Search results for: scaling laws
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 291

Search results for: scaling laws

51 Internal Structure Formation in High Strength Fiber Concrete during Casting

Authors: Olga Kononova, Andrejs Krasnikovs , Videvuds Lapsa, Jurijs Kalinka, Angelina Galushchak

Abstract:

Post cracking behavior and load –bearing capacity of the steel fiber reinforced high-strength concrete (SFRHSC) are dependent on the number of fibers are crossing the weakest crack (bridged the crack) and their orientation to the crack surface. Filling the mould by SFRHSC, fibers are moving and rotating with the concrete matrix flow till the motion stops in each internal point of the concrete body. Filling the same mould from the different ends SFRHSC samples with the different internal structures (and different strength) can be obtained. Numerical flow simulations (using Newton and Bingham flow models) were realized, as well as single fiber planar motion and rotation numerical and experimental investigation (in viscous flow) was performed. X-ray pictures for prismatic samples were obtained and internal fiber positions and orientations were analyzed. Similarly fiber positions and orientations in cracked cross-section were recognized and were compared with numerically simulated. Structural SFRHSC fracture model was created based on single fiber pull-out laws, which were determined experimentally. Model predictions were validated by 15x15x60cm prisms 4 point bending tests.

Keywords: fibers, orientation, high strength concrete, flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
50 A SWOT Analysis on Institutional Environments of University of the Punjab

Authors: Saghir Ahmad, Abid Hussain Ch., Atif Khalil, Misbah Malik

Abstract:

The major purpose of the study was to identify the institutional environments’ strengths, weaknesses, opportunities and threats of University of the Punjab, Lahore. The target population of the study was teachers of University of the Punjab Lahore. The sample of 235 teachers (155 males, 80 females) were selected through multistage stratified sampling technique. A questionnaire regarding the institutional environments of University SWOT Analysis “Strengths, Weaknesses, Opportunities, and Threats” was used to collect the required data for this study. The questionnaire consisted of two parts. The first part comprised of the demographic information (faculty, department, gender, teacher rank), while the second part included the statements regarding SWOT analysis (strengths, weaknesses, opportunities and threats). Reliability index (Cronbach’s Alpha) of the questionnaire was 0.87, which is statistically acceptable. Analysis of the data indicated that there was significant difference in the opinion of respondents. Teachers of Islamic studies and Laws had difference in their opinions regarding the institutional environment strengths, and opportunities and it was supported by the findings of the study. There was significant difference in opinions of male and female teachers regarding strengths and opportunities of university. And there was no significant difference in opinions of male and female teachers regarding weaknesses and threats of university.

Keywords: Institutional environments, SWOT analysis, teachers, University of the Punjab.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
49 Topics of Blockchain Technology to Teach at Community College

Authors: Penn P. Wu, Jeannie Jo

Abstract:

Blockchain technology has rapidly gained popularity in industry. This paper attempts to assist academia to answer four questions. First, should community colleges begin offering education to nurture blockchain-literate students for the job market? Second, what are the appropriate topical areas to cover? Third, should it be an individual course? And forth, should it be a technical or management course? This paper starts with identifying the knowledge domains of blockchain technology and the topical areas each domain has, and continues with placing them in appropriate academic territories (Computer Sciences vs. Business) and subjects (programming, management, marketing, and laws), and then develops an evaluation model to determine the appropriate topical area for community colleges to teach. The evaluation is based on seven factors: maturity of technology, impacts on management, real-world applications, subject classification, knowledge prerequisites, textbook readiness, and recommended pedagogies. The evaluation results point to an interesting direction that offering an introductory course is an ideal option to guide students through the learning journey of what blockchain is and how it applies to business. Such an introductory course does not need to engage students in the discussions of mathematics and sciences that make blockchain technologies possible. While it is inevitable to brief technical topics to help students build a solid knowledge foundation of blockchain technologies, community colleges should avoid offering students a course centered on the discussion of developing blockchain applications.

Keywords: Blockchain, pedagogies, blockchain technologies, blockchain course, blockchain pedagogies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
48 Early Age Behavior of Wind Turbine Gravity Foundations

Authors: J. Modu, J. F. Georgin, L. Briançon, E. Antoinet

Abstract:

Wind turbine gravity foundations are designed to resist overturning failure through gravitational forces resulting from their masses. Owing to the relatively high volume of the cementitious material present, the foundations tend to suffer thermal strains and internal cracking due to high temperatures and temperature gradients depending on factors such as geometry, mix design and level of restraint. This is a result of a fully coupled mechanism commonly known as THMC (Thermo- Hygro - Mechanical - Chemical) coupling whose kinetics peak during the early age of concrete. The focus of this paper is therefore to present and offer a discussion on the temperature and humidity evolutions occurring in mass pours such as wind turbine gravity foundations based on sensor results obtained from the monitoring of an actual wind turbine foundation. To offer prediction of the evolutions, the formulation of a 3D Thermal-Hydro-Chemical (THC) model that is mainly derived from classical fundamental physical laws is also presented and discussed. The THC model can be mathematically fully coupled in Finite Element analyses. In the current study, COMSOL Multi-physics software was used to simulate the 3D THC coupling that occurred in the monitored wind turbine foundation to predict the temperature evolution at five different points within the foundation from time of casting.

Keywords: Early age behavior, reinforced concrete, THC 3D models, wind turbines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 388
47 Mapping the Digital Landscape: An Analysis of Party Differences between Conventional and Digital Policy Positions

Authors: Daniel Schwarz, Jan Fivaz, Alessia Neuroni

Abstract:

Although digitization is a buzzword in almost every election campaign, the political parties leave voters largely in the dark about their specific positions on digital issues. In the run-up to the 2019 elections in Switzerland, the ‘Digitization Monitor’ project (DMP) was launched in order to change this situation. Within the framework of the DMP, all 4,736 candidates were surveyed about their digital policy positions and values. The DMP is designed as a digital policy supplement to the existing ‘smartvote’ voting advice application. This enabled a direct comparison of the digital policy attitudes according to the DMP with the topics of the ‘smartvote’ questionnaire which are comprehensive in content but mainly related to conventional policy areas. This paper’s main research goal is to analyze and visualize possible differences between conventional and digital policy areas in terms of response patterns between and within political parties. The analysis is based on dimensionality reduction methods (multidimensional scaling and principal component analysis) for the visualization of inter-party differences, and on standard deviation as a measure of variation for the evaluation of intra-party unity. The results reveal that digital issues show a lower degree of inter-party polarization compared to conventional policy areas. Thus, the parties have more common ground in issues on digitization than in conventional policy areas. In contrast, the study reveals a mixed picture regarding intra-party unity. Homogeneous parties show a lower degree of unity in digitization issues whereas parties with heterogeneous positions in conventional areas have more united positions in digital areas. All things considered, the findings are encouraging as less polarized conditions apply to the debate on digital development compared to conventional politics. For the future, it would be desirable if in further countries similar projects to the DMP could emerge to broaden the basis for conclusions.

Keywords: Comparison of political issue dimensions, digital awareness of candidates, digital policy space, party positions on digital issues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578
46 Nonlinear Modeling and Analysis of AAC infilled Sandwich Panels for out of Plane Loads

Authors: Al-Kashif M., Abdel-Mooty M., Fahmy E., Abou Zeid M., Haroun M.

Abstract:

Sandwich panels are widely used in the construction industry for their ease of assembly, light weight and efficient thermal performance. They are composed of two RC thin outer layers separated by an insulating inner layer. In this research the inner insulating layer is made of lightweight Autoclaved Aerated Concrete (AAC) blocks which has good thermal insulation properties and yet possess reasonable mechanical strength. The shear strength of the AAC infill is relied upon to replace the traditionally used insulating foam and to provide the shear capacity of the panel. A comprehensive experimental program was conducted on full scale sandwich panels subjected to bending. In this paper, detailed numerical modeling of the tested sandwich panels is reported. Nonlinear 3-D finite element modeling of the composite action of the sandwich panel is developed using ANSYS. Solid elements with different crashing and cracking capabilities and different constitutive laws were selected for the concrete and the AAC. Contact interface elements are used in this research to adequately model the shear transfer at the interface between the different layers. The numerical results showed good correlation with the experimental ones indicating the adequacy of the model in estimating the loading capacity of panels.

Keywords: Autoclaved Aerated Concrete, Concrete Sandwich Panels, Finite Element Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3040
45 Increasing the Resilience of Cyber Physical Systems in Smart Grid Environments using Dynamic Cells

Authors: Andrea Tundis, Carlos García Cordero, Rolf Egert, Alfredo Garro, Max Mühlhäuser

Abstract:

Resilience is an important system property that relies on the ability of a system to automatically recover from a degraded state so as to continue providing its services. Resilient systems have the means of detecting faults and failures with the added capability of automatically restoring their normal operations. Mastering resilience in the domain of Cyber-Physical Systems is challenging due to the interdependence of hybrid hardware and software components, along with physical limitations, laws, regulations and standards, among others. In order to overcome these challenges, this paper presents a modeling approach, based on the concept of Dynamic Cells, tailored to the management of Smart Grids. Additionally, a heuristic algorithm that works on top of the proposed modeling approach, to find resilient configurations, has been defined and implemented. More specifically, the model supports a flexible representation of Smart Grids and the algorithm is able to manage, at different abstraction levels, the resource consumption of individual grid elements on the presence of failures and faults. Finally, the proposal is evaluated in a test scenario where the effectiveness of such approach, when dealing with complex scenarios where adequate solutions are difficult to find, is shown.

Keywords: Cyber-physical systems, energy management, optimization, smart grids, self-healing, resilience, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
44 High School Stem Curriculum and Example of Laboratory Work That Shows How Microcomputers Can Help in Understanding of Physical Concepts

Authors: Jelena Slugan, Ivica Ružić

Abstract:

We are witnessing the rapid development of technologies that change the world around us. However, curriculums and teaching processes are often slow to adapt to the change; it takes time, money and expertise to implement technology in the classroom. Therefore, the University of Split, Croatia, partnered with local school Marko Marulić High School and created the project "Modern competence in modern high schools" as part of which five different curriculums for STEM areas were developed. One of the curriculums involves combining information technology with physics. The main idea was to teach students how to use different circuits and microcomputers to explore nature and physical phenomena. As a result, using electrical circuits, students are able to recreate in the classroom the phenomena that they observe every day in their environment. So far, high school students had very little opportunity to perform experiments independently, and especially, those physics experiment did not involve ICT. Therefore, this project has a great importance, because the students will finally get a chance to develop themselves in accordance to modern technologies. This paper presents some new methods of teaching physics that will help students to develop experimental skills through the study of deterministic nature of physical laws. Students will learn how to formulate hypotheses, model physical problems using the electronic circuits and evaluate their results. While doing that, they will also acquire useful problem solving skills.

Keywords: ICT in physics, curriculum, laboratory activities, STEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 944
43 Recycling in Bogotá: A SWOT Analysis of Three Associations to Evaluate the Integrating the Informal Sector into Solid Waste Management

Authors: Clara Inés Pardo Martínez, William H. Alfonso Piña

Abstract:

In emerging economies, recycling is an opportunity for the cities to increase the lifespan of sanitary landfills, reduce the costs of the solid waste management, decrease the environmental problems of the waste treatment through reincorporate waste in the productive cycle and protect and develop people’s livelihoods of informal waste pickers. However, few studies have analysed the possibilities and strategies to integrate formal and informal sectors in the solid waste management for the benefit of both. This study seek to make a strength, weakness, opportunity, and threat (SWOT) analysis in three recycling associations of Bogotá with the aim to understand and determine the situation of recycling from perspective of informal sector in its transition to enter as authorized waste providers. Data used in the analysis are derived from multiple strategies such as literature review, the Bogota’s recycling database, focus group meetings, governmental reports, national laws and regulations and specific interviews with key stakeholders. Results of this study show as the main stakeholders of formal and informal sector of waste management can identify the internal and internal conditions of recycling in Bogotá. Several strategies were designed based on the SWOTs determined, could be useful for Bogotá to advance and promote recycling as a key strategy for integrated sustainable waste management in the city.

Keywords: Bogotá, recycling, solid waste management, SWOT analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7842
42 Surface Water Pollution by Open Refuse Dumpsite in North Central of Nigeria

Authors: Abimbola Motunrayo Folami, Ibironke Titilayo Enitan, Feroz Mohomed Swalaha

Abstract:

Water is a vital resource that is important in ensuring the growth and development of any country. To sustain the basic human needs and the demands for agriculture, industry, conservational and ecosystem, enough quality and quantity water is needed. Contamination of water resources is now a global and public health concern. Hence, this study assessed the water quality of Ndawuse River by measuring the physicochemical parameters and heavy metals concentrations of the river using standard methods. In total, 16 surface water samples were obtained from five locations along the river, from upstream to downstream as well as samples from the dumpsite. The results obtained were compared with the standard limits set by both the World Health Organization and the Federal Environmental Protection Agency for domestic purposes. The results of the measured parameters indicated that biological oxygen demand (85.88 mg/L), turbidity (44.51 NTU), Iron (0.014 - 3.511 mg /L) and chromium (0.078 - 0.14 mg /L) were all above the standard limits. The results further showed that the quality of surface water is being significantly affected by human activities around the Ndawuse River which could pose an adverse health risk to several communities that rely on this river as their primary source of water. Therefore, there is a need for strict enforcement of environmental laws to protect the aquatic ecosystem and to avoid long term cumulative exposure risk that heavy metals may pose on human health.

Keywords: Abuja, contaminants, heavy metals, Ndawuse River, Nigeria, surface water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 549
41 The Implementation of Anti-Circumvention Legislations in Thai Copyright System

Authors: Chuencheewin Yimfuang

Abstract:

The WIPO copyright treaty (WCT) was established by the World Intellectual Property Organisation (WIPO). This agreement required the contracting nations to provide adequate protection to technological measures to prevent massive copyright infringement in the internet system. Thailand had to implement the anti-circumvention rules into domestic legislation to comply with this international obligation. The purpose of this paper is to critically discuss the legislative standard under the WCT. It also aims to examine the legal development of technological protection measures in Thailand and demonstrate that the scope of prohibitions under the copyright Act 2022 (NO.5) is similar to the Digital Millennium Copyright Act 1998 (DMCA) of the United States (US). It could be found that the anti-circumvention laws of Thailand prohibit the circumvention of access-control technologies, and the regulation on trafficking circumvention devices has been added to the latest version of the Thai Copyright Act. These legislative evolutions have revealed the attempt to reinforce the legal protection of technological measures and copyright holders in order to be in line with global practices. However, the amendment has problems concerning the legal definitions of effective technological measure and the prohibited act of circumvention. The vagueness might affect the scope of protection and the boundary of prohibition. With this aspect, the DMCA will be evaluated and compared to gain guidelines for interpretation and enforcement in Thailand. The lessons and experiences learned from this study might be useful to correct the flaws or at least clarify the ambiguities embodied in Thai copyright legislation.

Keywords: Legal Development Technological Protection Measure, prohibition, circumvention, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 112
40 Unsteady Rayleigh-Bénard Convection of Nanoliquids in Enclosures

Authors: P. G. Siddheshwar, B. N. Veena

Abstract:

Rayleigh-B´enard convection of a nanoliquid in shallow, square and tall enclosures is studied using the Khanafer-Vafai-Lightstone single-phase model. The thermophysical properties of water, copper, copper-oxide, alumina, silver and titania at 3000 K under stagnant conditions that are collected from literature are used in calculating thermophysical properties of water-based nanoliquids. Phenomenological laws and mixture theory are used for calculating thermophysical properties. Free-free, rigid-rigid and rigid-free boundary conditions are considered in the study. Intractable Lorenz model for each boundary combination is derived and then reduced to the tractable Ginzburg-Landau model. The amplitude thus obtained is used to quantify the heat transport in terms of Nusselt number. Addition of nanoparticles is shown not to alter the influence of the nature of boundaries on the onset of convection as well as on heat transport. Amongst the three enclosures considered, it is found that tall and shallow enclosures transport maximum and minimum energy respectively. Enhancement of heat transport due to nanoparticles in the three enclosures is found to be in the range 3% - 11%. Comparison of results in the case of rigid-rigid boundaries is made with those of an earlier work and good agreement is found. The study has limitations in the sense that thermophysical properties are calculated by using various quantities modelled for static condition.

Keywords: Enclosures, free-free, rigid-rigid and rigid-free boundaries, Ginzburg-Landau model, Lorenz model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812
39 Origins of Strict Liability for Abnormally Dangerous Activities in the United States, Rylands v. Fletcher and a General Clause of Strict Liability in the UK

Authors: Maria Lubomira Kubica

Abstract:

The paper reveals the birth and evolution of the British precedent Rylands v. Fletcher that, once adopted on the other side of the Ocean (in United States), gave rise to a general clause of liability for abnormally dangerous activities recognized by the §20 of the American Restatements of the Law Third, Liability for Physical and Emotional Harm. The main goal of the paper was to analyze the development of the legal doctrine and of the case law posterior to the precedent together with the intent of the British judicature to leapfrog from the traditional rule contained in Rylands v. Fletcher to a general clause similar to that introduced in the United States and recently also on the European level. As it is well known, within the scope of tort law two different initiatives compete with the aim of harmonizing the European laws: European Group on Tort Law with its Principles of European Tort Law (hereinafter PETL) in which article 5:101 sets forth a general clause for strict liability for abnormally dangerous activities and Study Group on European Civil Code with its Common Frame of Reference (CFR) which promotes rather ad hoc model of listing out determined cases of strict liability. Very narrow application scope of the art. 5:101 PETL, restricted only to abnormally dangerous activities, stays in opposition to very broad spectrum of strict liability cases governed by the CFR. The former is a perfect example of a general clause that offers a minimum and basic standard, possibly acceptable also in those countries in which, like in the United Kingdom, this regime of liability is completely marginalized.

Keywords: Dangerous activities, general clause, risk, strict liability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
38 Simulation and Parameterization by the Finite Element Method of a C Shape Delectromagnet for Application in the Characterization of Magnetic Properties of Materials

Authors: A. A Velásquez, J.Baena

Abstract:

This article presents the simulation, parameterization and optimization of an electromagnet with the C–shaped configuration, intended for the study of magnetic properties of materials. The electromagnet studied consists of a C-shaped yoke, which provides self–shielding for minimizing losses of magnetic flux density, two poles of high magnetic permeability and power coils wound on the poles. The main physical variable studied was the static magnetic flux density in a column within the gap between the poles, with 4cm2 of square cross section and a length of 5cm, seeking a suitable set of parameters that allow us to achieve a uniform magnetic flux density of 1x104 Gaussor values above this in the column, when the system operates at room temperature and with a current consumption not exceeding 5A. By means of a magnetostatic analysis by the finite element method, the magnetic flux density and the distribution of the magnetic field lines were visualized and quantified. From the results obtained by simulating an initial configuration of electromagnet, a structural optimization of the geometry of the adjustable caps for the ends of the poles was performed. The magnetic permeability effect of the soft magnetic materials used in the poles system, such as low– carbon steel (0.08% C), Permalloy (45% Ni, 54.7% Fe) and Mumetal (21.2% Fe, 78.5% Ni), was also evaluated. The intensity and uniformity of the magnetic field in the gap showed a high dependence with the factors described above. The magnetic field achieved in the column was uniform and its magnitude ranged between 1.5x104 Gauss and 1.9x104 Gauss according to the material of the pole used, with the possibility of increasing the magnetic field by choosing a suitable geometry of the cap, introducing a cooling system for the coils and adjusting the spacing between the poles. This makes the device a versatile and scalable tool to generate the magnetic field necessary to perform magnetic characterization of materials by techniques such as vibrating sample magnetometry (VSM), Hall-effect, Kerr-effect magnetometry, among others. Additionally, a CAD design of the modules of the electromagnet is presented in order to facilitate the construction and scaling of the physical device.

Keywords: Electromagnet, Finite Elements Method, Magnetostatic, Magnetometry, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
37 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon

Authors: R. Chedid, R. Ghajar

Abstract:

Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.

Keywords: Decentralized systems, microgrids, distributed generation, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
36 Legal Doctrine on Rylands v. Fletcher: One more time on Feasibility of a General Clause of Strict Liability in the UK

Authors: Maria Lubomira Kubica

Abstract:

The paper reveals the birth and evolution of the British precedent Rylands v. Fletcher that, once adopted on the other side of the Ocean (in United States), gave rise to a general clause of liability for abnormally dangerous activities recognized by the §20 of the American Restatements of the Law Third, Liability for Physical and Emotional Harm. The main goal of the paper was to analyze the development of the legal doctrine and of the case law posterior to the precedent together with the intent of the British judicature to leapfrog from the traditional rule contained in Rylands v. Fletcher to a general clause similar to that introduced in the United States and recently also on the European level. As it is well known, within the scope of tort law two different initiatives compete with the aim of harmonizing the European laws: European Group on Tort Law with its Principles of European Tort Law (hereinafter PETL) in which article 5:101 sets forth a general clause for strict liability for abnormally dangerous activities and Study Group on European Civil Code with its Common Frame of Reference (CFR) which promotes rather ad hoc model of listing out determined cases of strict liability. Very narrow application scope of the art. 5:101 PETL, restricted only to abnormally dangerous activities, stays in opposition to very broad spectrum of strict liability cases governed by the CFR. The former is a perfect example of a general clause that offers a minimum and basic standard, possibly acceptable also in those countries in which, like in the United Kingdom, this regime of liability is completely marginalized.

Keywords: Abnormally dangerous activities, general clause, Rylands v. Fletcher, strict liability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
35 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: Adaptive sampling, batch bulk methyl methacrylate polymerization, large margin nearest neighbor regression, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
34 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: Cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928
33 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid

Authors: P. G. Siddheshwar, T. N. Sakshath

Abstract:

In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.

Keywords: Nanoliquid, rigid-rigid, rotation, single-phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
32 Criminal Justice System, Health and Imprisonment in India

Authors: Debolina Chatterjee, Suhita Chopra Chatterjee

Abstract:

Imprisonment is an expansive concept, as it is regulated by laws under criminal justice system of the state. The state sets principles of punishment to control offenders and also puts limits to excess punitive control. One significant way through which it exercises control is through rules governing healthcare of imprisoned population. Prisons signify specialized settings which accommodate both medical and legal concerns. The provision of care operates within the institutional paradigm of punishment. This requires the state to negotiate adequately between goals of punishment and fulfilment of basic human rights of offenders. The present study is based on a critical analysis of prison healthcare standards in India, which include government policies and guidelines. It also demonstrates how healthcare is delivered by drawing insights from a primary study conducted in a correctional home in the state of West Bengal, India, which houses both male and female inmates. Forty women were interviewed through semi-structured interviews, followed by focus group discussions. Doctors and administrative personnel were also interviewed. Findings show how institutional practices control women through subversion of the role of doctors to prison administration. Also, poor healthcare infrastructure, unavailability of specialized services, hierarchies between personnel and inmates make prisons unlikely sites for therapeutic intervention. The paper further discusses how institutional practices foster gender-based discriminatory practices.

Keywords: Imprisonment, imprisoned women, prison healthcare, prison policies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
31 Distinctive Features of Legal Relations in the Area of Subsoil Use, Renewal and Protection in Ukraine

Authors: N. Maksimentseva

Abstract:

The issue of public administration in subsoil use, renewal and protection is of high importance for Ukraine since it is strongly linked to energy security of the state as well as it shall facilitate the people of Ukraine to efficiently implement its propitiatory rights towards natural resources and redistribution of national wealth. As it is stipulated in the Article 11 of the Subsoil Code of Ukraine (the Code) the authorities that administer the industry are limited to central executive bodies and local governments. In particular, it is stipulated in the Code that the Ukraine’s Cabinet of Ministers carries out public administration in geological exploration, production and protection of subsoil. Other state bodies of public administration include central public authority responsible for state environmental protection policies; central public authority in charge of implementation of state geological exploration and efficient subsoil use policies; central authority in charge of state health and safety control policies. There are also public authorities in the Autonomous Republic of Crimea; local executive bodies and other state authorities and local self-government authorities in compliance with laws of Ukraine. This article is devoted to the analysis of the legal relations in the area of public administration of subsoil use, renewal and protection in Ukraine. The main approaches to study the essence of legal relations in the named area as well as its tasks, functions and methods are analyzed. It is concluded in this article that legal relationship in the field of public administration of subsoil use, renewal and protection is characterized by specifics of its task (development of natural resources).

Keywords: Legal relations, public administration, Subsoil Code of Ukraine, subsoil use, renewal and protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
30 Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder

Authors: Avinash Chandra, R. P. Chhabra

Abstract:

Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number. The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number, . The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. The resulting flow and temperature fields are visualized in terms of the streamline and isotherm patterns in the proximity of the cylinder. The flow remains attached to the cylinder surface over the range of conditions spanned here except that for and ; at these conditions, a separated flow region is observed when the condition of the constant wall temperature is prescribed on the surface of the cylinder. The heat transfer characteristics are analyzed in terms of the local and average Nusselt numbers. The maximum value of the local Nusselt number always occurs at the corner points whereas it is found to be minimum at the rear stagnation point on the flat surface. Overall, the average Nusselt number increases with Grashof number and/ or Prandtl number in accordance with the scaling considerations. The numerical results are used to develop simple correlations as functions of Grashof and Prandtl number thereby enabling the interpolation of the present numerical results for the intermediate values of the Prandtl or Grashof numbers for both thermal boundary conditions.

Keywords: Constant heat flux, Constant surface temperature, Grashof number, natural convection, Prandtl number, Semi-circular cylinder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3358
29 Generating a Functional Grammar for Architectural Design from Structural Hierarchy in Combination of Square and Equal Triangle

Authors: Sanaz Ahmadzadeh Siyahrood, Arghavan Ebrahimi, Mohammadjavad Mahdavinejad

Abstract:

Islamic culture was accountable for a plethora of development in astronomy and science in the medieval term, and in geometry likewise. Geometric patterns are reputable in a considerable number of cultures, but in the Islamic culture the patterns have specific features that connect the Islamic faith to mathematics. In Islamic art, three fundamental shapes are generated from the circle shape: triangle, square and hexagon. Originating from their quiddity, each of these geometric shapes has its own specific structure. Even though the geometric patterns were generated from such simple forms as the circle and the square, they can be combined, duplicated, interlaced, and arranged in intricate combinations. So in order to explain geometrical interaction principles between square and equal triangle, in the first definition step, all types of their linear forces individually and in the second step, between them, would be illustrated. In this analysis, some angles will be created from intersection of their directions. All angles are categorized to some groups and the mathematical expressions among them are analyzed. Since the most geometric patterns in Islamic art and architecture are based on the repetition of a single motif, the evaluation results which are obtained from a small portion, is attributable to a large-scale domain while the development of infinitely repeating patterns can represent the unchanging laws. Geometric ornamentation in Islamic art offers the possibility of infinite growth and can accommodate the incorporation of other types of architectural layout as well, so the logic and mathematical relationships which have been obtained from this analysis are applicable in designing some architecture layers and developing the plan design.

Keywords: Angle, architecture, design, equal triangle, generating, grammar, square and structural hierarchy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
28 E-learning: An Effective Approach for Enhancing Social and Behavior Change Communication Capacity in Bangladesh

Authors: Mohammad K. Abedin, Mohammad Shahjahan, Zeenat Sultana, Tawfique Jahan, Jesmin Akter

Abstract:

To strengthen social and behavior change communication (SBCC) capacity of Ministry of Health and Family Welfare (MoHFW) of the Government of Bangladesh, BCCP/BKMI developed two eLearning courses providing opportunities for professional development of SBCC Program Managers who have no access to training or refreshers training. The two eLearning courses – Message and Material Development (MMD) and Monitoring and Evaluation (MandE) of SBCC programs – went online in September 2015, where all users could register their participation so results could be monitored. Methodology: To assess the uses of these courses a randomly selected sample was collected to run a pre and post-test analyses and a phone survey were conducted. Systematic random sampling was used to select a sample of 75 MandE and 25 MMD course participants from a sampling frame of 179 and 51 respectively. Results: As of September 2016, more than 179 learners have completed the MandE course, and 49 learners have completed the MMD course. The users of these courses are program managers, university faculty members, and students. Encouraging results were revealed from the analysis of pre and post-test scores and a phone survey three months after course completion. Test scores suggested a substantial increase in knowledge. The pre-test scores findings suggested that about 19% learners scored high on the MandE. The post-test scores finding indicated a high score (92%) of the sample across 4 modules of MandE. For MMD course in pre-test scoring, 30% of the learners scored high, and 100% scored high at the post-test. It was found that all the learners in the phone survey have discussed the courses. Most of the sharing occurred with colleagues and friends, usually through face to face (70%) interaction. The learners reported that they did recommend the two courses to concerned people. About 67% MandE and 76% MMD learners stated that the concepts that they had to learn during the course were put into practice in their work settings. The respondents for both MandE and MMD courses have provided a valuable set of suggestions that would further strengthen the courses. Conclusions: The study showed that the initiative offered ample opportunities to build capacity in various ways in which the eLearning courses were used. It also highlighted the importance of scaling up these efforts to further strengthen the outcomes.

Keywords: E-learning course, message and material development, monitoring and evaluation, social and behavior change communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
27 Long-Term Economic-Ecological Assessment of Optimal Local Heat-Generating Technologies for the German Unrefurbished Residential Building Stock on the Quarter Level

Authors: M. A. Spielmann, L. Schebek

Abstract:

In order to reach the long-term national climate goals of the German government for the building sector, substantial energetic measures have to be executed. Historically, those measures were primarily energetic efficiency measures at the buildings’ shells. Advanced technologies for the on-site generation of heat (or other types of energy) often are not feasible at this small spatial scale of a single building. Therefore, the present approach uses the spatially larger dimension of a quarter. The main focus of the present paper is the long-term economic-ecological assessment of available decentralized heat-generating (CHP power plants and electrical heat pumps) technologies at the quarter level for the German unrefurbished residential buildings. Three distinct terms have to be described methodologically: i) Quarter approach, ii) Economic assessment, iii) Ecological assessment. The quarter approach is used to enable synergies and scaling effects over a single-building. For the present study, generic quarters that are differentiated according to significant parameters concerning their heat demand are used. The core differentiation of those quarters is made by the construction time period of the buildings. The economic assessment as the second crucial parameter is executed with the following structure: Full costs are quantized for each technology combination and quarter. The investment costs are analyzed on an annual basis and are modeled with the acquisition of debt. Annuity loans are assumed. Consequently, for each generic quarter, an optimal technology combination for decentralized heat generation is provided in each year of the temporal boundaries (2016-2050). The ecological assessment elaborates for each technology combination and each quarter a Life Cycle assessment. The measured impact category hereby is GWP 100. The technology combinations for heat production can be therefore compared against each other concerning their long-term climatic impacts. Core results of the approach can be differentiated to an economic and ecological dimension. With an annual resolution, the investment and running costs of different energetic technology combinations are quantified. For each quarter an optimal technology combination for local heat supply and/or energetic refurbishment of the buildings within the quarter is provided. Coherently to the economic assessment, the climatic impacts of the technology combinations are quantized and compared against each other.

Keywords: Building sector, heat, LCA, quarter level, systemic approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908
26 Flat Miniature Heat Pipes for Electronics Cooling: State of the Art, Experimental and Theoretical Analysis

Authors: M.C. Zaghdoudi, S. Maalej, J. Mansouri, M.B.H. Sassi

Abstract:

An experimental study is realized in order to verify the Mini Heat Pipe (MHP) concept for cooling high power dissipation electronic components and determines the potential advantages of constructing mini channels as an integrated part of a flat heat pipe. A Flat Mini Heat Pipe (FMHP) prototype including a capillary structure composed of parallel rectangular microchannels is manufactured and a filling apparatus is developed in order to charge the FMHP. The heat transfer improvement obtained by comparing the heat pipe thermal resistance to the heat conduction thermal resistance of a copper plate having the same dimensions as the tested FMHP is demonstrated for different heat input flux rates. Moreover, the heat transfer in the evaporator and condenser sections are analyzed, and heat transfer laws are proposed. In the theoretical part of this work, a detailed mathematical model of a FMHP with axial microchannels is developed in which the fluid flow is considered along with the heat and mass transfer processes during evaporation and condensation. The model is based on the equations for the mass, momentum and energy conservation, which are written for the evaporator, adiabatic, and condenser zones. The model, which permits to simulate several shapes of microchannels, can predict the maximum heat transfer capacity of FMHP, the optimal fluid mass, and the flow and thermal parameters along the FMHP. The comparison between experimental and model results shows the good ability of the numerical model to predict the axial temperature distribution along the FMHP.

Keywords: Electronics Cooling, Micro Heat Pipe, Mini Heat Pipe, Mini Heat Spreader, Capillary grooves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3858
25 Khilafat from Khilafat-e-Rashida: The Only Form of Governance to Unite Muslim Countries

Authors: Zoaib Mirza

Abstract:

Half of the Muslim countries in the world have declared Islam the state religion in their constitutions. Yet, none of these countries have implemented authentic Islamic laws in line with the Quran (Holy Book), practices of Prophet Mohammad (P.B.U.H) called the Sunnah, and his four successors known as the Rightly Guided - Khalifa. Since their independence, these countries have adopted different government systems like Democracy, Dictatorship, Republic, Communism, and Monarchy. Instead of benefiting the people, these government systems have put these countries into political, social, and economic crises. These Islamic countries do not have equal representation and membership in worldwide political forums. Western countries lead these forums. Therefore, it is now imperative for the Muslim leaders of all these countries to collaborate, reset, and implement the original Islamic form of government, which led to the prosperity and success of people, including non-Muslims, 1400 years ago. They should unite as one nation under Khalifat, which means establishing the authority of Allah (SWT) and following the divine commandments related to the social, political, and economic systems. As they have declared Islam in their constitution, they should work together to apply the divine framework of the governance revealed by Allah (SWT) and implemented by Prophet Mohammad (P.B.U.H) and his four successors called Khalifas. This paper provides an overview of the downfall and the end of the Khalifat system by 1924, the ways in which the West caused political, social, and economic crises in the Muslim countries, and finally, a summary of the social, political, and economic systems implemented by the Prophet Mohammad (P.B.U.H) and his successors, Khalifas, called the Rightly Guided – Hazrat Abu Bakr (RA), Hazrat Omar (RA), Hazrat Usman (RA), and Hazrat Ali (RA).

Keywords: Khalifat, Khilafat-e-Rashida, The Rightly Guided, colonization, capitalism, neocolonization, government systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
24 Using Artificial Neural Network and Leudeking-Piret Model in the Kinetic Modeling of Microbial Production of Poly-β- Hydroxybutyrate

Authors: A.Qaderi, A. Heydarinasab, M. Ardjmand

Abstract:

Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate consumption. Considering the high capabilities of artificial neural networks in modeling and simulation of non-linear systems such as biological and chemical industries that mainly are multivariable systems, kinetic modeling of microbial production of PHB that is a complex and non-linear biological process, the three layers perceptron neural network model was used in this study. Artificial neural network educates itself and finds the hidden laws behind the data with mapping based on experimental data, of dry cell weight, substrate concentration as input and PHB concentration as output. For training the network, a series of experimental data for PHB production from Hydrogenophaga Pseudoflava by glucose carbon source was used. After training the network, two other experimental data sets that have not intervened in the network education, including dry cell concentration and substrate concentration were applied as inputs to the network, and PHB concentration was predicted by the network. Comparison of predicted data by network and experimental data, indicated a high precision predicted for both fructose and whey carbon sources. Also in present study for better understanding of the ability of neural network in modeling of biological processes, microbial production kinetic of PHB by Leudeking-Piret experimental equation was modeled. The Observed result indicated an accurate prediction of PHB concentration by artificial neural network higher than Leudeking- Piret model.

Keywords: Kinetic Modeling, Poly-β-Hydroxybutyrate (PHB), Hydrogenophaga Pseudoflava, Artificial Neural Network, Leudeking-Piret

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4772
23 Numerical Investigation of Multiphase Flow in Pipelines

Authors: Gozel Judakova, Markus Bause

Abstract:

We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study.

Keywords: Discontinuous Galerkin method, Euler system, inviscid two-fluid model, streamline upwind Petrov-Galerkin method, two-phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
22 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms

Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre

Abstract:

Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.

Keywords: Dynamic modelling, long term instability risks, room and pillar, seismic collapse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436