

Keywords: cutting, physical vapor deposition (PVD) coating system, hardened steel, tool wear

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
775 Nickel on Inner Surface and Stainless Steel on Outer Surface for Functionally Graded Cylindrical Shell

Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei

Abstract:

Study is on the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. The effects of the FGM configuration are studied by studying the frequencies of FG cylindrical shells. In this case FG cylindrical shell has Nickel on its inner surface and stainless steel on its outer surface. The study is carried out based on third order shear deformation shell theory. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of configurations of the constituent materials on the frequencies. The properties are graded in the thickness direction according to the volume fraction power-law distribution. Results are presented on the frequency characteristics, the influence of the constituent various volume fractions on the frequencies.

Keywords: Nickel, Stainless Steel, Cylindrical shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
774 Degradation Propensity of Welded Mild Steel in Coastal Soil of University of Lagos

Authors: S. O. Adeosun, O. S. Sanni

Abstract:

Study on corrosion propensity of welded mild steel- bar in soil media around the coastal area of University of Lagos has been carried out using gravimetric method. Six (6) samples each for welded and unwelded mild steels were cut, their initial weights were recorded and buried in two selected soil. The weight losses of these coupons were measured at regular intervals for a period of six months (180 days).

The corrosiveness of the soil media varied widely depending on the potency level of its constituents. The results revealed that soil in the studied area have marked variations in composition and contents. Soil medium with a lower pH and higher chloride ion concentration aggressively attacked the coupons with the welded steel coupon corroding faster than unwelded one. The medium resistivity to the flow of current is another strong factor affecting corrosion rate.

Keywords: Coastal area, corrosion rate, mild steel, soil media, welds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
773 Effects of Temperature on Resilient Modulus of Dense Asphalt Mixtures Incorporating Steel Slag Subjected to Short Term Oven Ageing

Authors: Meor O. Hamzah, Teoh C. Yi

Abstract:

As the resources for naturally occurring aggregates diminished at an ever increasing rate, researchers are keen to utilize recycled materials in road construction in harmony with sustainable development. Steel slag, a waste product from the steel making industry, is one of the recycled materials reported to exhibit great potential to replace naturally occurring aggregates in asphalt mixtures. This paper presents the resilient modulus properties of steel slag asphalt mixtures subjected to short term oven ageing (STOA). The resilient modulus test was carried out to evaluate the stiffness of asphalt mixtures at 10ºC, 25ºC and 40ºC. Previous studies showed that stiffness changes in asphalt mixture played an important role in inflicting pavement distress particularly cracking and rutting that are common at low and high temperatures respectively. Temperature was found to significantly influence the resilient modulus of asphalt mixes. The resilient modulus of the asphalt specimens tested decreased by more than 90% when the test temperature increased from 10°C to 40°C.

Keywords: Granite, Resilient Modulus, Steel Slag, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813
772 Forming of Nanodimentional Structure Parts in Carbon Steels

Authors: A. Korchunov, M. Chukin, N. Koptseva, M. Polyakova, A. Gulin

Abstract:

A way of achieving nanodimentional structural elements in high carbon steel by special kind of heat treatment and cold plastic deformation is being explored. This leads to increasing interlamellar spacing of ferrite-carbide mixture. Decreasing the interlamellar spacing with cooling temperature increasing is determined. Experiments confirm such interlamellar spacing with which high carbon steel demonstrates the highest treatment and hardening capability. Total deformation degree effect on interlamellar spacing value in a ferrite-carbide mixture is obtained. Mechanical experiments results show that high carbon steel after heat treatment and repetitive cold plastic deformation possesses high tensile strength and yield strength keeping good percentage elongation.

Keywords: High-carbon steel, nanodimensional structural element, interlamellar spacing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
771 Diagnostics of Existing Steel Structures of Winter Sport Halls

Authors: Marcela Karmazínová, Jindrich Melcher, Lubomír Vítek, Petr Cikrle

Abstract:

The paper deals with the diagnostics of steel roof structure of the winter sports halls built in 1970 year. The necessity of the diagnostics has been given by the requirement to the evaluation design of this structure, which has been caused by the new situation in the field of the loadings given by the validity of the European Standards in the Czech Republic from 2010 year. Due to these changes in the normative rules, in practice existing structures are gradually subjected to the evaluation design and depending on its results to the strengthening or reconstruction, respectively. Steel roof is composed of plane truss main girders, purlins and bracings and the roof structure is supported by two arch main girders with the span of L = 84 m. The in situ diagnostics of the roof structure was oriented to the following parts: (i) determination and evaluation of the actual material properties of used steel and (ii) verification of the actual dimensions of the structural members. For the solution the nondestructive methods have been used for in situ measurement. For the indicative determination of steel strengths the modified method based on the determination of Rockwell’s hardness has been used. For the verification of the member’s dimensions (thickness of hollow sections) the ultrasound method has been used. This paper presents the results obtained using these testing methods and their evaluation, from the viewpoint of the usage for the subsequent static assessment and design evaluation of the existing structure. For the comparison, the examples of the similar evaluations realized for steel structures of the stadiums in Olomouc and Jihlava cities are briefly illustrated, too.

Keywords: Diagnostics, existing steel structure, sport hall, steel strength, indirect non-destructive methods, Rockwel’s hardness, destructive methods, actual dimensions, ultrasound method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
770 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods

Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow

Abstract:

 A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.

Keywords: Forecasting model, Steel demand uncertainty, Hierarchical Bayesian framework, Exponential smoothing method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
769 Corrosion Monitoring of Weathering Steel in a Simulated Coastal-Industrial Environment

Authors: Ch. Thee, Junhua Dong, Wei Ke

Abstract:

The atmospheres in many cities along the coastal lines in the world have been rapidly changed to coastal-industrial atmosphere. Hence, it is vital to investigate the corrosion behavior of steel exposed to this kind of environment. In this present study, Electrochemical Impedance Spectrography (EIS) and film thickness measurement were applied to monitor the corrosion behavior of weathering steel covered with a thin layer of the electrolyte in a wet-dry cyclic condition, simulating a coastal-industrial environment at 25oC and 60% RH. The results indicate that in all cycles, the corrosion rate increases during the drying process due to an increase in anion concentration and an acceleration of oxygen diffusion enhanced by the effect of the thinning out of the electrolyte. During the wet-dry cyclic corrosion test, the long-term corrosion behavior of this steel depends on the periods of exposure. Corrosion process is first accelerated and then decelerated. The decelerating corrosion process is contributed to the formation of the protective rust, favored by the wet-dry cycle and the acid regeneration process during the rusting process.

Keywords: Atmospheric corrosion, EIS, low alloy, rust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
768 The Effects of Shot and Grit Blasting Process Parameters on Steel Pipes Coating Adhesion

Authors: Saeed Khorasanizadeh

Abstract:

Adhesion strength of exterior or interior coating of steel pipes is too important. Increasing of coating adhesion on surfaces can increase the life time of coating, safety factor of transmitting line pipe and decreasing the rate of corrosion and costs. Preparation of steel pipe surfaces before doing the coating process is done by shot and grit blasting. This is a mechanical way to do it. Some effective parameters on that process, are particle size of abrasives, distance to surface, rate of abrasive flow, abrasive physical properties, shapes, selection of abrasive, kind of machine and its power, standard of surface cleanness degree, roughness, time of blasting and weather humidity. This search intended to find some better conditions which improve the surface preparation, adhesion strength and corrosion resistance of coating. So, this paper has studied the effect of varying abrasive flow rate, changing the abrasive particle size, time of surface blasting on steel surface roughness and over blasting on it by using the centrifugal blasting machine. After preparation of numbers of steel samples (according to API 5L X52) and applying epoxy powder coating on them, to compare strength adhesion of coating by Pull-Off test. The results have shown that, increasing the abrasive particles size and flow rate, can increase the steel surface roughness and coating adhesion strength but increasing the blasting time can do surface over blasting and increasing surface temperature and hardness too, change, decreasing steel surface roughness and coating adhesion strength.

Keywords: surface preparation, abrasive particles, adhesionstrength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9016
767 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems

Authors: Zi-Ang Li, Mu-Xuan Tao

Abstract:

During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.

Keywords: Finite element analysis, seismic performance evaluation, separated composite structural system, static pushover analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499
766 Design of Seismically Resistant Tree-Branching Steel Frames Using Theory and Design Guides for Eccentrically Braced Frames

Authors: R. Gary Black, Abolhassan Astaneh-Asl

Abstract:

The International Building Code (IBC) and the  California Building Code (CBC) both recognize four basic types of  steel seismic resistant frames; moment frames, concentrically braced  frames, shear walls and eccentrically braced frames. Based on  specified geometries and detailing, the seismic performance of these  steel frames is well understood. In 2011, the authors designed an  innovative steel braced frame system with tapering members in the  general shape of a branching tree as a seismic retrofit solution to an  existing four story “lift-slab” building. Located in the seismically  active San Francisco Bay Area of California, a frame of this  configuration, not covered by the governing codes, would typically  require model or full scale testing to obtain jurisdiction approval.  This paper describes how the theories, protocols, and code  requirements of eccentrically braced frames (EBFs) were employed  to satisfy the 2009 International Building Code (IBC) and the 2010  California Building Code (CBC) for seismically resistant steel frames  and permit construction of these nonconforming geometries.

 

Keywords: Eccentrically Braced Frame, Lift Slab Construction, Seismic Retrofit, Shear Link, Steel Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
765 Investigations on the Seismic Performance of Hot-Finished Hollow Steel Sections

Authors: Paola Pannuzzo, Tak-Ming Chan

Abstract:

In seismic applications, hollow steel sections show, beyond undeniable esthetical appeal, promising structural advantages since, unlike open section counterparts, they are not susceptible to weak-axis and lateral-torsional buckling. In particular, hot-finished hollow steel sections have homogeneous material properties and favorable ductility but have been underutilized for cyclic bending. The main reason is that the parameters affecting their hysteretic behaviors are not yet well understood and, consequently, are not well exploited in existing codes of practice. Therefore, experimental investigations have been conducted on a wide range of hot-finished rectangular hollow section beams with the aim to providing basic knowledge for evaluating their seismic performance. The section geometry (width-to-thickness and depth-to-thickness ratios) and the type of loading (monotonic and cyclic) have been chosen as the key parameters to investigate the cyclic effect on the rotational capacity and to highlight the differences between monotonic and cyclic load conditions. The test results provide information on the parameters that affect the cyclic performance of hot-finished hollow steel beams and can be used to assess the design provisions stipulated in the current seismic codes of practice.

Keywords: Hot-finished steel, hollow sections, cyclic tests, bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
764 Periodic Topology and Size Optimization Design of Tower Crane Boom

Authors: Wu Qinglong, Zhou Qicai, Xiong Xiaolei, Zhang Richeng

Abstract:

In order to achieve the layout and size optimization of the web members of tower crane boom, a truss topology and cross section size optimization method based on continuum is proposed considering three typical working conditions. Firstly, the optimization model is established by replacing web members with web plates. And the web plates are divided into several sub-domains so that periodic soft kill option (SKO) method can be carried out for topology optimization of the slender boom. After getting the optimized topology of web plates, the optimized layout of web members is formed through extracting the principal stress distribution. Finally, using the web member radius as design variable, the boom compliance as objective and the material volume of the boom as constraint, the cross section size optimization mathematical model is established. The size optimization criterion is deduced from the mathematical model by Lagrange multiplier method and Kuhn-Tucker condition. By comparing the original boom with the optimal boom, it is identified that this optimization method can effectively lighten the boom and improve its performance.

Keywords: Tower crane boom, topology optimization, size optimization, periodic, soft kill option, optimization criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
763 Optimization of Heat Treatment Due to Austenising Temperature, Time and Quenching Solution in Hadfield Steels

Authors: Sh. Hosseini, M. B. Limooei, M. Hossein Zade, E. Askarnia, Z. Asadi

Abstract:

Manganese steel (Hadfield) is one of the important alloys in industry due to its special properties. High work hardening ability with appropriate toughness and ductility are the properties that caused this alloy to be used in wear resistance parts and in high strength condition. Heat treatment is the main process through which the desired mechanical properties and microstructures are obtained in Hadfield steel. In this study various heat treatment cycles, differing in austenising temperature, time and quenching solution are applied. For this purpose, the same samples of manganese steel was heat treated in 9 different cycles, and then the mechanical properties and microstructures were investigated. Based on the results of the study, the optimum heat treatment cycle was obtained.

Keywords: Manganese steel (Hadfield), heat treatment, austenising temperature, austenising time, quenching solution, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4412
762 The Effect on Rolling Mill of Waviness in Hot Rolled Steel

Authors: Sunthorn S., Kittiphat R.

Abstract:

The edge waviness in hot rolled steel is a common defect. Variables that affect such defect include raw material and machine. These variables are necessary to consider to understand such defect. This research studied the defect of edge waviness for SS 400 of metal sheet manufacture. Defect of metal sheets were divided into two groups. The specimens were investigated on chemical composition and mechanical properties to find the difference. The results of investigation showed that the difference was not significant. Therefore the roll mill machine should be used to adjust to support another location on a roller to avoide edge waviness.

Keywords: Edge waviness, Hot rolling steel, Metal sheet defect, SS 400, Roll leveler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6996
761 Investigation of Microstructure of Differently Sub-Zero Treated Vanadis 6 Steel

Authors: J. Ptačinová, J. Ďurica, P. Jurči, M Kusý

Abstract:

Ledeburitic tool steel Vanadis 6 has been subjected to sub-zero treatment (SZT) at -140 °C and -196 °C, for different durations up to 48 h. The microstructure and hardness have been examined with reference to the same material after room temperature quenching, by using the light microscopy, scanning electron microscopy, X-ray diffraction, and Vickers hardness testing method. The microstructure of the material consists of the martensitic matrix with certain amount of retained austenite, and of several types of carbides – eutectic carbides, secondary carbides, and small globular carbides. SZT reduces the retained austenite amount – this is more effective at -196 °C than at -140 °C. Alternatively, the amount of small globular carbides increases more rapidly after SZT at -140 °C than after the treatment at -140 °C. The hardness of sub-zero treated material is higher than that of conventionally treated steel when tempered at low temperature. Compressive hydrostatic stresses are developed in the retained austenite due to the application of SZT, as a result of more complete martensitic transformation. This is also why the population density of small globular carbides is substantially increased due to the SZT. In contrast, the hardness of sub-zero treated samples decreases more rapidly compared to that of conventionally treated steel, and in addition, sub-zero treated material induces a loss the secondary hardening peak.

Keywords: Microstructure, Vanadis 6 tool steel, sub-zero treatment, carbides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
760 Bendability Analysis for Bending of C-Mn Steel Plates on Heavy Duty 3-Roller Bending Machine

Authors: Himanshu V. Gajjar, Anish H. Gandhi, Tanvir A Jafri, Harit K. Raval

Abstract:

Bendability is constrained by maximum top roller load imparting capacity of the machine. Maximum load is encountered during the edge pre-bending stage of roller bending. Capacity of 3-roller plate bending machine is specified by maximum thickness and minimum shell diameter combinations that can be pre-bend for given plate material of maximum width. Commercially available plate width or width of the plate that can be accommodated on machine decides the maximum rolling width. Original equipment manufacturers (OEM) provide the machine capacity chart based on reference material considering perfectly plastic material model. Reported work shows the bendability analysis of heavy duty 3-roller plate bending machine. The input variables for the industry are plate thickness, shell diameter and material property parameters, as it is fixed by the design. Analytical models of equivalent thickness, equivalent width and maximum width based on power law material model were derived to study the bendability. Equation of maximum width provides bendability for designed configuration i.e. material property, shell diameter and thickness combinations within the machine limitations. Equivalent thicknesses based on perfectly plastic and power law material model were compared for four different materials grades of C-Mn steel in order to predict the bend-ability. Effect of top roller offset on the bendability at maximum top roller load imparting capacity is reported.

Keywords: 3-Roller bending, Bendability, Equivalent thickness, Equivalent width, Maximum width.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4559
759 The Effect of Electric Field Distributions on Grains and Insect for Dielectric Heating Applications

Authors: S. Santalunai, T. Thosdeekoraphat, C. Thongsopa

Abstract:

This paper presents the effect of electric field distribution which is an electric field intensity analysis. Consideration of the dielectric heating of grains and insects, the rice and rice weevils are utilized for dielectric heating analysis. Furthermore, this analysis compares the effect of electric field distribution in rice and rice weevil. In this simulation, two copper plates are used to generate the electric field for dielectric heating system and put the rice materials between the copper plates. The simulation is classified in two cases, which are case I one rice weevil is placed in the rice and case II two rice weevils are placed at different position in the rice. Moreover, the probes are located in various different positions on plate. The power feeding on this plate is optimized by using CST EM studio program of 1000 watt electrical power at 39 MHz resonance frequency. The results of two cases are indicated that the most electric field distribution and intensity are occurred on the rice and rice weevils at the near point of the probes. Moreover, the heat is directed to the rice weevils more than the rice. When the temperature of rice and rice weevils are calculated and compared, the rice weevils has the temperature more than rice is about 41.62 Celsius degrees. These results can be applied for the dielectric heating applications to eliminate insect.

Keywords: Copper plates, Electric field distribution, Dielectric heating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
758 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akın, İbrahim Aydoğdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teachinglearning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: Optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
757 Panel Zone Rigidity Effects on Special Steel Moment-Resisting Frames According to the Performance Based Design

Authors: Mahmoud Miri, Morteza Naghipour, Amir Kashiryfar

Abstract:

The unanticipated destruct of more of the steel moment frames in Northridge earthquake, altered class of regard to the beamto- column connections in moment frames. Panel zone is one the significant part of joints which, it-s stiffness and rigidity has an important effect on the behavior and ductility of the frame. Specifically that behavior of panel zone has a very significant effect on the special moment frames. In this paper , meanwhile the relations for modeling of panel zone in frames are expressed , special moment frames with different spans and stories were studied in the way of performance-based design. The frames designed in according with Iranian steel building code. The effect of panel zone is also considered and in the case of non-existence of performance level, by changing in intimacies and parameter of panel zone, performance level is considered.

Keywords: steel moment frame, panel zone, performance based design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4550
756 Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene

Authors: Parisa Hasanpour, Bahram Borooghani, Vahid Asadi

Abstract:

In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis and tensile tests, in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition.

Keywords: Failure analysis, 304 stainless steel, fatigue, flange, petrochemical refinery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173
755 Design of Polyetheretherketone Fixation Plates for Fractured Distal Femur

Authors: Abhishek Soni, Bhagat Singh

Abstract:

In the present study, a methodology has been proposed to treat fracture in the distal part of the femur bone. Initially, bone model has been developed using the computed tomography scan data of the fractured bone. This information has been further used to create polyether ether ketone (PEEK) implant for this fractured bone. Damaged bone and implant models have been assembled. This assembled model has been further analyzed for stress distribution. Moreover, deformation developed was also measured. It has been observed that the stress and deformation developed was not so appreciable. Thus, it proves that the aforementioned procedure can be suitably adopted for the treatment of fractured distal femur bone.

Keywords: Distal femur, fixation plates, PEEK, reverse engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 403
754 A Robust Diverged Localization and Recognition of License Registration Characters

Authors: M. Sankari, R. Bremananth, C.Meena

Abstract:

Localization and Recognition of License registration characters from the moving vehicle is a computationally complex task in the field of machine vision and is of substantial interest because of its diverse applications such as cross border security, law enforcement and various other intelligent transportation applications. Previous research used the plate specific details such as aspect ratio, character style, color or dimensions of the plate in the complex task of plate localization. In this paper, license registration character is localized by Enhanced Weight based density map (EWBDM) method, which is independent of such constraints. In connection with our previous method, this paper proposes a method that relaxes constraints in lighting conditions, different fonts of character occurred in the plate and plates with hand-drawn characters in various aspect quotients. The robustness of this method is well suited for applications where the appearance of plates seems to be varied widely. Experimental results show that this approach is suited for recognizing license plates in different external environments. 

Keywords: Character segmentation, Connectivity checking, Edge detection, Image analysis, license plate localization, license number recognition, Quality frame selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
753 Magnetic Fluid Based Squeeze Film in Rough Rotating Curved Porous Annular Plates: Deformation Effect

Authors: M. E. Shimpi, G. M. Deheri

Abstract:

This article aims to investigate the performance of a magnetic fluid based squeeze film between rotating transversely rough curved porous annular plates incorporating the effect of elastic deformation. The associated stochastically averaged Reynolds type equation is solved to obtain the pressure distribution leading to the calculation of the load carrying capacity. The results suggest that the transverse roughness of the bearing surfaces affects the performance adversely although the bearing systems register a relatively improved performance due to the magnetization. The deformation causes reduced the load carrying capacity while the curvature parameters tend to nominally increase the load carrying capacity. Besides, the adverse effect of porosity, deformation and standard deviation can be minimized to some extent by the positive effect of the magnetization and the curvature parameters in the case of negatively skewed roughness by suitably choosing the rotational inertia and the aspect ratio, which becomes significant when negative variance occurs.

Keywords: Annular plates curved rough surface, deformation, load carrying capacity, rotational inertia, magnetic fluid, squeeze film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786