Search results for: skin cancer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 490

Search results for: skin cancer

490 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant Melanoma, known simply as Melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient death. When detected early, Melanoma is curable. In this paper we propose a deep learning model (Convolutional Neural Networks) in order to automatically classify skin lesion images as Malignant or Benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: Deep learning, skin cancer, image processing, melanoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
489 Non-Melanoma Skin Cancer in Ha’il Region in the Kingdom of Saudi Arabia: A Clinicopathological Study

Authors: Laila Seada, Nouf Al Gharbi, Shaimaa Dawa

Abstract:

Although skin cancers are prevalent worldwide, it is uncommon in Ha’il region in the Kingdom of Saudi Arabia, mostly non-melanoma sub-type. During a 4-year period from 2014 to 2017, out of a total of 120 cases of skin lesions, 29 non-melanoma cancers were retrieved from histopathology files obtained from King Khalid Hospital. As part of the study, all cases of skin cancer diagnosed during 2014 -2017 have been revised and the clinicopathological data recorded. The results show that Basal cell carcinoma (BCC) was the most common neoplasm (36%), followed by cutaneous lymphomas (mostly mycosis fungoides 25%), squamous cell carcinoma (SCC) (21%) and dermatofibrosarcoma protuberans (DFSP) (11%). Only one case of metastatic carcinoma was recorded. BCC nodular type was the most prevalent, with a mean age 57.6 years and mean size 2.73 cm. SCC was mostly grade 2, with mean size 1.9 cm and an older mean age of 72.3 cm. Increased size of lesion positively correlated with older age (p = 0.001). Non-melanoma skin cancer in Ha’il region is not frequently encountered. BCC is the most frequent followed by cutaneous T-cell lymphomas and SCC. The findings in this study were in accordance with other parts of, but much lower than other parts of the world.

Keywords: Non melanoma skin cancer, Hail Region, histopathology, BCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
488 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images

Authors: F. Duarte

Abstract:

The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the acquisition of the sample images ended being very unreliable.

Keywords: Segmentation, classification, color space, skin tone, Fitzpatrick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24
487 Improved Skin Detection Using Colour Space and Texture

Authors: Medjram Sofiane, Babahenini Mohamed Chaouki, Mohamed Benali Yamina

Abstract:

Skin detection is an important task for computer vision systems. A good method of skin detection means a good and successful result of the system. The colour is a good descriptor for image segmentation and classification; it allows detecting skin colour in the images. The lighting changes and the objects that have a colour similar than skin colour make the operation of skin detection difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr skin model.

Keywords: Skin detection, YCbCr, GLCM, Texture, Human skin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
486 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
485 Combining Skin Color and Optical Flow for Computer Vision Systems

Authors: Muhammad Raza Ali, Tim Morris

Abstract:

Skin color is an important visual cue for computer vision systems involving human users. In this paper we combine skin color and optical flow for detection and tracking of skin regions. We apply these techniques to gesture recognition with encouraging results. We propose a novel skin similarity measure. For grouping detected skin regions we propose a novel skin region grouping mechanism. The proposed techniques work with any number of skin regions making them suitable for a multiuser scenario.

Keywords: Bayesian tracking, chromaticity space, optical flowgesture recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
484 5-Aminolevulinic Acid-Loaded Gel, Sponge Collagen to Enhance the Delivery Ability to Skin

Authors: Yi-Ping Fang, Hsien-Ting Cheng

Abstract:

Topical photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) is an alternative therapy for treating superficial cancer, especially for skin or oral cancer. ALA, a precursor of the photosensitizer protoporphyrin IX (PpIX), is present as zwitterions and hydrophilic property which make the low permeability through the cell membrane. Collagen is a traditional carrier; its molecular composed various amino acids which bear positive charge and negative charge. In order to utilize the ion-pairs with ALA and collagen, the study employed various pH values adjusting the net charge. The aim of this study was to compare a series collagen form, including solution, gel and sponge to investigate the topical delivery behavior of ALA. The in vivo confocal laser scanning microscopy (CLSM) study demonstrated that PpIX generation ability was different pattern after apply for 6 h. Gel type could generate high PpIX, and archived more deep of skin depth.

Keywords: 5-Aminolevulinic acid (ALA), Collagen, Ion-pairs, Penetration behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
483 Adaptive Skin Segmentation Using Color Distance Map

Authors: Mohammad Shoyaib, M. Abdullah-Al-Wadud, Oksam Chae

Abstract:

In this paper an effective approach for segmenting human skin regions in images taken at different environment is proposed. The proposed method uses a color distance map that is flexible enough to reliably detect the skin regions even if the illumination conditions of the image vary. Local image conditions is also focused, which help the technique to adaptively detect differently illuminated skin regions of an image. Moreover, usage of local information also helps the skin detection process to get rid of picking up much noisy pixels.

Keywords: Color Distance map, Reference skin color, Regiongrowing, Skin segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
482 Skin Detection using Histogram depend on the Mean Shift Algorithm

Authors: Soo- Young Ye, Ki-Gon Nam, Ki-Won Byun

Abstract:

In this paper, we were introduces a skin detection method using a histogram approximation based on the mean shift algorithm. The proposed method applies the mean shift procedure to a histogram of a skin map of the input image, generated by comparison with standard skin colors in the CbCr color space, and divides the background from the skin region by selecting the maximum value according to brightness level. The proposed method detects the skin region using the mean shift procedure to determine a maximum value that becomes the dividing point, rather than using a manually selected threshold value, as in existing techniques. Even when skin color is contaminated by illumination, the procedure can accurately segment the skin region and the background region. The proposed method may be useful in detecting facial regions as a pretreatment for face recognition in various types of illumination.

Keywords: Skin region detection, mean shift, histogram approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
481 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: Color space, neural network, random forest, skin detection, statistical feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
480 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: Computer-aided system, detection, image segmentation, morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
479 Investigation of the Tattooed Skin by OCT

Authors: Young Geun Kim, Tae Woo Lee, Changmin Yeo, Jung min Yoo, Yeo Jin Kang, Tack-Joong Kim, Byungjo Jung, Ji Hun Cha, Chan Hoi Hur, Dong-Sup Kim, Ki Jung Park, Han Sung Kim

Abstract:

The intention of this lessons is to assess the probability of optical coherence tomography (OCT) for biometric recognition. The OCT is the foundation on an optical signal acquisition and processing method and has the micrometer-resolution. In this study, we used the porcine skin for verifying the abovementioned means. The porcine tissue was sound acknowledged for structural and immunohistochemical similarity with human skin, so it could be suitable for pre-clinical trial as investigational specimen. For this reason, it was tattooed by the tattoo machine with the tattoo-pigment. We detected the pattern of the tattooed skin by the OCT according to needle speed. The result was consistent with the histology images. This result showed that the OCT was effective to examine the tattooed skin section noninvasively. It might be available to identify morphological changes inside the skin.

Keywords: mechanical skin damage, optical coherence tomography, tattooed skin

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
478 Wound Healing Dressing and Some Composites Such as Zeolite, TiO2, Chitosan and PLGA: A Review

Authors: L. B. Naves, L. Almeida

Abstract:

The development of Drugs Delivery System (DDS) has been widely investigated in the last decades. In this paper, first a general overview of traditional and modern wound dressing is presented. This is followed by a review of what scientists have done in the medical environment, focusing on the possibility to develop a new alternative for DDS through transdermal pathway, aiming to treat melanoma skin cancer.

Keywords: Cancer Therapy, Dressing Polymers, Melanoma, wound healing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3641
477 Noninvasive Assessment of Low Power Laser Radiation Effect on Skin Wound Healing Using Infrared Thermography

Authors: M.A. Calin, S.V. Parasca, M.R. Calin, D. Savastru, D. Manea

Abstract:

The goal of this paper is to examine the effects of laser radiation on the skin wound healing using infrared thermography as non-invasive method for the monitoring of the skin temperature changes during laser treatment. Thirty Wistar rats were used in this study. A skin lesion was performed at the leg on all rats. The animals were exposed to laser radiation (λ = 670 nm, P = 15 mW, DP = 16.31 mW/cm2) for 600 s. Thermal images of wound were acquired before and after laser irradiation. The results have demonstrated that the tissue temperature decreases from 35.5±0.50°C in the first treatment day to 31.3±0.42°C after the third treatment day. This value is close to the normal value of the skin temperature and indicates the end of the skin repair process. In conclusion, the improvements in the wound healing following exposure to laser radiation have been revealed by infrared thermography.

Keywords: skin, wound, laser, thermal image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
476 Design of Expert System for Search Allergy and Selection of the Skin Tests using CLIPS

Authors: St. Karagiannis, A. I. Dounis, T. Chalastras, P. Tiropanis, D. Papachristos

Abstract:

This work presents the design of an expert system that aims in the procurement of patient medial background and in the search for suitable skin test selections. Skin testing is the tool used most widely to diagnose allergies. The language of expert systems CLIPS is used as a tool of designing. Finally, we present the evaluation of the proposed expert system which was achieved with the import of certain medical cases and the system produced with suitable successful skin tests.

Keywords: Artificial intelligence, expert system - CLIPS, allergy and skin test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832
475 Breast Skin-Line Estimation and Breast Segmentation in Mammograms using Fast-Marching Method

Authors: Roshan Dharshana Yapa, Koichi Harada

Abstract:

Breast skin-line estimation and breast segmentation is an important pre-process in mammogram image processing and computer-aided diagnosis of breast cancer. Limiting the area to be processed into a specific target region in an image would increase the accuracy and efficiency of processing algorithms. In this paper we are presenting a new algorithm for estimating skin-line and breast segmentation using fast marching algorithm. Fast marching is a partial-differential equation based numerical technique to track evolution of interfaces. We have introduced some modifications to the traditional fast marching method, specifically to improve the accuracy of skin-line estimation and breast tissue segmentation. Proposed modifications ensure that the evolving front stops near the desired boundary. We have evaluated the performance of the algorithm by using 100 mammogram images taken from mini-MIAS database. The results obtained from the experimental evaluation indicate that this algorithm explains 98.6% of the ground truth breast region and accuracy of the segmentation is 99.1%. Also this algorithm is capable of partially-extracting nipple when it is available in the profile.

Keywords: Mammogram, fast marching method, mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
474 A New Fast Skin Color Detection Technique

Authors: Tarek M. Mahmoud

Abstract:

Skin color can provide a useful and robust cue for human-related image analysis, such as face detection, pornographic image filtering, hand detection and tracking, people retrieval in databases and Internet, etc. The major problem of such kinds of skin color detection algorithms is that it is time consuming and hence cannot be applied to a real time system. To overcome this problem, we introduce a new fast technique for skin detection which can be applied in a real time system. In this technique, instead of testing each image pixel to label it as skin or non-skin (as in classic techniques), we skip a set of pixels. The reason of the skipping process is the high probability that neighbors of the skin color pixels are also skin pixels, especially in adult images and vise versa. The proposed method can rapidly detect skin and non-skin color pixels, which in turn dramatically reduce the CPU time required for the protection process. Since many fast detection techniques are based on image resizing, we apply our proposed pixel skipping technique with image resizing to obtain better results. The performance evaluation of the proposed skipping and hybrid techniques in terms of the measured CPU time is presented. Experimental results demonstrate that the proposed methods achieve better result than the relevant classic method.

Keywords: Adult images filtering, image resizing, skin color detection, YcbCr color space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4006
473 Clinical Factors of Quality Switched Ruby Laser Therapy for Lentigo Depigmentation

Authors: SunWoo Lee, TaeBum Lee, YoonHwa Park, YooJeong Kim

Abstract:

Solar lentigines appear predominantly on chronically sun-exposed areas of skin, such as the face and the back of the hands. Among the several ways to lentigines treatment, quality-switched lasers are well-known effective treatment for removing solar lentigines. The present pilot study was therefore designed to assess the efficacy of quality-switched ruby laser treatment of such lentigines compare between pretreatment and posttreatment of skin brightness. Twenty-two adults with chronic sun-damaged skin (mean age 52.8 years, range 37–74 years) were treated at the Korean site. A 694 nm Q-switched ruby laser was used, with the energy density set from 1.4 to 12.5 J/cm2, to treat solar lentigines. Average brightness of skin color before ruby laser treatment was 137.3 and its skin color was brightened after ruby laser treatment by 150.5. Also, standard deviation of skin color was decreased from 17.8 to 16.4. Regarding the multivariate model, age and energy were identified as significant factors for skin color brightness change in lentigo depigmentation by ruby laser treatment. Their respective odds ratios were 1.082 (95% CI, 1.007–1.163), and 1.431 (95% CI, 1.051–1.946). Lentigo depigmentation treatment using ruby lasers resulted in a high performance in skin color brightness. Among the relative factors involve with ruby laser treatment, age and energy were the most effective factors which skin color change to brighter than pretreatment.

Keywords: Depigmentation, lentigo, quality switched ruby laser, skin color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
472 Use of Magnetic Nanoparticles in Cancer Detection with MRI

Authors: A. Taqaddas

Abstract:

Magnetic Nanoparticles (MNPs) have great potential to overcome many of the shortcomings of the present diagnostic and therapeutic approaches used in cancer diagnosis and treatment. This Literature review discusses the use of Magnetic Nanoparticles focusing mainly on Iron oxide based MNPs in cancer imaging using MRI.

Keywords: Cancer, Imaging, Magnetic Nanoparticles, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3149
471 The Effect of Aerobic Training and Taxol Consumption on IL 8 and PAI-1 in Cervical Cancer

Authors: Alireza Barari, Maryam Firoozi, Maryam Ebrahimzadeh, Romina Roohani Ardeshiri, Maryam Kamarloeei

Abstract:

Background: The purpose of this study was to analyze the effect of six-week aerobic training and taxol consumption on interleukin-8 and Plasminogen Activator Inhibitor-1 (PAI-1) in mice with cervical cancer. Materials and Methods: In this experimental study, 40 female C57 mice with cervical cancer, eight weeks old, were randomly divided into 4 groups including: control, taxol supplement, training, and training-taxol supplement. The implantation of cancerous tumors was performed under the skin at the upper of the pelvis. The program training was included: endurance training for six weeks, 3 sessions per week and 50 minutes per session, at the speed of 14-18 m/s. Taxol supplement at a dose of 60 mg/kg per day was injected intraperitoneally. Data analysis was performed using t-test and one-way ANOVA and if statistically significant, Bonferroni post hoc was used at the significance level p < .05. Results: The results showed that there was a significant difference between the levels of interleukin 8 (P < 0.05, F = 12.25) and the PAI-1 (P < 0.05, P = 0.10737 between the 4 groups. The results of this study showed a significant difference between the control group and the training - complementary group. Six weeks of aerobic training and taxol consumption have a significant effect on the level of PAI-1 and interleukin-8 mice with cervical cancer. Conclusion: Considering the effect of training on these variables, this type of exercise can be used as a complementary therapeutic approach with other therapies for cervical cancer.

Keywords: Cervical cancer, taxol, endurance training, interleukin 8, plasminogen activator inhibitor-1.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 370
470 Face Tracking using a Polling Strategy

Authors: Rodrigo Montufar-Chaveznava

Abstract:

The colors of the human skin represent a special category of colors, because they are distinctive from the colors of other natural objects. This category is found as a cluster in color spaces, and the skin color variations between people are mostly due to differences in the intensity. Besides, the face detection based on skin color detection is a faster method as compared to other techniques. In this work, we present a system to track faces by carrying out skin color detection in four different color spaces: HSI, YCbCr, YES and RGB. Once some skin color regions have been detected for each color space, we label each and get some characteristics such as size and position. We are supposing that a face is located in one the detected regions. Next, we compare and employ a polling strategy between labeled regions to determine the final region where the face effectively has been detected and located.

Keywords: Tracking, face detection, image processing, colorspaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
469 An Overview of the Application of Fuzzy Inference System for the Automation of Breast Cancer Grading with Spectral Data

Authors: Shabbar Naqvi, Jonathan M. Garibaldi

Abstract:

Breast cancer is one of the most frequent occurring cancers in women throughout the world including U.K. The grading of this cancer plays a vital role in the prognosis of the disease. In this paper we present an overview of the use of advanced computational method of fuzzy inference system as a tool for the automation of breast cancer grading. A new spectral data set obtained from Fourier Transform Infrared Spectroscopy (FTIR) of cancer patients has been used for this study. The future work outlines the potential areas of fuzzy systems that can be used for the automation of breast cancer grading.

Keywords: Breast cancer, FTIR, fuzzy inference system, principal component analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
468 Skin Effect: A Natural Phenomenon for Minimization of Ground Bounce in VLSI RC Interconnect

Authors: Shilpi Lavania

Abstract:

As the frequency of operation has attained a range of GHz and signal rise time continues to increase interconnect technology is suffering due to various high frequency effects as well as ground bounce problem. In some recent studies a high frequency effect i.e. skin effect has been modeled and its drawbacks have been discussed. This paper strives to make an impression on the advantage side of modeling skin effect for interconnect line. The proposed method has considered a CMOS with RC interconnect. Delay and noise considering ground bounce problem and with skin effect are discussed. The simulation results reveal an advantage of considering skin effect for minimization of ground bounce problem during the working of the model. Noise and delay variations with temperature are also presented.

Keywords: Interconnect, Skin effect, Ground Bounce, Delay, Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3139
467 Red Diode Laser in the Treatment of Epidermal Diseases in PDT

Authors: Farhad H. Mustafa, Mohamad S. Jaafar , Asaad H. Ismail, Ahamad F. Omar, Zahra A. Timimi, Hend A. A. Houssein

Abstract:

The process of laser absorption in the skin during laser irradiation was a critical point in medical application treatments. Delivery the correct amount of laser light is a critical element in photodynamic therapy (PDT). More amounts of laser light able to affect tissues in the skin and small amount not able to enhance PDT procedure in skin. The knowledge of the skin tone laser dependent distribution of 635 nm radiation and its penetration depth in skin is a very important precondition for the investigation of advantage laser induced effect in (PDT) in epidermis diseases (psoriasis). The aim of this work was to estimate an optimum effect of diode laser (635 nm) on the treatment of epidermis diseases in different color skin. Furthermore, it is to improve safety of laser in PDT in epidermis diseases treatment. Advanced system analytical program (ASAP) which is a new approach in investigating the PDT, dependent on optical properties of different skin color was used in present work. A two layered Realistic Skin Model (RSM); stratum corneum and epidermal with red laser (635 nm, 10 mW) were used for irradiative transfer to study fluence and absorbance in different penetration for various human skin colors. Several skin tones very fair, fair, light, medium and dark are used to irradiative transfer. This investigation involved the principles of laser tissue interaction when the skin optically injected by a red laser diode. The results demonstrated that the power characteristic of a laser diode (635 nm) can affect the treatment of epidermal disease in various color skins. Power absorption of the various human skins were recorded and analyzed in order to find the influence of the melanin in PDT treatment in epidermal disease. A two layered RSM show that the change in penetration depth in epidermal layer of the color skin has a larger effect on the distribution of absorbed laser in the skin; this is due to the variation of the melanin concentration for each color.

Keywords: Photodynamic therapy, Realistic skin model, Laser, Light penetration, simulation, Optical properties of skin, Melanin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377
466 Utilization of Soymilk Residue for Wheat Flour Substitution in Gyoza skin

Authors: Naruemon Prapasuwannakul

Abstract:

Soymilk residue is obtained as a byproduct from soymilk and tofu production with little economic value. It contains high protein and fiber as well as various minerals and phyto-chemical compounds. The objective of this research was to substitute soymilk residue for wheat flour in gyoza skin in order to enhance value of soymilk residue and increase protein and fiber content of gyoza skin. Wheat flour was replaced with soymilk residue from 0 to 40%. The soy milk residue prepared in this research contains 26.92%protein, 3.58% fiber, 2.88% lipid, 6.29% ash and 60.33% carbohydrate. The results showed that increasing soymilk residue decreased lightness (L*value), tensile strength and sensory attributes but increased redness (a*), yellowness (b*), protein and fiber contents of product. The result also showed that the gyoza skin substituted with 30% soymilk residue was the most acceptable (p≤0.05) and its protein and fiber content increased up to 45 % and 867 % respectively.

Keywords: Gyoza skin, sensory, soymilk residue, wheat flour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
465 Association of Overweight and Obesity with Breast Cancer

Authors: Amir Ghasemlouei, Alireza Khalaj

Abstract:

Breast cancer is in the top rate of cancer. We analyzed the prevalence of obesity and its association with breast cancer and finally we reviewed 25 article that 320 patient and 320 control which enrolled to our study. The distribution of breast cancer patients and controls with respect to their anthropometric indices in patients with higher weight, which was statistically significant (60.2 ± 10.2 kg) compared with control group (56.1 ± 11.3 kg). The body mass index of patients was (26.06+/-3.42) and significantly higher than the control group (24.1+/-1.7). Obesity leads to increased levels of adipose tissue in the body that can be stored toxins and carcinogens to produce a continuous supply. Due to the high level of fat and the role of estrogen in a woman which is endogenous estrogen of the tumor and regulates the activities of growth steroids, obesity has confirmed as a risk factor for breast cancer. Our study and other studies have shown that obesity is a risk factor for breast cancer. And it can be prevented with a weight loss intervention for breast cancer in the future.

Keywords: Breast cancer, review study, obesity, overweight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
464 Adaptive Gaussian Mixture Model for Skin Color Segmentation

Authors: Reza Hassanpour, Asadollah Shahbahrami, Stephan Wong

Abstract:

Skin color based tracking techniques often assume a static skin color model obtained either from an offline set of library images or the first few frames of a video stream. These models can show a weak performance in presence of changing lighting or imaging conditions. We propose an adaptive skin color model based on the Gaussian mixture model to handle the changing conditions. Initial estimation of the number and weights of skin color clusters are obtained using a modified form of the general Expectation maximization algorithm, The model adapts to changes in imaging conditions and refines the model parameters dynamically using spatial and temporal constraints. Experimental results show that the method can be used in effectively tracking of hand and face regions.

Keywords: Face detection, Segmentation, Tracking, Gaussian Mixture Model, Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
463 Oncogene Identification using Filter based Approaches between Various Cancer Types in Lung

Authors: Michael Netzer, Michael Seger, Mahesh Visvanathan, Bernhard Pfeifer, Gerald H. Lushington, Christian Baumgartner

Abstract:

Lung cancer accounts for the most cancer related deaths for men as well as for women. The identification of cancer associated genes and the related pathways are essential to provide an important possibility in the prevention of many types of cancer. In this work two filter approaches, namely the information gain and the biomarker identifier (BMI) are used for the identification of different types of small-cell and non-small-cell lung cancer. A new method to determine the BMI thresholds is proposed to prioritize genes (i.e., primary, secondary and tertiary) using a k-means clustering approach. Sets of key genes were identified that can be found in several pathways. It turned out that the modified BMI is well suited for microarray data and therefore BMI is proposed as a powerful tool for the search for new and so far undiscovered genes related to cancer.

Keywords: lung cancer, micro arrays, data mining, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
462 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: [email protected]

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 404
461 Advantages of Composite Materials in Aircraft Structures

Authors: Muniyasamy Kalanchiam, Moorthy Chinnasamy

Abstract:

In the competitive environment of aircraft industries it becomes absolutely necessary to improve the efficiency, performance of the aircrafts to reduce the development and operating costs considerably, in order to capitalize the market. An important contribution to improve the efficiency and performance can be achieved by decreasing the aircraft weight through considerable usage of composite materials in primary aircraft structures. In this study, a type of composite material called Carbon Fiber Reinforced Plastic (CFRP) is explored for the usage is aircraft skin panels. Even though there were plenty of studies and research has been already carried out, here a practical example of an aircraft skin panel is taken and substantiated the benefits of composites material usage over the metallic skin panel. A crown skin panel of a commercial aircraft is designed using both metal and composite materials. Stress analysis has been carried out for both and margin of safety is estimated for the critical load cases. The skin panels are compared for manufacturing, tooling, assembly and cost parameters. Detail step by step comparison between metal and composite constructions are studied and results are tabulated for better understanding.

Keywords: Composites, CFRP, Aircraft Structure, Skin panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10656