Search results for: source filter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2006

Search results for: source filter

56 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House

Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal

Abstract:

Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.

Keywords: Sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
55 An Appraisal of Coal Fly Ash Soil Amendment Technology (FASAT) of Central Institute of Mining and Fuel Research (CIMFR)

Authors: L.C. Ram, R.E. Masto, Smriti Singh, R.C. Tripathi, S.K. Jha, N.K. Srivastava, A.K. Sinha, V.A. Selvi, A. Sinha

Abstract:

Coal will continue to be the predominant source of global energy for coming several decades. The huge generation of fly ash (FA) from combustion of coal in thermal power plants (TPPs) is apprehended to pose the concerns of its disposal and utilization. FA application based on its typical characteristics as soil ameliorant for agriculture and forestry is the potential area, and hence the global attempt. The inferences drawn suffer from the variations of ash characteristics, soil types, and agro-climatic conditions; thereby correlating the effects of ash between various plant species and soil types is difficult. Indian FAs have low bulk density, high water holding capacity and porosity, rich silt-sized particles, alkaline nature, negligible solubility, and reasonable plant nutrients. Findings of the demonstrations trials for more than two decades from lab/pot to field scale long-term experiments are developed as FA soil amendment technology (FASAT) by Central Institute of Mining and Fuel Research (CIMFR), Dhanbad. Performance of different crops and plant species in cultivable and problematic soils, are encouraging, eco-friendly, and being adopted by the farmers. FA application includes ash alone and in combination with inorganic/organic amendments; combination treatments including bio-solids perform better than FA alone. Optimum dose being up to 100 t/ha for cultivable land and up to/ or above 200 t/ha of FA for waste/degraded land/mine refuse, depending on the characteristics of ash and soil. The elemental toxicity in Indian FA is usually not of much concern owing to alkaline ashes, oxide forms of elements, and elemental concentration within the threshold limits for soil application. Combating toxicity, if any, is possible through combination treatments with organic materials and phytoremediation. Government initiatives through extension programme involving farmers and ash generating organizations need to be accelerated

Keywords: Fly ash, soil quality, CIMFR, FASAT, agriculture, forestry, toxicity, remediation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3014
54 Arginase Enzyme Activity in Human Serum as a Marker of Cognitive Function: The Role of Inositol in Combination with Arginine Silicate

Authors: Katie Emerson, Sara Perez-Ojalvo, Jim Komorowski, Danielle Greenberg

Abstract:

The purpose of this study was to evaluate arginase activity levels in response to combinations of an inositol-stabilized arginine silicate (ASI; Nitrosigine®), L-arginine, and Inositol. Arginine acts as a vasodilator that promotes increased blood flow resulting in enhanced delivery of oxygen and nutrients to the brain and other tissues. Arginase, found in human serum, catalyzes the conversion of arginine to ornithine and urea, completing the last step in the urea cycle. Decreasing arginase levels maintains arginine and results in increased nitric oxide production. This study aimed to determine the most effective combination of ASI, L-arginine and inositol for minimizing arginase levels and therefore maximize ASI’s effect on cognition. Serum was taken from untreated healthy donors by separation from clotted factors. Arginase activity of serum in the presence or absence of test products was determined (QuantiChrom™, DARG-100, Bioassay Systems, Hayward CA). The remaining ultra-filtrated serum units were harvested and used as the source for the arginase enzyme. ASI alone or combined with varied levels of Inositol were tested as follows: ASI + inositol at 0.25 g, 0.5 g, 0.75 g, or 1.00 g. L-arginine was also tested as a positive control. All tests elicited changes in arginase activity demonstrating the efficacy of the method used. Adding L-arginine to serum from untreated subjects, with or without inositol only had a mild effect. Adding inositol at all levels reduced arginase activity. Adding 0.5 g to the standardized amount of ASI led to the lowest amount of arginase activity as compared to the 0.25 g, 0.75 g or 1.00g doses of inositol or to L-arginine alone. The outcome of this study demonstrates an interaction of the pairing of inositol with ASI on the activity of the enzyme arginase. We found that neither the maximum nor minimum amount of inositol tested in this study led to maximal arginase inhibition. Since the inhibition of arginase activity is desirable for product formulations looking to maintain arginine levels, the most effective amount of inositol was deemed preferred. Subsequent studies suggest this moderate level of inositol in combination with ASI leads to cognitive improvements including reaction time, executive function, and concentration.

Keywords: Arginine, blood flow, colorimetry, urea cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371
53 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory B: Lake Manzala Fish

Authors: Hanaa M. M. El-Khayat, Hanan S. Gaber, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hoda M. A. Abu Taleb

Abstract:

This work aimed to examine Oreochromis niloticus fish from Lake Manzala in Port Said, Dakahlya and Damietta governorates, Egypt, as a bio-indicator for the lake water pollution through recording alterations in their hematological, physiological, and histopathological parameters. All fish samples showed a significant increase in levels of alkaline phosphatase (ALP), creatinine and glutathione-S-transferase (GST); only Dakahlya samples showed a significant increase (p<0.01) in aspartate aminotransferase (AST) level and most Dakahlya and Damietta samples showed reversed albumin and globulin ratio and a significant increase in γ-glutamyltransferase (GGT) level. Port-Said and Damietta samples showed a significant decrease of hemoglobin (Hb) while Dakahlya samples showed a significant decrease in white blood cell (WBC) count. Histopathological investigation for different fish organs showed that Port-Said and Dakahlya samples were more altered than Damietta. The muscle and gill followed by intestine were the most affected organs. The muscle sections showed severe edema, neoplasia, necrotic change, fat vacuoles and splitting of muscle fiber. The gill sections showed dilated blood vessels of the filaments, curling of gill lamellae, severe hyperplasia, edema and blood vessels congestion of filaments. The intestine sections revealed degeneration, atrophy, dilation in blood vessels and necrotic changes in sub-mucosa and mucosa with edema in between. The recorded significant alterations, in most of the physiological and histological parameters in O. niloticus samples from Lake Manzala, were alarming for water pollution impacts on lake fish community, which constitutes the main diet and the main source of income for the people inhabiting these areas, and were threatening their public health and economy. Also, results evaluate the use of O. niloticus fish as important bio-indicator for their habitat stressors.

Keywords: Lake Manzala, Oreochromis niloticus fish, water pollution, physiological, hematological and histopathological parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
52 Exergetic Optimization on Solid Oxide Fuel Cell Systems

Authors: George N. Prodromidis, Frank A. Coutelieris

Abstract:

Biogas can be currently considered as an alternative option for electricity production, mainly due to its high energy content (hydrocarbon-rich source), its renewable status and its relatively low utilization cost. Solid Oxide Fuel Cell (SOFC) stacks convert fuel’s chemical energy to electricity with high efficiencies and reveal significant advantages on fuel flexibility combined with lower emissions rate, especially when utilize biogas. Electricity production by biogas constitutes a composite problem which incorporates an extensive parametric analysis on numerous dynamic variables. The main scope of the presented study is to propose a detailed thermodynamic model on the optimization of SOFC-based power plants’ operation based on fundamental thermodynamics, energy and exergy balances. This model named THERMAS (THERmodynamic MAthematical Simulation model) incorporates each individual process, during electricity production, mathematically simulated for different case studies that represent real life operational conditions. Also, THERMAS offers the opportunity to choose a great variety of different values for each operational parameter individually, thus allowing for studies within unexplored and experimentally impossible operational ranges. Finally, THERMAS innovatively incorporates a specific criterion concluded by the extensive energy analysis to identify the most optimal scenario per simulated system in exergy terms. Therefore, several dynamical parameters as well as several biogas mixture compositions have been taken into account, to cover all the possible incidents. Towards the optimization process in terms of an innovative OPF (OPtimization Factor), presented here, this research study reveals that systems supplied by low methane fuels can be comparable to these supplied by pure methane. To conclude, such an innovative simulation model indicates a perspective on the optimal design of a SOFC stack based system, in the direction of the commercialization of systems utilizing biogas.

Keywords: Biogas, Exergy, Optimization, SOFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
51 The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment

Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane

Abstract:

Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence (AI) is invaluable in identifying crime. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISAs). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The proposed framework development is implemented using the Java Agent Development Framework, Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISAs and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5% of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.

Keywords: Artificial intelligence, computer science, criminal investigation, digital forensics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100
50 The Evaluation of Antioxidant and Antimicrobial Activities of Essential Oil and Aqueous, Methanol, Ethanol, Ethyl Acetate and Acetone Extract of Hypericum scabrum

Authors: A. Heshmati, M. Y Alikhani, M. T. Godarzi, M. R. Sadeghimanesh

Abstract:

Herbal essential oil and extracts are a good source of natural antioxidants and antimicrobial compounds. Hypericum is one of the potential sources of these compounds. In this study, the antioxidant and antimicrobial activity of essential oil and aqueous, methanol, ethanol, ethyl acetate and acetone extract of Hypericum scabrum was assessed. Flowers of Hypericum scabrum were collected from the surrounding mountains of Hamadan province and after drying in the shade, the essential oil of the plant was extracted by Clevenger and water, methanol, ethanol, ethyl acetate and acetone extract was obtained by maceration method. Essential oil compounds were identified using the GC-Mass. The Folin-Ciocalteau and aluminum chloride (AlCl3) colorimetric method was used to measure the amount of phenolic acid and flavonoids, respectively. Antioxidant activity was evaluated using DPPH and FRAP. The minimum inhibitory concentration (MIC) and the minimum bacterial/fungicide concentration (MBC/MFC) of essential oil and extracts were evaluated against Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Salmonella typhimurium, Aspergillus flavus and Candida albicans. The essential oil yield of was 0.35%, the lowest and highest extract yield was related to ethyl acetate and water extract. The most component of essential oil was α-Pinene (46.35%). The methanol extracts had the highest phenolic acid (95.65 ± 4.72 µg galic acid equivalent/g dry plant) and flavonoids (25.39 ± 2.73 µg quercetin equivalent/g dry plant). The percentage of DPPH radical inhibition showed positive correlation with concentrations of essential oil or extract. The methanol and ethanol extract had the highest DDPH radical inhibitory. Essential oil and extracts of Hypericum had antimicrobial activity against the microorganisms studied in this research. The MIC and MBC values for essential oils were in the range of 25-25.6 and 25-50 μg/mL, respectively. For the extracts, these values were 1.5625-100 and 3.125-100 μg/mL, respectively. Methanol extracts had the highest antimicrobial activity. Essential oil and extract of Hypericum scabrum, especially methanol extract, have proper antimicrobial and antioxidant activity, and it can be used to control the oxidation and inhibit the growth of pathogenic and spoilage microorganisms. In addition, it can be used as a substitute for synthetic antioxidant and antimicrobial compounds.

Keywords: Antimicrobial, antioxidant, extract, hypericum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
49 Culture Sustainability in Contemporary Vernacular Architecture: Case Study of Muscat International Airport

Authors: S. Hegazy

Abstract:

Culture sustainability, which reflects a deep respect for people and history, is a cause of concern in contemporary architecture. Adopting ultramodern architecture styles was initiated in the 20th century by a plurality of states worldwide. Only a few countries, including Oman, realized that fashionable architectural designs ignore cultural values, identity, the context of its environment, economic perspective, and social performance. Stirring the Sultanate of Oman from being a listless and closed community to a modern country started in the year 1970. Despite unprecedented development in all aspects of Omani people's life, the leadership and the public had the capability to adjust to the changing global challenges without compromising social values and identity. This research provides a close analysis of one of the recent examples of contemporary vernacular architecture in the Sultanate of Oman, as a case study, Oman International Airport. The airport gained an international appreciation for its Omani-themed architecture, distinguished traveler experience, and advanced technology. Accordingly, it was selected by the World Travel Awards as the Best Tourism Development Project in the Middle East only four weeks afterward after starting its operation. This paper aims to transfer this successful design approach of integrating the latest trends in technology, systems, eco-friendly aspects, and materials with the traditional Omani architectural features, which reflects symbiotic harmony of the community, individuals, and environment to other countries, designers, researchers, and students. In addition, the paper aims to encourage architects and teachers to take responsibility for valorizing-built heritage as a source of inspiration for modern architecture, which could be considered as an added value. The work depends on reviewing the relevant literature, a case study, interviews with two architects who were involved in the project’s site work, and one current high-ranking employee in the airport besides data analysis and conclusion.

Keywords: Contemporary vernacular architecture, culture sustainability, Oman international airport, current Omani architecture type.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158
48 Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source

Authors: M. Khaing, A. V. Tkacheva

Abstract:

The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.

Keywords: Temperature stresses, elasticity, plasticity, Ishlinsky-Ivlev condition, plate, annular heating, elastic moduli.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 686
47 Morphological Interaction of Porcine Oocyte and Cumulus Cells Study on in vitro Oocyte Maturation Using Electron Microscopy

Authors: M. Areekijseree, W. Pongsawat, M. Pumipaiboon, C. Thepsithar, S. Sengsai, T. Chuen-Im

Abstract:

Morphological interaction of porcine cumulus-oocyte complexes (pCOCs) was investigated on in vitro condition using electron microscope (SEM and TEM). The totals of 1,923 oocytes were round in shape, surrounded by Zona pellucida with layer of cumulus cells ranging between 59.29-202.14 μm in size. They were classified into intact-, multi-, partial cumulus cell layer oocyte, and completely denuded oocyte, at the percentage composition of 22.80% 32.70%, 18.60%, and 25.90 % respectively. The pCOCs classified as intact- and multi cumulus cell layer oocytes were further culturing at 37°C with 5% CO2, 95% air atmosphere and high humidity for 44 h in M199 with Earle’s salts supplemented with 10% HTFCS, 2.2 mg/mL NaHCO3, 1 M Hepes, 0.25 mM pyruvate, 15 μg/mL porcine follicle-stimulating hormone, 1 μg/mL LH, 1μg/mL estradiol with ethanol, and 50 μg/mL gentamycin sulfate. On electron microscope study, cumulus cells were found to stick their processes to secrete substance from the sac-shape end into Zona pellucida of the oocyte and also communicated with the neighboring cells through their microvilli on the beginning of incubation period. It is believed that the cumulus cells communicate with the oocyte by inserting the microvilli through this gap and embedded in the oocyte cytoplasm before secreting substance, through the sac-shape end of the microvilli, to inhibit primary oocyte development at the prophase I. Morphological changes of the complexes were observed after culturing for 24-44 h. One hundred percentages of the cumulus layers were expanded and cumulus cells were peeling off from the oocyte surface. In addition, the round-shape cumulus cells transformed themselves into either an elongate shape or a columnar shape, and no communication between cumulus neighboring cells. After 44 h of incubation time, diameter of oocytes surrounded by cumulus cells was larger than 0 h incubation. The effect of hormones in culture medium is exerted by their receptors present in porcine oocyte. It is likely that all morphological changes of the complexes after hormone treatment were to allow maturation of the oocyte. This study demonstrated that the association of hormones in M199 could promote porcine follicle activation in 44 h in vitro condition. This culture system should be useful for studying the regulation of early follicular growth and development, especially because these follicles represent a large source of oocytes that could be used in vitro for cell technology.

Keywords: Cumulus cells, electron microscopy (SEM and TEM), in vitro, porcine oocyte.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413
46 Effects of Cellular Insulin Receptor Stimulators with Alkaline Water on Performance, Plasma Cholesterol, Glucose, Triglyceride Levels and Hatchability in Breeding Japanese Quail

Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat

Abstract:

Aim of this study is to determine the effects of cellular insulin receptor stimulators on performance, plasma glucose, high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol, triglyceride, triiodothyronine (T3) and thyroxine (T4) hormone levels, and incubation features in the breeding Japanese quails (Coturnix japonica). In the study, a total of 84 breeding quails was used, 6 weeks’ age, 24 are male and 60, female. Rations used in experiment are 2900 kcal/kg metabolic energy and 20% crude protein. Water pH is calibrated to 7.45. Ration and water were administered ad-libitum to the animals. As metformin source, metformin-HCl was used and as chrome resource, chromium picolinate was used. Trial groups were formed as control group (basal ration), metformin group (basal ration, added metformin at the level of feed of 20 mg/kg), and chromium picolinate (basal ration, added feed of 1500 ppb Cr) group. When regarded to the results of performance at the end of experiment, it is seen that live weight gain, feed consumption, egg weight, feed conversion ratio (Feed consumption/ egg weight), and egg production were affected at the significant level (p < 0.05). When the results are evaluated in terms of incubation features, hatchability and hatchability of fertile egg ratio were not affected from the treatments. Fertility ratio was significantly affected by metformin and chromium picolinate treatments and fertility rose at the significant level compared to control group (p < 0.05). According to results of experiment, plasma glucose level was not affected by metformin and chromium picolinate treatments. Plasma, total cholesterol, HDL, LDL, and triglyceride levels were significantly affected from insulin receptor stimulators added to ration (p < 0.05). Hormone level of Plasma T3 and T4 were also affected at the significant level from insulin receptor stimulators added to ration (p < 0.05).

Keywords: Chromium picolinate, cholesterol, hormone, metformin, quail.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
45 Emerging VC Industry: Do Market Expectations Play the Most Important Role in Project Selection? Evidence on Russian Data

Authors: I. Rodionov, A. Semenov, E. Gosteva, O. Sokolova

Abstract:

The venture capital becomes more and more advanced and effective source of the innovation project financing, connected with a high-risk level. In the developed countries, it plays a key role in transforming innovation projects into successful businesses and creating the prosperity of the modern economy. In Russia, there are many necessary preconditions for creation of the effective venture investment system: the network of the public institutes for innovation financing operates; there is a significant number of the small and medium-sized enterprises, capable to sell production with good market potential. However, the current system does not confirm the necessary level of efficiency in practice that can be substantially explained by the absence of the accurate plan of action to form the national venture model and by the lack of experience of successful venture deals with profitable exits in Russian economy. This paper studies the influence of various factors on the venture industry development by the example of the IT-sector in Russia. The choice of the sector is based on the fact, that this segment is the main driver of the venture capital market growth in Russia, and the necessary set of data exists. The size of investment of the second round is used as the dependent variable. To analyse the influence of the previous round, such determinant as the volume of the previous (first) round investments is used. There is also used a dummy variable in regression to examine that the participation of an investor with high reputation and experience in the previous round can influence the size of the next investment round. The regression analysis of short-term interrelations between studied variables reveals prevailing influence of the volume of the first round investments on the venture investments volume of the second round. The most important determinant of the value of the second-round investment is the value of first–round investment, so it means that the most competitive on the Russian market are the start-up teams that can attract more money on the start, and the target market growth is not the factor of crucial importance. This supports the point of view that VC in Russia is driven by endogenous factors and not by exogenous ones that are based on global market growth.

Keywords: Venture industry, venture investment, determinants of the venture sector development, IT-sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
44 The Effects of Drought and Nitrogen on Soybean (Glycine max (L.) Merrill) Physiology and Yield

Authors: Oqba Basal, András Szabó

Abstract:

Legume crops are able to fix atmospheric nitrogen by the symbiotic relation with specific bacteria, which allows the use of the mineral nitrogen-fertilizer to be reduced, or even excluded, resulting in more profit for the farmers and less pollution for the environment. Soybean (Glycine max (L.) Merrill) is one of the most important legumes with its high content of both protein and oil. However, it is recommended to combine the two nitrogen sources under stress conditions in order to overcome its negative effects. Drought stress is one of the most important abiotic stresses that increasingly limits soybean yields. A precise rate of mineral nitrogen under drought conditions is not confirmed, as it depends on many factors; soybean yield-potential and soil-nitrogen content to name a few. An experiment was conducted during 2017 growing season in Debrecen, Hungary to investigate the effects of nitrogen source on the physiology and the yield of the soybean cultivar 'Boglár'. Three N-fertilizer rates including no N-fertilizer (0 N), 35 kg ha-1 of N-fertilizer (35 N) and 105 kg ha-1 of N-fertilizer (105 N) were applied under three different irrigation regimes; severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Half of the seeds in each treatment were pre-inoculated with Bradyrhizobium japonicum inoculant. The overall results showed significant differences associated with fertilization and irrigation, but not with inoculation. Increasing N rate was mostly accompanied with increased chlorophyll content and leaf area index, whereas it positively affected the plant height only when the drought was waived off. Plant height was the lowest under severe drought, regardless of inoculation and N-fertilizer application and rate. Inoculation increased the yield when there was no drought, and a low rate of N-fertilizer increased the yield furthermore; however, the high rate of N-fertilizer decreased the yield to a level even less than the inoculated control. On the other hand, the yield of non-inoculated plants increased as the N-fertilizer rate increased. Under drought conditions, adding N-fertilizer increased the yield of the non-inoculated plants compared to their inoculated counterparts; moreover, the high rate of N-fertilizer resulted in the best yield. Regardless of inoculation, the mean yield of the three fertilization rates was better when the water amount increased. It was concluded that applying N-fertilizer to provide the nitrogen needed by soybean plants, with the absence of N2-fixation process, is very important. Moreover, adding relatively high rate of N-fertilizer is very important under severe drought stress to alleviate the drought negative effects. Further research to recommend the best N-fertilizer rate to inoculated soybean under drought stress conditions should be executed.

Keywords: Drought stress, inoculation, N-fertilizer, soybean physiology, yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
43 Evaluation of Azo Dye Toxicity Using Some Haematological and Histopathological Alterations in Fish Catla catla

Authors: Barot Jagruti

Abstract:

The textile industry plays a major role in the economy of India and on the other side of the coin it is the major source for water pollution. As azo dyes is the largest dye class they are extensively used in many fields such as textile industry, leather tanning industry, paper production, food, color photography, pharmaceuticals and medicine, cosmetic, hair colorings, wood staining, agricultural, biological and chemical research etc. In addition to these, they can have acute and/or chronic effects on organisms depending on their concentration and length of exposure when they discharged as effluent in the environment. The aim of this study was to assess the genotoxic and histotoxic potentials of environmentally relevant concentrations of C. I. Reactive Red 120 (RR 120) on Catla catla, important edible freshwater fingerlings. For this, healthy Catla catla fingerlings were procured from the Government Fish Farm and acclimatized in 100 L capacity and continuously aerated glass aquarium in laboratory for 15 days. According to APHA some physic-chemical parameters were measured and maintained such as temperature, pH, dissolve oxygen, alkalinity, total hardness. Water along with excreta had been changed every 24 hrs. All fingerlings were fed artificial food palates once a day @ body weight. After 15 days fingerlings were grouped in 5 (10 in each) and exposed to various concentrations of RR 120 (Control, 10, 20, 30 and 40 mg.l-1) and samples (peripheral blood and gills, kidney) were collected and analyzed at 96 hrs. All results were compared with the control. Micronuclei (MN), nuclear buds (NB), fragmented-apoptotic (FA) and bi-nucleated (BN) cells in blood smears and in tissues (gills and kidney cells) were observed. Prominent histopathological alterations were noticed in gills such as aneurism, hyperplasia, degenerated central axis, lifting of gill epithelium, curved secondary gill lamellae etc. Similarly kidney showed some detrimental changes like shrunken glomeruli with increased periglomerular space, degenerated renal tubules etc. Both haematological and histopathological changes clearly reveal the toxic potential of RR 120. This work concludes that water pollution assessment can be done by these two biomarkers which provide baseline to the further chromosomal or molecular work.

Keywords: Catla catla, genotoxicity, histopathlogicalchanges, RR 120azo dye.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2769
42 The Impact of Information and Communication Technology in Education: Opportunities and Challenges

Authors: M. Nadeem, S. Nasir, K. A. Moazzam, R. Kashif

Abstract:

The remarkable growth and evolution in information and communication technology (ICT) in the past few decades has transformed modern society in almost every aspect of life. The impact and application of ICT have been observed in almost all walks of life including science, arts, business, health, management, engineering, sports, and education. ICT in education is being used extensively for student learning, creativity, interaction, and knowledge sharing and as a valuable source of teaching instrument. Apart from the student’s perspective, it plays a vital role for teacher education, instructional methods and curriculum development. There is a significant difference in growth of ICT enabled education in developing countries compared to developed nations and according to research, this gap is widening. ICT gradually infiltrate in almost every aspect of life. It has a deep and profound impact on our social, economic, health, environment, development, work, learning, and education environments. ICT provides very effective and dominant tools for information and knowledge processing. It is firmly believed that the coming generation should be proficient and confident in the use of ICT to cope with the existing international standards. This is only possible if schools can provide basic ICT infrastructure to students and to develop an ICT-integrated curriculum which covers all aspects of learning and creativity in students. However, there is a digital divide and steps must be taken to reduce this digital divide considerably to have the profound impact of ICT in education all around the globe. This study is based on theoretical approach and an extensive literature review is being conducted to see the successful implementations of ICT integration in education and to identify technologies and models which have been used in education in developed countries. This paper deals with the modern applications of ICT in schools for both teachers and students to uplift the learning and creativity amongst the students. A brief history of technology in education is presented and discussed are some important ICT tools for both student and teacher’s perspective. Basic ICT-based infrastructure for academic institutions is presented. The overall conclusion leads to the positive impact of ICT in education by providing an interactive, collaborative and challenging environment to students and teachers for knowledge sharing, learning and critical thinking.

Keywords: Information and communication technology, ICT, education, ICT infrastructure, teacher education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3729
41 Ingenious Eco-Technology for Transforming Food and Tanneries Waste into a Soil Bio-Conditioner and Fertilizer Product Used for Recovery and Enhancement of the Productive Capacity of the Soil

Authors: Petre Voicu, Mircea Oaida, Radu Vasiu, Catalin Gheorghiu, Aurel Dumitru

Abstract:

The present work deals with the way in which food and tobacco waste can be used in agriculture. As a result of the lack of efficient technologies for their recycling, we are currently faced with the appearance of appreciable quantities of residual organic residues that find their use only very rarely and only after long storage in landfills. The main disadvantages of long storage of organic waste are the unpleasant smell, the high content of pathogenic agents, and the high content in the water. The release of these enormous amounts imperatively demands the finding of solutions to ensure the avoidance of environmental pollution. The measure practiced by us and presented in this paper consists of the processing of this waste in special installations, testing in pilot experimental perimeters, and later administration on agricultural lands without harming the quality of the soil, agricultural crops, and the environment. The current crisis of raw materials and energy also raises special problems in the field of organic waste valorization, an activity that takes place with low energy consumption. At the same time, their composition recommends them as useful secondary sources in agriculture. The transformation of food scraps and other residues concentrated organics thus acquires a new orientation, in which these materials are seen as important secondary resources. The utilization of food and tobacco waste in agriculture is also stimulated by the increasing lack of chemical fertilizers and the continuous increase in their price, under the conditions that the soil requires increased amounts of fertilizers in order to obtain high, stable, and profitable production. The need to maintain and increase the humus content of the soil is also taken into account, as an essential factor of its fertility, as a source and reserve of nutrients and microelements, as an important factor in increasing the buffering capacity of the soil, and the more reserved use of chemical fertilizers, improving the structure and permeability for water with positive effects on the quality of agricultural works and preventing the excess and/or deficit of moisture in the soil.

Keywords: Organic residue, food and tannery waste, fertilizer, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94
40 C-LNRD: A Cross-Layered Neighbor Route Discovery for Effective Packet Communication in Wireless Sensor Network

Authors: K. Kalaikumar, E. Baburaj

Abstract:

One of the problems to be addressed in wireless sensor networks is the issues related to cross layer communication. Cross layer architecture shares the information across the layer, ensuring Quality of Services (QoS). With this shared information, MAC protocol adapts effective functionality maintenance such as route selection on changeable sensor network environment. However, time slot assignment and neighbour route selection time duration for cross layer have not been carried out. The time varying physical layer communication over cross layer causes high traffic load in the sensor network. Though, the traffic load was reduced using cross layer optimization procedure, the computational cost is high. To improve communication efficacy in the sensor network, a self-determined time slot based Cross-Layered Neighbour Route Discovery (C-LNRD) method is presented in this paper. In the presented work, the initial process is to discover the route in the sensor network using Dynamic Source Routing based Medium Access Control (MAC) sub layers. This process considers MAC layer operation with dynamic route neighbour table discovery. Then, the discovered route path for packet communication employs Broad Route Distributed Time Slot Assignment method on Cross-Layered Sensor Network system. Broad Route means time slotting on varying length of the route paths. During packet communication in this sensor network, transmission of packets is adjusted over the different time with varying ranges for controlling the traffic rate. Finally, Rayleigh fading model is developed in C-LNRD to identify the performance of the sensor network communication structure. The main task of Rayleigh Fading is to measure the power level of each communication under MAC sub layer. The minimized power level helps to easily reduce the computational cost of packet communication in the sensor network. Experiments are conducted on factors such as power factor, on packet communication, neighbour route discovery time, and information (i.e., packet) propagation speed.

Keywords: Medium access control, neighbour route discovery, wireless sensor network, Rayleigh fading, distributed time slot assignment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721
39 Financial Regulations in the Process of Global Financial Crisis and Macroeconomics Impact of Basel III

Authors: M. Okan Tasar

Abstract:

Basel III (or the Third Basel Accord) is a global regulatory standard on bank capital adequacy, stress testing and market liquidity risk agreed upon by the members of the Basel Committee on Banking Supervision in 2010-2011, and scheduled to be introduced from 2013 until 2018. Basel III is a comprehensive set of reform measures. These measures aim to; (1) improve the banking sector-s ability to absorb shocks arising from financial and economic stress, whatever the source, (2) improve risk management and governance, (3) strengthen banks- transparency and disclosures. Similarly the reform target; (1) bank level or micro-prudential, regulation, which will help raise the resilience of individual banking institutions to periods of stress. (2) Macro-prudential regulations, system wide risk that can build up across the banking sector as well as the pro-cyclical implication of these risks over time. These two approaches to supervision are complementary as greater resilience at the individual bank level reduces the risk system wide shocks. Macroeconomic impact of Basel III; OECD estimates that the medium-term impact of Basel III implementation on GDP growth is in the range -0,05 percent to -0,15 percent per year. On the other hand economic output is mainly affected by an increase in bank lending spreads as banks pass a rise in banking funding costs, due to higher capital requirements, to their customers. Consequently the estimated effects on GDP growth assume no active response from monetary policy. Basel III impact on economic output could be offset by a reduction (or delayed increase) in monetary policy rates by about 30 to 80 basis points. The aim of this paper is to create a framework based on the recent regulations in order to prevent financial crises. Thus the need to overcome the global financial crisis will contribute to financial crises that may occur in the future periods. In the first part of the paper, the effects of the global crisis on the banking system examine the concept of financial regulations. In the second part; especially in the financial regulations and Basel III are analyzed. The last section in this paper explored the possible consequences of the macroeconomic impacts of Basel III.

Keywords: Banking Systems, Basel III, Financial regulation, Global Financial Crisis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
38 Statistical Modeling of Constituents in Ash Evolved From Pulverized Coal Combustion

Authors: Esam Jassim

Abstract:

Industries using conventional fossil fuels have an  interest in better understanding the mechanism of particulate  formation during combustion since such is responsible for emission  of undesired inorganic elements that directly impact the atmospheric  pollution level. Fine and ultrafine particulates have tendency to  escape the flue gas cleaning devices to the atmosphere. They also  preferentially collect on surfaces in power systems resulting in  ascending in corrosion inclination, descending in the heat transfer  thermal unit, and severe impact on human health. This adverseness  manifests particularly in the regions of world where coal is the  dominated source of energy for consumption.  This study highlights the behavior of calcium transformation as  mineral grains verses organically associated inorganic components  during pulverized coal combustion. The influence of existing type of  calcium on the coarse, fine and ultrafine mode formation mechanisms  is also presented. The impact of two sub-bituminous coals on particle  size and calcium composition evolution during combustion is to be  assessed. Three mixed blends named Blends 1, 2, and 3 are selected  according to the ration of coal A to coal B by weight. Calcium  percentage in original coal increases as going from Blend 1 to 3.  A mathematical model and a new approach of describing  constituent distribution are proposed. Analysis of experiments of  calcium distribution in ash is also modeled using Poisson distribution.  A novel parameter, called elemental index λ, is introduced as a  measuring factor of element distribution.  Results show that calcium in ash that originally in coal as mineral  grains has index of 17, whereas organically associated calcium  transformed to fly ash shown to be best described when elemental  index λ is 7.  As an alkaline-earth element, calcium is considered the  fundamental element responsible for boiler deficiency since it is the  major player in the mechanism of ash slagging process. The  mechanism of particle size distribution and mineral species of ash  particles are presented using CCSEM and size-segregated ash  characteristics. Conclusions are drawn from the analysis of  pulverized coal ash generated from a utility-scale boiler.

 

Keywords: Calcium transformation, Coal Combustion, Inorganic Element, Poisson distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
37 Switching Studies on Ge15In5Te56Ag24 Thin Films

Authors: Diptoshi Roy, G. Sreevidya Varma, S. Asokan, Chandasree Das

Abstract:

Germanium Telluride based quaternary thin film switching devices with composition Ge15In5Te56Ag24, have been deposited in sandwich geometry on glass substrate with aluminum as top and bottom electrodes. The bulk glassy form of the said composition is prepared by melt quenching technique. In this technique, appropriate quantity of elements with high purity are taken in a quartz ampoule and sealed under a vacuum of 10-5 mbar. Then, it is allowed to rotate in a horizontal rotary furnace for 36 hours to ensure homogeneity of the melt. After that, the ampoule is quenched into a mixture of ice - water and NaOH to get the bulk ingot of the sample. The sample is then coated on a glass substrate using flash evaporation technique at a vacuum level of 10-6 mbar. The XRD report reveals the amorphous nature of the thin film sample and Energy - Dispersive X-ray Analysis (EDAX) confirms that the film retains the same chemical composition as that of the base sample. Electrical switching behavior of the device is studied with the help of Keithley (2410c) source-measure unit interfaced with Lab VIEW 7 (National Instruments). Switching studies, mainly SET (changing the state of the material from amorphous to crystalline) operation is conducted on the thin film form of the sample. This device is found to manifest memory switching as the device remains 'ON' even after the removal of the electric field. Also it is found that amorphous Ge15In5Te56Ag24 thin film unveils clean memory type of electrical switching behavior which can be justified by the absence of fluctuation in the I-V characteristics. The I-V characteristic also reveals that the switching is faster in this sample as no data points could be seen in the negative resistance region during the transition to on state and this leads to the conclusion of fast phase change during SET process. Scanning Electron Microscopy (SEM) studies are performed on the chosen sample to study the structural changes at the time of switching. SEM studies on the switched Ge15In5Te56Ag24 sample has shown some morphological changes at the place of switching wherein it can be explained that a conducting crystalline channel is formed in the device when the device switches from high resistance to low resistance state. From these studies it can be concluded that the material may find its application in fast switching Non-Volatile Phase Change Memory (PCM) Devices.

Keywords: Chalcogenides, vapor deposition, electrical switching, PCM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
36 Comparative Analysis of Chemical Composition and Biological Activities of Ajuga genevensis L. in in vitro Culture and Intact Plants

Authors: Naira Sahakyan, Margarit Petrosyan, Armen Trchounian

Abstract:

One of the tasks in contemporary biotechnology, pharmacology and other fields of human activities is to obtain biologically active substances from plants. They are very essential in the treatment of many diseases due to their actually high therapeutic value without visible side effects. However, sometimes the possibility of obtaining the metabolites is limited due to the reduction of wild-growing plants. That is why the plant cell cultures are of great interest as alternative sources of biologically active substances. Besides, during the monitored cultivation, it is possible to obtain substances that are not synthesized by plants in nature. Isolated culture of Ajuga genevensis with high growth activity and ability of regeneration was obtained using MS nutrient medium. The agar-diffusion method showed that aqueous extracts of callus culture revealed high antimicrobial activity towards various gram-positive (Bacillus subtilis A1WT; B. mesentericus WDCM 1873; Staphylococcus aureus WDCM 5233; Staph. citreus WT) and gram-negative (Escherichia coli WKPM M-17; Salmonella typhimurium TA 100) microorganisms. The broth dilution method revealed that the minimal and half maximal inhibitory concentration values against E. coli corresponded to the 70 μg/mL and 140 μg/mL concentration of the extract respectively. According to the photochemiluminescent analysis, callus tissue extracts of leaf and root origin showed higher antioxidant activity than the same quantity of A. genevensis intact plant extract. A. genevensis intact plant and callus culture extracts showed no cytotoxic effect on K-562 suspension cell line of human chronic myeloid leukemia. The GC-MS analysis showed deep differences between the qualitative and quantitative composition of callus culture and intact plant extracts. Hexacosane (11.17%); n-hexadecanoic acid (9.33%); and 2-methoxy-4-vinylphenol (4.28%) were the main components of intact plant extracts. 10-Methylnonadecane (57.0%); methoxyacetic acid, 2-tetradecyl ester (17.75%) and 1-Bromopentadecane (14.55%) were the main components of A. genevensis callus culture extracts. Obtained data indicate that callus culture of A. genevensis can be used as an alternative source of biologically active substances.

Keywords: Ajuga genevensis, antibacterial activity, antioxidant activity, callus cultures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
35 Performance Analysis of Polycrystalline and Monocrystalline Solar Module in Dhaka, Bangladesh

Authors: N. J. Imu, N. Rabbani, Md E. Hossain

Abstract:

Achieving national climate goals requires transforming the energy system and increasing the use of renewable energy in Bangladesh as renewable energy offers an environmentally friendly energy supply. In view of this, Bangladesh has set a goal of 100% renewable power generation by 2050. Among all the renewable energy, solar is the most effective and popular source of renewable energy in Bangladesh. In order to build up on-grid and off-grid solar systems to increase energy transformation, monocrystalline type (highly efficient) solar module, and the polycrystalline type (low-efficient) solar module are commonly used. Due to their low price and availability, polycrystalline-type solar modules dominated the local market in the past years. However, in recent times the use of monocrystalline types modules has increased considerably owing to the significant decrease in price difference that existed between these two modules. Despite the deployment of both mono- and poly-crystalline modules in the market, the proliferation of low-quality solar panels are dominating the market resulting in reduced generation of solar electricity than expected. This situation is further aggravated by insufficient information regarding the effect of solar irradiation on solar module performance in relation to the quality of the materials used for the production of the module. This research aims to evaluate the efficiency of monocrystalline and polycrystalline solar modules that are available in Bangladesh by considering seasonal variations. Both types of solar modules have been tested for three different capacities 45W, 60W, and 100W in Dhaka regions to evaluate their power generation capability under Standard Test Conditions (STC). Module testing data were recorded twelve months in a full year from January to December. Data for solar irradiation were collected using HT304N while HT I-V400 multifunction instrument was used for testing voltage and current of photovoltaic (PV) systems and complete power quality analyzer. Results obtained in this study indicated differences between the efficiencies of polycrystalline and monocrystalline solar modules under the country’s solar irradiation. The average efficiencies of 45W, 60W, and 100W monocrystalline solar panels were recorded as 11.73%, 13.41%, and 15.37% respectively while for polycrystalline panels were 8.66%, 9.37%, and 12.34%. Monocrystalline solar panels, which offer greater working output than polycrystalline ones, are also represented by the Pearson Correlation value. The output of polycrystalline solar panels fluctuated highly with the changes in irradiation and temperature whereas monocrystalline panels were much stable.

Keywords: Solar energy, solar irradiation, efficiency, polycrystalline solar module, monocrystalline solar module, SPSS analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38
34 Management of Meskit (Prosopis juliflora) Tree in Oman: The Case of Using Meskit (Prosopis juliflora) Pods for Feeding Omani Sheep

Authors: S. Al-Khalasi, O. Mahgoub, H. Yaakub

Abstract:

This study evaluated the use of raw or processed Prosopis juliflora (Meskit) pods as a major ingredient in a formulated ration to provide an alternative non-conventional concentrate for livestock feeding in Oman. Dry Meskit pods were reduced to lengths of 0.5- 1.0 cm to ensure thorough mixing into three diets. Meskit pods were subjected to two types of treatments; roasting and soaking. They were roasted at 150оC for 30 minutes using a locally-made roasting device (40 kg barrel container rotated by electric motor and heated by flame gas cooker). Chopped pods were soaked in tap water for 24 hours and dried for 2 days under the sun with frequent turning. The Meskit-pod-based diets (MPBD) were formulated and pelleted from 500 g/kg ground Meskit pods, 240 g/kg wheat bran, 200 g/kg barley grain, 50 g/kg local dried sardines and 10 g/kg of salt. Twenty four 10 months-old intact Omani male lambs with average body weight of 27.3 kg (± 0.5 kg) were used in a feeding trial for 84 days. They were divided (on body weight basis) and allocated to four diet combination groups. These were: Rhodes grass hay (RGH) plus a general ruminant concentrate (GRC); RGH plus raw Meskit pods (RMP) based concentrate; RGH plus roasted Meskit pods (ROMP) based concentrate; RGH plus soaked Meskit pods (SMP) based concentrate Daily feed intakes and bi-weekly body weights were recorded. MPBD had higher contents of crude protein (CP), acid detergent fibre (ADF) and neutral detergent fibre (NDF) than the GRC. Animals fed various types of MPBD did not show signs of ill health. There was a significant effect of feeding ROMP on the performance of Omani sheep compared to RMP and SMP. The ROMP fed animals had similar performance to those fed the GRC in terms of feed intake, body weight gain and feed conversion ratio (FCR).This study indicated that roasted Meskit pods based diet may be used instead of the commercial concentrate for feeding Omani sheep without adverse effects on performance. It offers a cheap alternative source of protein and energy for feeding Omani sheep. Also, it might help in solving the spread impact of Meskit trees, maintain the ecosystem and helping in preserving the local tree species.

Keywords: Growth, Meskit, Omani sheep, Prosopis juliflora.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725
33 Automated, Objective Assessment of Pilot Performance in Simulated Environment

Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt

Abstract:

Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).

Keywords: Automated assessment, flight simulator, human factors, pilot training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
32 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant

Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet

Abstract:

Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.

Keywords: Agricultural waste, chemical treatment, fiber characteristics, natural fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
31 Sensitivity Analysis of the Heat Exchanger Design in Net Power Oxy-Combustion Cycle for Carbon Capture

Authors: Hirbod Varasteh, Hamidreza Gohari Darabkhani

Abstract:

The global warming and its impact on climate change is one of main challenges for current century. Global warming is mainly due to the emission of greenhouse gases (GHG) and carbon dioxide (CO2) is known to be the major contributor to the GHG emission profile. Whilst the energy sector is the primary source for CO2 emission, Carbon Capture and Storage (CCS) are believed to be the solution for controlling this emission. Oxyfuel combustion (Oxy-combustion) is one of the major technologies for capturing CO2 from power plants. For gas turbines, several Oxy-combustion power cycles (Oxyturbine cycles) have been investigated by means of thermodynamic analysis. NetPower cycle is one of the leading oxyturbine power cycles with almost full carbon capture capability from a natural gas fired power plant. In this manuscript, sensitivity analysis of the heat exchanger design in NetPower cycle is completed by means of process modelling. The heat capacity variation and supercritical CO2 with gaseous admixtures are considered for multi-zone analysis with Aspen Plus software. It is found that the heat exchanger design has a major role to increase the efficiency of NetPower cycle. The pinch-point analysis is done to extract the composite and grand composite curve for the heat exchanger. In this paper, relationship between the cycle efficiency and the minimum approach temperature (∆Tmin) of the heat exchanger has also been evaluated.  Increase in ∆Tmin causes a decrease in the temperature of the recycle flue gases (RFG) and an overall decrease in the required power for the recycled gas compressor. The main challenge in the design of heat exchangers in power plants is a tradeoff between the capital and operational costs. To achieve lower ∆Tmin, larger size of heat exchanger is required. This means a higher capital cost but leading to a better heat recovery and lower operational cost. To achieve this, ∆Tmin is selected from the minimum point in the diagrams of capital and operational costs. This study provides an insight into the NetPower Oxy-combustion cycle’s performance analysis and operational condition based on its heat exchanger design.

Keywords: Carbon capture and storage, oxy-combustion, netpower cycle, oxyturbine power cycles, heat exchanger design, supercritical carbon dioxide, pinch point analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
30 An Induction Motor Drive System with Intelligent Supervisory Control for Water Networks Including Storage Tank

Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain

Abstract:

This paper describes an efficient; low-cost; high-availability; induction motor (IM) drive system with intelligent supervisory control for water distribution networks including storage tank. To increase the operational efficiency and reduce cost, the IM drive system includes main pumping unit and an auxiliary voltage source inverter (VSI) fed unit. The main unit comprises smart star/delta starter, regenerative fluid clutch, switched VAR compensator, and hysteresis liquid-level controller. Three-state energy saving mode (ESM) is defined at no-load and a logic algorithm is developed for best energetic cost reduction. To reduce voltage sag, the supervisory controller operates the switched VAR compensator upon motor starting. To provide smart star/delta starter at low cost, a method based on current sensing is developed for interlocking, malfunction detection, and life–cycles counting and used to synthesize an improved fuzzy logic (FL) based availability assessment scheme. Furthermore, a recurrent neural network (RNN) full state estimator is proposed to provide sensor fault-tolerant algorithm for the feedback control. The auxiliary unit is working at low flow rates and improves the system efficiency and flexibility for distributed generation during islanding mode. Compared with doubly-fed IM, the proposed one ensures 30% working throughput under main motor/pump fault conditions, higher efficiency, and marginal cost difference. This is critically important in case of water networks. Theoretical analysis, computer simulations, cost study, as well as efficiency evaluation, using timely cascaded energy-conservative systems, are performed on IM experimental setup to demonstrate the validity and effectiveness of the proposed drive and control.

Keywords: Artificial Neural Network, ANN, Availability Assessment, Cloud Computing, Energy Saving, Induction Machine, IM, Supervisory Control, Fuzzy Logic, FL, Pumped Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
29 Evaluation of Buckwheat Genotypes to Different Planting Geometries and Fertility Levels in Northern Transition Zone of Karnataka

Authors: U. K. Hulihalli, Shantveerayya

Abstract:

Buckwheat (Fagopyrum esculentum Moench) is an annual crop belongs to family Poligonaceae. The cultivated buckwheat species are notable for their exceptional nutritive values. It is an important source of carbohydrates, fibre, macro, and microelements such as K, Ca, Mg, Na and Mn, Zn, Se, and Cu. It also contains rutin, flavonoids, riboflavin, pyridoxine and many amino acids which have beneficial effects on human health, including lowering both blood lipid and sugar levels. Rutin, quercetin and some other polyphenols are potent carcinogens against colon and other cancers. Buckwheat has significant nutritive value and plenty of uses. Cultivation of buckwheat in Sothern part of India is very meager. Hence, a study was planned with an objective to know the performance of buckwheat genotypes to different planting geometries and fertility levels. The field experiment was conducted at Main Agriculture Research Station, University of Agriculture Sciences, Dharwad, India, during 2017 Kharif. The experiment was laid-out in split-plot design with three replications having three planting geometries as main plots, two genotypes as sub plots and three fertility levels as sub-sub plot treatments. The soil of the experimental site was vertisol. The standard procedures are followed to record the observations. The planting geometry of 30*10 cm was recorded significantly higher seed yield (893 kg/ha⁻¹), stover yield (1507 kg ha⁻¹), clusters plant⁻¹ (7.4), seeds clusters⁻¹ (7.9) and 1000 seed weight (26.1 g) as compared to 40*10 cm and 20*10 cm planting geometries. Between the genotypes, significantly higher seed yield (943 kg ha⁻¹) and harvest index (45.1) was observed with genotype IC-79147 as compared to PRB-1 genotype (687 kg ha⁻¹ and 34.2, respectively). However, the genotype PRB-1 recorded significantly higher stover yield (1344 kg ha⁻¹) as compared to genotype IC-79147 (1173 kg ha⁻¹). The genotype IC-79147 was recorded significantly higher clusters plant⁻¹ (7.1), seeds clusters⁻¹ (7.9) and 1000 seed weight (24.5 g) as compared PRB-1 (5.4, 5.8 and 22.3 g, respectively). Among the fertility levels tried, the fertility level of 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (845 kg ha-1) and stover yield (1359 kg ha⁻¹) as compared to 40:20 NP kg ha-1 (808 and 1259 kg ha⁻¹ respectively) and 20:10 NP kg ha-1 (793 and 1144 kg ha⁻¹ respectively). Within the treatment combinations, IC 79147 genotype having 30*10 cm planting geometry with 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (1070 kg ha⁻¹), clusters plant⁻¹ (10.3), seeds clusters⁻¹ (9.9) and 1000 seed weight (27.3 g) compared to other treatment combinations.

Keywords: Buckwheat, fertility levels, genotypes, geometry, polyphenols, rutin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
28 Impact of Interface Soil Layer on Groundwater Aquifer Behaviour

Authors: Hayder H. Kareem, Shunqi Pan

Abstract:

The geological environment where the groundwater is collected represents the most important element that affects the behaviour of groundwater aquifer. As groundwater is a worldwide vital resource, it requires knowing the parameters that affect this source accurately so that the conceptualized mathematical models would be acceptable to the broadest ranges. Therefore, groundwater models have recently become an effective and efficient tool to investigate groundwater aquifer behaviours. Groundwater aquifer may contain aquitards, aquicludes, or interfaces within its geological formations. Aquitards and aquicludes have geological formations that forced the modellers to include those formations within the conceptualized groundwater models, while interfaces are commonly neglected from the conceptualization process because the modellers believe that the interface has no effect on aquifer behaviour. The current research highlights the impact of an interface existing in a real unconfined groundwater aquifer called Dibdibba, located in Al-Najaf City, Iraq where it has a river called the Euphrates River that passes through the eastern part of this city. Dibdibba groundwater aquifer consists of two types of soil layers separated by an interface soil layer. A groundwater model is built for Al-Najaf City to explore the impact of this interface. Calibration process is done using PEST 'Parameter ESTimation' approach and the best Dibdibba groundwater model is obtained. When the soil interface is conceptualized, results show that the groundwater tables are significantly affected by that interface through appearing dry areas of 56.24 km² and 6.16 km² in the upper and lower layers of the aquifer, respectively. The Euphrates River will also leak water into the groundwater aquifer of 7359 m³/day. While these results are changed when the soil interface is neglected where the dry area became 0.16 km², the Euphrates River leakage became 6334 m³/day. In addition, the conceptualized models (with and without interface) reveal different responses for the change in the recharge rates applied on the aquifer through the uncertainty analysis test. The aquifer of Dibdibba in Al-Najaf City shows a slight deficit in the amount of water supplied by the current pumping scheme and also notices that the Euphrates River suffers from stresses applied to the aquifer. Ultimately, this study shows a crucial need to represent the interface soil layer in model conceptualization to be the intended and future predicted behaviours more reliable for consideration purposes.

Keywords: Al-Najaf City, groundwater aquifer behaviour, groundwater modelling, interface soil layer, Visual MODFLOW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 904
27 Construction Noise Management: Hong Kong Reviews and International Best Practices

Authors: Morgan Cheng, Wilson Ho, Max Yiu, Dragon Tsui, Wylog Wong, Yasir A. Naveed, C. S. Loong, Richard Kwan, K. C. Lam, Hannah Lo, C. L. Wong

Abstract:

Hong Kong is known worldwide for high density living and the ability to thrive under trying circumstances. The 7.5 million residents of this busy metropolis live primarily in high-rise buildings which are built and demolished incessantly. Hong Kong residents are therefore affected continuously by numerous construction activities. In 2020, the Hong Kong Environmental Protection Department (EPD) commissioned a feasibility study on the management of construction noise, including those associated with renovation of domestic premises. A key component of the study focused on the review of practices concerning the management and control of construction noise in metropolitans in other parts of the world. To benefit from international best practices, this extensive review aimed at identifying possible areas of improvement in Hong Kong. The study first referred to the United Nations “The World’s Cities in 2016” Report and examined the top 100 cities therein. The 20 most suitable cities were then chosen for further review. Upon further screening, 12 cities with more relevant management practices were selected for further scrutiny. These 12 cities include: Asia – Tokyo, Seoul, Taipei, Guangzhou, Singapore; Europe – City of Westminster (London), Berlin; North America – Toronto, New York City, San Francisco; Oceania – Sydney, Melbourne. Subsequently, three cities, namely Sydney, City of Westminster, and New York City, were selected for in-depth review. These three were chosen primarily because of the maturity, success, and effectiveness of their construction noise management and control measures, as well as their similarity to Hong Kong in certain key aspects. One of the more important findings of the review is the importance of early focus on potential noise issues, with the objective of designing the noise away wherever practicable. The study examined the similar yet different construction noise early focus mechanisms of these three cities. This paper describes this landmark, worldwide and extensive review on international best construction noise management and control practices at the source, along the noise transmission path and at the receiver end. The methodology, approach, and key findings are presented succinctly in this paper. By sharing the findings with the acoustics professionals worldwide, it is hoped that more advanced and mature construction noise management practices can be developed to attain urban sustainability.

Keywords: construction noise, international best practices, noise control and noise management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 462