Search results for: polyethylene oxide.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 462

Search results for: polyethylene oxide.

432 Influence of MgO Physically Mixed with Tungsten Oxide Supported Silica Catalyst on Coke Formation

Authors: T. Thitiapichart, P. Praserthdama

Abstract:

The effect of additional magnesium oxide (MgO) was investigated by using the tungsten oxide supported on silica catalyst (WOx/SiO2) physically mixed with MgO in a weight ratio 1:1. The both fresh and spent catalysts were characterized by FT-Raman spectrometer, UV-Vis spectrometer, X-Ray diffraction (XRD) and temperature programmed oxidation (TPO). The results indicated that the additional MgO could enhance the conversion of trans-2-butene due to isomerization reaction. However, adding MgO would increase the amount of coke deposit on the WOx/SiO2 catalyst. The TPO profile presented two peaks when the WOx/SiO2 catalyst was physically mixed with MgO. The further peak was suggested that came from coke precursor could be produced by isomerization reaction of undesired product. Then, the occurred coke precursor could deposit and form coke on the acid catalyst.

Keywords: Coke formation, metathesis, magnesium oxide, physically mix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
431 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites

Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar

Abstract:

In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.

Keywords: Linear low density polyethylene, nanocomposite, organoclay, plasticizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
430 Graphene Oxide Fiber with Different Exfoliation Time and Activated Carbon Particle

Authors: Nuray Uçar, Mervin Ölmez, Özge Alptoğa, Nilgün K. Yavuz, Ayşen Önen

Abstract:

In recent years, research on continuous graphene oxide fibers has been intensified. Therefore, many factors of production stages are being studied. In this study, the effect of exfoliation time and presence of activated carbon particle (ACP) on graphene oxide fiber’s properties has been analyzed. It has been seen that cross-sectional appearance of sample with ACP is harsh and porous because of ACP. The addition of ACP did not change the electrical conductivity. However, ACP results in an enormous decrease of mechanical properties. Longer exfoliation time results to higher crystallinity degree, C/O ratio and less d space between layers. The breaking strength and electrical conductivity of sample with less exfoliation time is some higher than sample with high exfoliation time.

Keywords: Activated carbon, coagulation by wet spinning, exfoliation, graphene oxide fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
429 The Light Response Characteristics of Oxide-Based Thin Film Transistors

Authors: Soo-Yeon Lee, Seung-Min Song, Moon-Kyu Song, Woo-Geun Lee, Kap-Soo Yoon, Jang-Yeon Kwon, Min-Koo Han

Abstract:

We fabricated the inverted-staggered etch stopper structure oxide-based TFT and investigated the characteristics of oxide TFT under the 400 nm wavelength light illumination. When 400 nm light was illuminated, the threshold voltage (Vth) decreased and subthreshold slope (SS) increased at forward sweep, while Vth and SS were not altered when larger wavelength lights, such as 650 nm, 550 nm and 450 nm, were illuminated. At reverse sweep, the transfer curve barely changed even under 400 nm light. Our experimental results support that photo-induced hole carriers are captured by donor-like interface trap and it caused the decrease of Vth and increase of SS. We investigated the interface trap density increases proportionally to the photo-induced hole concentration at active layer.

Keywords: thin film transistor, oxide-based semiconductor, lightresponse

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
428 Preparation of Nanosized Iron Oxide and their Photocatalytic Properties for Congo Red

Authors: Akram Hosseinian, Hourieh Rezaei, Ali Reza Mahjoub

Abstract:

Nanostructured Iron Oxide with different morphologies of rod-like and granular have been suc-cessfully prepared via a solid-state reaction in the presence of NaCl, NaBr, NaI and NaN3, respectively. The added salts not only prevent a drastic increase in the size of the products but also provide suitable conditions for the oriented growth of primary nanoparticles. The formation mechanisms of these materials by solid-state reaction at ambient temperature are proposed. The photocatalytic experiments for congo red (CR) have demonstrated that the mixture of α-Fe2O3 and Fe3O4 nanostructures were more efficient than α-Fe2O3 nanostructures.

Keywords: Nano, Iron Oxide, Solid-State, Halide salts, Congored

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
427 Effects of Silicon Oxide Filler Material and Fibre Orientation on Erosive Wear of GF/EP Composites

Authors: M. Bagci, H. Imrek, Omari M. Khalfan

Abstract:

Materials added to the matrix help improving operating properties of a composite. This experimental study has targeted to investigate this aim where Silicon Oxide particles were added to glass fibre and epoxy resin at an amount of 15% to the main material to obtain a sort of new composite material. Erosive wear behavior of epoxy-resin dipped composite materials reinforced with glass fibre and Silicon Oxide under three different impingement angles (30°, 60° and 90°), three different impact velocities (23, 34 and 53 m/s), two different angular Aluminum abrasive particle sizes (approximately 200 and 400 μm) and the fibre orientation of 45° (45/-45) were investigated. In the test results, erosion rates were obtained as functions of impingement angles, impact velocities, particle sizes and fibre orientation. Moreover, materials with addition of Silicon Oxide filler material exhibited lower wear as compared to neat materials with no added filler material. In addition, SEM views showing worn out surfaces of the test specimens were scrutinized.

Keywords: Erosive wear, fibre orientation, GF/EP, silicon oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2518
426 Formation of Protective Silicide-Aluminide Coating on Gamma-TiAl Advanced Material

Authors: S. Nouri

Abstract:

In this study, the Si-aluminide coating was prepared on gamma-TiAl [Ti-45Al-2Nb-2Mn-1B (at. %)] via liquid-phase slurry procedure. The high temperature oxidation resistance of this diffusion coating was evaluated at 1100 °C for 400 hours. The results of the isothermal oxidation showed that the formation of Si-aluminide coating can remarkably improve the high temperature oxidation of bare gamma-TiAl alloy. The identification of oxide scale microstructure showed that the formation of protective Al2O3+SiO2 mixed oxide scale along with a continuous, compact and uniform layer of Ti5Si3 beneath the surface oxide scale can act as an oxygen diffusion barrier during the high temperature oxidation. The other possible mechanisms related to the formation of Si-aluminide coating and oxide scales were also discussed.

Keywords: Gamma-TiAl alloy, Si-aluminide coating, slurry procedure, high temperature oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
425 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant

Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov

Abstract:

Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.

Keywords: Catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
424 Identification and Classification of Plastic Resins using Near Infrared Reflectance Spectroscopy

Authors: Hamed Masoumi, Seyed Mohsen Safavi, Zahra Khani

Abstract:

In this paper, an automated system is presented for identification and separation of plastic resins based on near infrared (NIR) reflectance spectroscopy. For identification and separation among resins, a "Two-Filter" identification method is proposed that is capable to distinguish among polyethylene terephthalate (PET), high density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP) and polystyrene (PS). Through surveying effects of parameters such as surface contamination, sample thickness, label and cap existence, it was obvious that the "Two-Filter" method has a high efficiency in identification of resins. It is shown that accurate identification and separation of five major resins can be obtained through calculating the relative reflectance at two wavelengths in the NIR region.

Keywords: Identification, Near Infrared, Plastic, Separation, Spectroscopy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9913
423 Characterization of ZrO2/PEG Composite Film as Immobilization Matrix for Glucose Oxidase

Authors: N. M. Ahmad, J. Abdullah, N. I. Ramli, S. Abd Rahman, N. E. Azmi, Z. Hamzah, A. Saat, N. H. Rahman

Abstract:

A biosensor based on glucose oxidase (GOx) immobilized onto nanoparticles zirconium oxide with polyethylene nanocomposite for glucose monitoring has been designed. The CTAB/PEG/ZrO2/GOx nanocomposite was deposited onto screen printed carbon paste (SPCE) electrode via spin coating technique. The properties of CTAB/PEG/ZrO2/GOx were study using scanning electron microscopy (SEM). The SPE modified with the CTAB/PEG/ZrO2/GOx showed electrocatalytical response to the oxidation of glucose when ferrocene carboxaldehyde was used as an artificial redox mediator, which was studied by cyclic voltammetry (CV). Several parameters such as working potential, effect of pH and effect of ZrO2/PEG layers that governed the analytical performance of the biosensor, have been studied. The biosensor was applied to detect glucose with a linear range of 0.4 to 2.0 mmol L−1 with good repetability and reproducibility.

Keywords: Nanocomposite, Nanoparticles, Modified SPE, Ferrocenecarboxaldehyde.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
422 Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide

Authors: Ude N. Callistus, Amulu F. Ndidi, Onukwuli D. Okechukwu, Amulu E. Patrick

Abstract:

Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 oC. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr-1g-1cat, obtained at the temperature of 65 oC best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction.

Keywords: Refined cottonseed oil, transesterification, CaO, heterogeneous catalysts, kinetic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
421 Testing of Materials for Rapid Prototyping Fused Deposition Modelling Technology

Authors: L. Novakova-Marcincinova, J. Novak-Marcincin

Abstract:

Paper presents knowledge about types of test in area of materials properties of selected methods of rapid prototyping technologies. In today used rapid prototyping technologies for production of models and final parts are used materials in initial state as solid, liquid or powder material structure. In solid state are used various forms such as pellets, wire or laminates. Basic range materials include paper, nylon, wax, resins, metals and ceramics. In Fused Deposition Modeling (FDM) rapid prototyping technology are mainly used as basic materials ABS (Acrylonitrile Butadiene Styrene), polyamide, polycarbonate, polyethylene and polypropylene. For advanced FDM applications are used special materials as silicon nitrate, PZT (Piezoceramic Material - Lead Zirconate Titanate), aluminium oxide, hydroxypatite and stainless steel.

Keywords: Rapid prototyping, materials, testing of materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4365
420 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network

Authors: Nasrin Bakhshizadeh, Ashkan Forootan

Abstract:

A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.

Keywords: Polyethylene, polymerization, density, melt index, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
419 Hydrothermal Fabrication of Iodine Doped Titanium Oxide Films on Ti Substrate

Authors: M. P. Neupane, T. S. N. Sankara Narayanan, J. E. Park, Y. K. Kim, I. S. Park, K. Y. Song, T. S. Bae, M. H. Lee

Abstract:

Titanium oxide films with different morphologies have for the first time been fabricated through hydrothermal reactions between a titanium substrate and iodine powder in water or ethanol. SEM revealed that iodine supported titanium (Ti-I2) surface shows different morphologies with variable treatment conditions. The mean surface roughness (Ra) was increased in the different groups. Use of surfactant has a role to increase the roughness of the film. The surface roughness was in the range of 0.15 μm-0.42 μm. Furthermore, the electrochemical examinations showed that the Ti-I2 surface fabricated in alcoholic medium has high corrosion resistance than in aqueous medium.

Keywords: Corrosion, Hydrothermal, Surface roughness, Titanium oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
418 Serum Nitric Oxide and Sialic Acid: Possible Biochemical Markers for Progression of Diabetic Nephropathy

Authors: Syed M. Shahid, Rozeena Shaikh, Syeda N. Nawab, Shah A. Qader, Abid Azhar, Tabassum Mahboob

Abstract:

This study was designed to investigate the role of serum nitric oxide and sialic acid in the development of diabetic nephropathy as disease marker. Total 210 diabetic patients (age and sex matched) were selected followed by informed consent and divided into four groups (70 each) as I: control; II: diabetic; III: diabetic hypertensive; IV: diabetic nephropathy. The blood samples of all subjects were collected and analyzed for serum nitric oxide, sialic acid, fasting blood glucose, serum urea, creatinine, HbA1c and GFR. The BMI, systolic and diastolic blood pressures, blood glucose, HbA1c and serum sialic acid levels were high (p<0.01) in group II as compared to control subjects. The higher levels (p<0.01) of BMI, systolic and diastolic blood pressures, blood glucose, HbA1c, serum urea, creatinine and sialic acid were observed in group III and IV as compared to controls. Significantly low levels of GFR and serum nitric oxide (p<0.01) were observed in group III and IV as compared to controls. Results indicated that serum nitric oxide and sialic acid are the major biochemical indicators for micro and macrovascular complications of diabetes such as hypertension and nephropathy. These should be taken into account during screening procedures regarding identifications of the diabetic patients to get them rid of progressive renal impairment to ESRD.

Keywords: Diabetic nephropathy, hypertension, nitric oxide, sialic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
417 Titanium-Aluminum Oxide Coating on Aluminized Steel

Authors: Fuyan Sun, Guang Wang, Xueyuan Nie

Abstract:

In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminum oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviors of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behavior of the coating material.

Keywords: Corrosion, plasma electrolytic oxidation, thermal property, titanium-aluminum oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3541
416 In vitro and in vivo Anticancer Activity of Nanosize Zinc Oxide Composites of Doxorubicin

Authors: E. R. Arakelova, S. G. Grigoryan, F. G. Arsenyan, N. S. Babayan, R. M. Grigoryan, N. K. Sarkisyan

Abstract:

The nanotechnology offers some exciting possibilities in cancer treatment, including the possibility of destroying tumors with minimal damage to healthy tissue and organs by targeted drug delivery systems. Considerable achievements in investigations aimed at the use of ZnO nanoparticles and nanocontainers in diagnostics and antitumor therapy were described. However, there are substantial obstacles to the purposes to be achieved by the use of zinc oxide nanosize materials in antitumor therapy. Among the serious problems are the techniques of obtaining ZnO nanosize materials. The article presents a new vector delivery system for the known antitumor drug, doxorubicin in the form of polymeric (PEO, starch-NaCMC) hydrogels, in which nanosize ZnO film of a certain thickness are deposited directly on the drug surface on glass substrate by DC-magnetron sputtering of a zinc target. Anticancer activity in vitro and in vivo of those nanosize zinc oxide composites is shown.

Keywords: Anticancer activity, cancer specificity, doxorubicin, zinc oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4141
415 Microwave Absorption Properties of Low Density Polyethelene-Cobalt Ferrite Nanocomposite

Authors: R. Fazaeli, R. Eslami-Farsani, H. Targhagh

Abstract:

Low density polyethylene (LDPE) nanocomposites with 3, 5 and 7 wt. % cobalt ferrite (CoFe2O4) nanopowder fabricated with extrusion mixing and followed up by hot press to reach compact samples. The transmission/reflection measurements were carried out with a network analyzer in the frequency range of 8-12 GHz. By increasing the percent of CoFe2O4 nanopowder, reflection loss (S11) increases, while transferring loss (S21) decreases. Reflectivity (R) calculations made using S11 and S21. Increase in percent of CoFe2O4 nanopowder up to 7 wt. % in composite leaded to higher reflectivity amount, and revealed that increasing the percent of CoFe2O4 nanopowder up to 7 wt. % leads to further microwave absorption in 8-12 GHz range.

Keywords: Nanocomposite, Cobalt Ferrite, Low Density Polyethylene, Microwave Absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
414 Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation

Authors: Loai Ben Naji, Osama M. Ibrahim, Khaled J. Al-Fadhalah

Abstract:

The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al2O3, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 oC for 1 hour, followed by 1 hour at 960 oC, and finally at 990 oC for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al2O3 platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy.  Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts.

Keywords: High-temperature oxidation, alumina protective layer, iron-chromium-aluminum alloy, sintered-metal-fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 838
413 Mineralogical and Geochemical Characteristics of Serpentinite-Derived Ni-Bearing Laterites from Fars Province, Iran: Implications for the Lateritization Process and Classification of Ni-Laterites

Authors: S. Rasti, M. A. Rajabzadeh

Abstract:

Nickel-bearing laterites occur as two parallel belts along Sedimentary Zagros Orogenic (SZO) and Metamorphic Sanandaj-Sirjan (MSS) petrostructural zones, Fars Province, south Iran. An undisturbed vertical profile of these laterites includes protolith, saprolite, clay, and oxide horizons from base to top. Highly serpentinized harzburgite with relicts of olivine and orthopyroxene is regarded as the source rock. The laterites are unusual in lacking a significant saprolite zone with little development of Ni-silicates. Hematite, saponite, dolomite, smectite and clinochlore increase, while calcite, olivine, lizardite and chrysotile decrease from saprolite to oxide zones. Smectite and clinochlore with minor calcite are the major minerals in clay zone. Contacts of different horizons in laterite profiles are gradual and characterized by a decrease in Mg concentration ranging from 18.1 to 9.3 wt.% in oxide and saprolite, respectively. The maximum Ni concentration is 0.34 wt.% (NiO) in the base of the oxide zone, and goethite is the major Ni-bearing phase. From saprolite to oxide horizons, Al2O3, K2O, TiO2, and CaO decrease, while SiO2, MnO, NiO, and Fe2O3 increase. Silica content reaches up to 45 wt.% in the upper part of the soil profile. There is a decrease in pH (8.44-8.17) and an increase in organic matter (0.28-0.59 wt.%) from base to top of the soils. The studied laterites are classified in the oxide clans which were derived from ophiolite ultramafic rocks under Mediterranean climate conditions.

Keywords: Iran, laterite, mineralogy, ophiolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
412 Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs

Authors: Yu-Wei Chang, Hsuan-Yu Ku, Jo-Shan Chiu, Shao-Fu Chang, Chien-Chon Chen

Abstract:

This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H2SO4), oxalic acid (COOH)2, and phosphoric acid (H3PO4), respectively. TiO2-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO2-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables.

Keywords: Anodic aluminum oxide, nanotube, anodization, Sol-Gel, hydrophilicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
411 Study of Metakaolin-Based Geopolymer with Addition of Polymer Admixtures

Authors: Olesia Mikhailova, Pavel Rovnaník

Abstract:

In the present work, metakaolin-based geopolymer including different polymer admixtures was studied. Different types of commercial polymer admixtures VINNAPAS® and polyethylene glycol of different relative molecular weight were used as polymer admixtures. The main objective of this work is to investigate the influence of different types of admixtures on the properties of metakaolin-based geopolymer mortars considering their different dosage. Mechanical properties, such as flexural and compressive strength were experimentally determined. Also, study of the microstructure of selected specimens by using a scanning electron microscope was performed. The results showed that the specimen with addition of 1.5% of VINNAPAS® 7016 F and 10% of polyethylene glycol 400 achieved maximum mechanical properties.

Keywords: Metakaolin, geopolymer, polymer admixtures, mechanical properties, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
410 Adsorption of Bovine Serum Albumin on CeO2

Authors: Roman Marsalek

Abstract:

Preparation of nanoparticles of cerium oxide and adsorption of bovine serum albumin on them were studied. Particle size distribution and influence of pH on zeta potential of prepared CeO2 were determined. Average size of prepared cerium oxide nanoparticles was 9 nm. The simultaneous measurements of the bovine serum albumin adsorption and zeta potential determination of the (adsorption) suspensions were carried out. The adsorption isotherms were found to be of typical Langmuir type; values of the bovine serum albumin adsorption capacities were calculated. Increasing of pH led to decrease of zeta potential and decrease of adsorption capacity of cerium oxide nanoparticles. The maximum adsorption capacity was found for strongly acid suspension (am = 118 mg/g). The samples of nanoceria with positive zeta potential adsorbed more bovine serum albumin on the other hand, the samples with negative zeta potential showed little or no protein adsorption. Surface charge or better say zeta potential of CeO2 nanoparticles plays the key role in adsorption of proteins on such type of materials.

Keywords: Adsorption, BSA, cerium oxide nanoparticles, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2990
409 Study of the Oxidation Resistance of Coated AISI 441 Ferritic Stainless Steel for SOFCs

Authors: M. B. Limooei, Hadi Ebrahimifar, Sh. Hosseini

Abstract:

Protective coatings that resist oxide scale growth and decrease chromium evaporation are necessary to make stainless steel interconnect materials for long-term durable operation of solid oxide fuel cells (SOFCs). In this study a layer of cobalt was electroplated on the surface of AISI 441 ferritic stainless steel which is used in solid oxide fuel cells for interconnect applications. The oxidation behavior of coated substrates was studied as a function of time at operating conditions of SOFCs. Cyclic oxidation has been also tested at 800ºC for 100 cycles. Cobalt coating during isothermal oxidation caused to the oxide growth resistance by limiting the outward diffusion of Cr cation and the inward diffusion of oxygen anion. Results of cyclic oxidation exhibited that coated substrates demonstrate an excellent resistance against the spallation and cracking.

Keywords: Oxidation resistance, full cell, Cobalt coating, ferritic stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
408 Signal and Thermodynamic Analysis for Evaluation of Thermal and Power of Gas Turbine-Solid Oxide Fuel Cell Hybrid System

Authors: R. Mahjoub, K. Maghsoudi Mehraban

Abstract:

In recent years, solid oxide fuel cells have been used as one of the main technologies for the production of electrical energy with high-efficiency ratio, which is used hydrogen and other hydrocarbons as fuels. The fuel cell technology can be used either alone or in hybrid gas turbines systems. In this study, thermodynamics analysis for GT-SOFC hybrid system is developed, and then mass balance and exergy equations have been applied not only on the process but also on the individual components of the hybrid system, which enable us to estimate the thermal efficiency of the hybrid systems. Furthermore, various sources of irreversibility in the solid oxide fuel cell system are discussed, and modeling and parametric analyses like heat and pressure are carried out. This study enables us to consider the irreversible effects of solid oxide fuel cells, and also it leads to the specification of efficiency of the system accurately. Next in the study, both methane and hydrogen as a fuel for SOFC are used and implemented, and finally, our results are compared with other references.

Keywords: hybrid system, gas turbine, entropy and exergy analysis, irreversibility analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426
407 New Drug Delivery System for Cancer Therapy

Authors: Emma R. Arakelova, Stepan G. Grigoryan, Ashot M. Khachatryan, Karapet E. Avjyan, Lilia M. Savchenko, Flora G. Arsenyan

Abstract:

The paper presents a new drugs delivery system, based on the thin film technology. As a model antitumor drug, highly toxic doxorubicin is chosen. The system is based on the technology of obtaining zinc oxide composite of doxorubicin by deposition of nanosize ZnO films on the surface of doxorubicin coating on glass substrate using DC magnetron sputtering of zinc targets in Ar:O2 medium at room temperature. For doxorubicin zinc oxide compositions in the form of coatings and gels with 180-200nm thick ZnO films, higher (by a factor 2) in vivo (ascitic Ehrlich's carcinoma) antitumor activity is observed at low doses of doxorubicin in comparison with that of the initial preparation at therapeutic doses. The vector character of the doxorubicin zinc oxide composite transport to tumor tissues ensures the increase in antitumor activity as well as decrease of toxicity in comparison with the initial drug.

Keywords: Antitumor activity, doxorubicin, DC magnetron sputtering, zinc oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554
406 Synthesis and Electrochemical Characterization of Iron Oxide / Activated Carbon Composite Electrode for Symmetrical Supercapacitor

Authors: PoiSim Khiew, MuiYen Ho, ThianKhoonTan, WeeSiong Chiu, Roslinda Shamsudin, Muhammad Azmi Abd-Hamid, ChinHua Chia

Abstract:

In the present work, we have developed a symmetric electrochemical capacitor based on the nanostructured iron oxide (Fe3O4)-activated carbon (AC) nanocomposite materials. The physical properties of the nanocomposites were characterized by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the composite electrode in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The composite electrode with 4 wt% of iron oxide nanomaterials exhibits the highest capacitance of 86 F/g. The experimental results clearly indicate that the incorporation of iron oxide nanomaterials at low concentration to the composite can improve the capacitive performance, mainly attributed to the contribution of the pseudocapacitance charge storage mechanism and the enhancement on the effective surface area of the electrode. Nevertheless, there is an optimum threshold on the amount of iron oxide that needs to be incorporated into the composite system. When this optimum threshold is exceeded, the capacitive performance of the electrode starts to deteriorate, as a result of the undesired particle aggregation, which is clearly indicated in the SEM analysis. The electrochemical performance of the composite electrode is found to be superior when Na2SO3 is used as the electrolyte, if compared to the Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO3 2-) anions which act as catalysts for subsequent redox and intercalation reactions.

Keywords: Metal oxide nanomaterials, Electrochemical Capacitor, Double Layer Capacitance, Pseduocapacitance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5581
405 Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable

Authors: R. Thiamsri, N. Ruangkajonmathee, A. Oonsivilaiand B. Marungsri

Abstract:

This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.

Keywords: Voltage stress frequency, cross-linked polyethylene, electrical treeing, treeing propagation, treeing pattern

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
404 Bactericidal Properties of Carbohydrate-Stabilized Platinum Oxide Nanoparticles

Authors: Saeed Rezaei-Zarchi

Abstract:

Platinum oxide nanoparticles were prepared by a simple hydrothermal route and chemical reduction using carbohydrates (Fructose and sucrose) as the reducing and stabilizing agents. The crystallite size of these nanoparticles was evaluated from X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and was found to be 10 nm as shown in figure 1, which is the demonstration of EM bright field and transmission electron microscopy. The effect of carbohydrates on the morphology of the nanoparticles was studied using TEM (Figure 1). The nanoparticles (100 μg/ml) were administered to the Pseudomonas Stutzeri and Lactobacillus cultures and the incubation was done at 35 oC for 24 hours. The nanocomposites exhibited interesting inhibitory as well as bactericidal activity against P. Stutzeri and and Lactobacillus species. Incorporation of nanoparticles also increased the thermal stability of the carbohydrates.

Keywords: Platinum oxide, P. Stutzeri, Lactobacillus, bactericidal effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
403 Ultrasonic Investigation of Molecular Interaction in Binary Liquid Mixture of Polyethylene Glycol with Ethanol

Authors: S. Grace Sahaya Sheba, R. Omegala Priakumari

Abstract:

Polyethylene glycol (PEG) is a condensation polymer of ethylene oxide and water. It is soluble in water and in many organic solvents. PEG is used to make emulsifying agents, detergents, soaps, plasticizers, ointments etc. Ethanol (C2H5OH) also known as ethyl alcohol is a well-known organic compound and has wide applications in chemical industry as it is used as a solvent for paint, varnish, in preserving biological specimens, used as a fuel mixed with petrol etc. Though their chemical and physical properties are already studied, still because of their uses in day to day life the authors thought it is better to study some more of their physical properties like ultrasonic velocity and hence adiabatic compressibility, free length, etc. A detailed study of such properties and some excess parameters like excess adiabatic compressibility, excess free volume and few more in the liquid mixtures of these two compounds with PEG as a solute and Ethanol as a solvent at various mole fractions may throw some light on deeper understanding of molecular interaction between the solute and the solvent supported by NMR, IR etc. Hence the present research work is on ultrasonics/allied studies on these two liquid mixtures. Ultrasonic velocity (U), density (ρ) and viscosity (η) at room temperature and at different mole fraction from 0 to 0.055 of ethanol in PEG have been experimentally carried out by the authors. Acoustical parameters such as adiabatic compressibility (β), free volume (Vf), acoustic impedance (Z), internal pressure (πi), intermolecular free length (Lf) and relaxation time (τ) were calculated from the experimental data. We have calculated excess parameters like excess adiabatic compressibility (βE), excess internal pressure (πiE) free length (LfE) and excess acoustic impedance (ZE) etc for these two chosen liquid mixtures. The excess compressibility is positive and maximum around a mole fraction 0.007 and excess internal pressure is negative and maximum at the same mole fraction and longer free length. The results are analyzed and it may be concluded that the molecular interactions between the solute and the solvent is not strong and it may be weak. Appropriate graphs are drawn.

Keywords: Adiabatic Compressibility, Binary mixture, Induce dipole, Polarizability, Ultrasonic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744