Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Microwave Absorption Properties of Low Density Polyethelene-Cobalt Ferrite Nanocomposite
Authors: R. Fazaeli, R. Eslami-Farsani, H. Targhagh
Abstract:
Low density polyethylene (LDPE) nanocomposites with 3, 5 and 7 wt. % cobalt ferrite (CoFe2O4) nanopowder fabricated with extrusion mixing and followed up by hot press to reach compact samples. The transmission/reflection measurements were carried out with a network analyzer in the frequency range of 8-12 GHz. By increasing the percent of CoFe2O4 nanopowder, reflection loss (S11) increases, while transferring loss (S21) decreases. Reflectivity (R) calculations made using S11 and S21. Increase in percent of CoFe2O4 nanopowder up to 7 wt. % in composite leaded to higher reflectivity amount, and revealed that increasing the percent of CoFe2O4 nanopowder up to 7 wt. % leads to further microwave absorption in 8-12 GHz range.Keywords: Nanocomposite, Cobalt Ferrite, Low Density Polyethylene, Microwave Absorption.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1110774
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020References:
[1] H. M. Xiao, X. M. Liu, and S. Y. Fu, “Synthesis, magnetic and microwave absorbing properties of core-shell structured MnFe2O4/TiO2 nanocomposites”, Composites Science and Technology, vol. 66, pp. 2003–2008, 2006.
[2] M. Pardavi-Horvath, “Microwave applications of soft ferrites”, Journal of Magnetism and Magnetic Materials, vol. 215-216, pp. 171–183, 2000.
[3] P. C. Fannin, C. N. Marin, I. Malaescu, N. Stefu, P. Vlazan, S. Novanconi, P. Sfirloaga, S. Popescu, and C. Couper, “Microwave absorbent properties of nanosized cobalt ferrite powders prepared by coprecipitation and subjected to different thermal treatment”, Materials and Design, vol. 32, pp. 1600-1604, 2011.
[4] M. M. El-Okr, M. A. Salem, M. S. Salim, R. M. El-Okr, M. Ashoush, H. M. Talaat, “Synthesis of cobalt ferrite nano-particles and their magnetic characterization”, Journal of Magnetism and Magnetic Materials, vol. 323, pp. 920-926, 2011.
[5] J. G. Lee, J. Y. Park, and C. S. Kim, “Growth of ultra-fine cobalt ferrite particles by a sol-gel method and their magnetic properties”, Journal of Materials Science, vol. 33, pp. 3965-3968, 1998.
[6] D. Zhao, X. Wu, H. Guan, and E. Han, ‘Study on supercritical hydrothermal synthesis of CoFe2O4 nanoparticles’, Journal of Supercritical Fluids, vol. 42, pp. 226–233, 2007.
[7] T. S. Karpova, V. G. Vasilyev, E. V. Vladimirova, and A. P. Nosov, “Effect of synthesis on the magnetostrictive properties of CoFe2O4 spinel ferrite”, Bulletin of the Russian Academy of Sciences: Physics, vol. 75, pp. 1036–1038, 2011.
[8] E. V. Gopalan, P. A. Joy, I. A. Al-Omari, D. Sakthi Kumar, Y. Yoshida, and M. R. Anantharaman, “On the structural, magnetic and electrical properties of sol-gel derived nanosized cobalt ferrite”, Journal of Alloys and Compounds, vol. 485, pp. 711-717, 2009.
[9] C. H. Chen, M. H. J. Emond, E. M. Kelder, B. Meester, and J. Schoonman, “Electrostatic sol-spray deposition of nanostructured ceramic thin films”, Journal of Aerosol Science, vol. 30, pp. 959-967, 1999.
[10] D. R. Chen, D. Y. H. Pui, and S. L. Kaufman, “Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range”, Journal of Aerosol Science, vol. 26, pp. 963- 977, 1995.
[11] B. G. Tosksha, S. E. Shirsath, S. M. Patange, and K. M. Jadhav, “Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method”, Solid State Communications, vol. 147, pp. 479-483, 2008.
[12] B. Vishwanathan, and V. R. K. Moorthy, Ferrite Materials: Science and Thechnology, Springer Verlag, New Delhi, 1990
[13] N. Sivakumar, A. Narayanasamy, K. Shinoda, C. N. Chinnasamy, B. Jeyadevan, and J. M. Greneche, “Electrical a magnetic properties of chemically derived nanocrystalline cobalt ferrite”, Journal of applied Physics, vol. 102, pp. 013916-013918, 2007.
[14] N. Gandhi, K. Singh, A. Ohlan, D. P. Singh, and S. K. Dhawan, “Thermal, dielectric and microwave absorption properties of polyaniline-CoFe2O4 nanocomposite”, Composite Science and Technology, vol. 71, pp. 1754-1760, 2011.
[15] D. W. Chae, and B. C. Kim, “Thermal and rheological properties of highly concentrated PET composites with ferrite nanoparticles”, Composite Science and Technology, vol. 67, pp. 1348-1352, 2007.
[16] P. Koskela, M. Teirikangas, A. Alastalo, J. Forsman, J. Juuti, U. Tapper, A. Auvinen, H. Seppa, H. Jantunen, and J. Jokiniemi, “Synthesis of cobalt nanoparticles to enhance magnetic permeability of metal-polymer composites”, Advanced powder Technology, vol. 22, pp. 649-656, 2011.
[17] R. T. Ma, H. T. Zhao, G. Zhang, “Preparation, characterization and microwave absorption properties of polyaniline/Co0.5Zn0.5Fe2O4 nanocomposite”, Material Research Bulletin, vol. 45, pp. 1064-1068, 2010.
[18] S. P. Gairola, V. Verma, L. Kumar, M. Abdullah Dar, S. Annapoorni, and R. K. Kotnala, “Enhanced Microwave absorption properties in polyaniline and nano-ferrite composite in X-band”, Synthetic Metals, vol. 160, pp. 2315-2318, 2010.
[19] X. Yu, G. Lin, D. Zhang, and H. He, “An optimizing method for design of microwave absorbing materials”, Materials and Design, vol. 27, pp. 700–705, 2006.
[20] L. F. Chen, C. K. Ong, C. P. Neo, V. V. Vardan, and V. K. Varadan, Microwave electronics measurement and material characterization, John Wiley & Sons, Ltd., England, 2004.
[21] A. Pradeep, and G. Chandrasekaran, “FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4”, Materials Letters, vol. 60, pp. 371-374, 2006.
[22] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading, 1978.
[23] V. Biju, N. Sugathan, V. Vrinda, and S. L. Salini, “Estimation of lattice strain in nanocrystalline silver from X-ray diffraction line broadening”, Journal of Materials Science, vol. 43, pp. 1175-1179, 2008.