Search results for: fermentation materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1788

Search results for: fermentation materials

1608 Optimization of Lipase Production Using Bacillus subtilis by Response Surface Methodology

Authors: A. Shyamala Devi, K. Chitra Devi, R. Rajendiran

Abstract:

A total of 6 isolates of Bacillus subtilis were isolated from oil mill waste collected in Namakkal district, Tamilnadu, India. The isolated bacteria were screened using lipase screening medium containing Tween 80. BS-3 isolate exhibited a greater clear zone than the others, indicating higher lipase activity. Therefore, this isolate was selected for media optimization studies. Ten process variables were screened using Plackett–Burman design and were further optimized by central composite design of response surface methodology for lipase production in submerged fermentation. Maximum lipase production of 16.627 U/min/ml were predicted in medium containing yeast extract (9.3636g), CaCl2 (0.8986g) and incubation periods (1.813 days). A mean value of 16.98 ± 0.2286 U/min/ml of lipase was acquired from real experiments.

Keywords: Bacillus subtilis, extracellular lipase, Plackett–Burman design, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4101
1607 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE).

All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging.

Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH.

The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: Polymer packaging, life cycle assessment, resource efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4416
1606 Preparation and Some Mechanical Properties of Composite Materials Made from Sawdust, Cassava Starch and Natural Rubber Latex

Authors: Apusraporn Prompunjai, Waranyou Sridach

Abstract:

The composite materials were prepared by sawdust, cassava starch and natural rubber latex (NR). The mixtures of 15%w/v gelatinized cassava starch and 15%w/v PVOH were used as the binder of these composite materials. The concentrated rubber latex was added to the mixtures. They were mixed rigorously to the treated sawdust in the ratio of 70:30 until achive uniform dispersion. The batters were subjected to the hot compression moulding at the temperature of 160°C and 3,000 psi pressure for 5 min. The experimental results showed that the mechanical properties of composite materials, which contained the gelatinized cassava starch and PVOH in the ratio of 2:1, 20% NR latex by weight of the dry starch and treated sawdust with 5%NaOH or 1% BPO, were the best. It contributed the maximal compression strength (341.10 + 26.11 N), puncture resistance (8.79 + 0.98 N/mm2) and flexural strength (3.99 + 0.72N/mm2). It is also found that the physicochemical and mechanical properties of composites strongly depends on the interface quality of sawdust, cassava starch and NR latex.

Keywords: Composites, sawdust, cassava starch, natural rubber (NR) latex, surface chemical treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4057
1605 Adoption of Appropriate and Cost Effective Technologies in Housing: Indian Experience

Authors: A. K. Jain, M. C. Paliwal

Abstract:

Construction cost in India is increasing at around 50 per cent over the average inflation levels. It have registered increase of up to 15 per cent every year, primarily due to cost of basic building materials such as steel, cement, bricks, timber and other inputs as well as cost of labour. As a result, the cost of construction using conventional building materials and construction is becoming beyond the affordable limits particularly for low-income groups of population as well as a large cross section of the middle - income groups. Therefore, there is a need to adopt cost-effective construction methods either by up-gradation of traditional technologies using local resources or applying modern construction materials and techniques with efficient inputs leading to economic solutions. This has become the most relevant aspect in the context of the large volume of housing to be constructed in both rural and urban areas and the consideration of limitations in the availability of resources such as building materials and finance. This paper makes an overview of the housing status in India and adoption of appropriate and cost effective technologies in the country.

Keywords: Appropriate, Cost Effective, Ekra, Five year plan, Poverty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4922
1604 Physio-mechanical Properties of Aluminium Metal Matrix Composites Reinforced with Al2O3 and SiC

Authors: D. Sujan, Z. Oo, M. E. Rahman, M. A. Maleque, C. K. Tan

Abstract:

Particulate reinforced metal matrix composites (MMCs) are potential materials for various applications due to their advantageous of physical and mechanical properties. This paper presents a study on the performance of stir cast Al2O3 SiC reinforced metal matrix composite materials. The results indicate that the composite materials exhibit improved physical and mechanical properties, such as, low coefficient of thermal expansion, high ultimate tensile strength, high impact strength, and hardness. It has been found that with the increase of weight percentage of reinforcement particles in the aluminium metal matrix, the new material exhibits lower wear rate against abrasive wearing. Being extremely lighter than the conventional gray cast iron material, the Al-Al2O3 and Al-SiC composites could be potential green materials for applications in the automobile industry, for instance, in making car disc brake rotors.

Keywords: Metal Matrix Composite, Strength to Weight Ratio, Wear Rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5910
1603 Bioethanol Production from Enzymatically Saccharified Sunflower Stalks Using Steam Explosion as Pretreatment

Authors: Pilanee Vaithanomsat, Sinsupha Chuichulcherm, Waraporn Apiwatanapiwat

Abstract:

Sunflower stalks were analysed for chemical compositions: pentosan 15.84%, holocellulose 70.69%, alphacellulose 45.74%, glucose 27.10% and xylose 7.69% based on dry weight of 100-g raw material. The most optimum condition for steam explosion pretreatment was as follows. Sunflower stalks were cut into small pieces and soaked in 0.02 M H2SO4 for overnight. After that, they were steam exploded at 207 C and 21 kg/cm2 for 3 minutes to fractionate cellulose, hemicellulose and lignin. The resulting hydrolysate, containing hemicellulose, and cellulose pulp contained xylose sugar at 2.53% and 7.00%, respectively.The pulp was further subjected to enzymatic saccharification at 50 C, pH 4.8 citrate buffer) with pulp/buffer 6% (w/w)and Celluclast 1.5L/pulp 2.67% (w/w) to obtain single glucose with maximum yield 11.97%. After fixed-bed fermentation under optimum condition using conventional yeast mixtures to produce bioethanol, it indicated maximum ethanol yield of 0.028 g/100 g sunflower stalk.

Keywords: Enzymatic, steam explosion, sunflower stalk, ethanol production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
1602 Hydrogen Production from Alcohol Wastewater by Upflow Anaerobic Sludge Blanket Reactors under Mesophilic Temperature

Authors: Thipsalin Poontaweegeratigarn, Sumaeth Chavadej, Pramoch Rangsunvigit

Abstract:

In this work, biohydrogen production via dark fermentation from alcohol wastewater using upflow anaerobic sludge blanket reactors (UASB) with a working volume of 4 L was investigated to find the optimum conditions for a maximum hydrogen yield. The system was operated at different COD loading rates (23, 31, 46 and 62 kg/m3d) at mesophilic temperature (37 ºC) and pH 5.5. The seed sludge was pretreated before being fed to the UASB system by boiling at 95 ºC for 15 min. When the system was operated under the optimum COD loading rate of 46 kg/m3d, it provided the hydrogen content of 27%, hydrogen yield of 125.1 ml H2/g COD removed and 95.1 ml H2/g COD applied, hydrogen production rate of 18 l/d, specific hydrogen production rate of 1080 ml H2/g MLVSS d and 1430 ml H2/ L d, and COD removal of 24%.

Keywords: Hydrogen production, Upflow anaerobic sludge blanket reactor (UASB), Optimum condition, Alcohol wastewater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
1601 A Visco-elastic Model for High-density Cellulose Insulation Materials

Authors: Jonas Engqvist, Per Hard af Segerstad, Birger Bring, Mathias Wallin

Abstract:

A macroscopic constitutive equation is developed for a high-density cellulose insulation material with emphasis on the outof- plane stress relaxation behavior. A hypothesis is proposed where the total stress is additively composed by an out-of-plane visco-elastic isotropic contribution and an in-plane elastic orthotropic response. The theory is validated against out-of-plane stress relaxation, compressive experiments and in-plane tensile hysteresis, respectively. For large scale finite element simulations, the presented model provides a balance between simplicity and capturing the materials constitutive behaviour.

Keywords: Cellulose insulation materials, constitutive modelling, material characterisation, pressboard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
1600 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations

Authors: S. Meziane, H. I. Faraoun, C. Esling

Abstract:

Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.

Keywords: Ab initio, high efficiency, power generation devices, transition metal dichalcogenides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
1599 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A. Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

PLA emerged as a promising polymer because of its property as a compostable, biodegradable thermoplastic made from renewable sources. PLA can be polymerized from monomers (Lactide or Lactic acid) obtained by fermentation processes from renewable sources such as corn starch or sugarcane. For PLA synthesis, ring opening polymerization (ROP) of Lactide monomer is one of the preferred methods. In the literature, the technique mainly developed for ROP of PLA is based on metal/bimetallic catalyst (Sn, Zn and Al) or other organic catalysts in suitable solvent. However, the PLA synthesized using such catalysts may contain trace elements of the catalyst which may cause toxicity. This work estimated the usefulness and drawbacks of using different catalysts as well as effect of alternative energies and future aspects for PLA production.

Keywords: Alternative energy, bio-degradable, metal catalyst, poly lactic acid (PLA), ring opening polymerization (ROP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
1598 Biodegradation of Lignocellulosic Residues of Water Hyacinth (Eichhornia crassipes) and Response Surface Methodological Approach to Optimize Bioethanol Production Using Fermenting Yeast Pachysolen tannophilus NRRL Y-2460

Authors: A. Manivannan, R. T. Narendhirakannan

Abstract:

The objective of this research was to investigate biodegradation of water hyacinth (Eichhornia crassipes) to produce bioethanol using dilute-acid pretreatment (1% sulfuric acid) results in high hemicellulose decomposition and using yeast (Pachysolen tannophilus) as bioethanol producing strain. A maximum ethanol yield of 1.14g/L with coefficient, 0.24g g-1; productivity, 0.015g l-1h-1 was comparable to predicted value 32.05g/L obtained by Central Composite Design (CCD). Maximum ethanol yield coefficient was comparable to those obtained through enzymatic saccharification and fermentation of acid hydrolysate using fully equipped fermentor. Although maximum ethanol concentration was low in lab scale, the improvement of lignocellulosic ethanol yield is necessary for large scale production.

Keywords: Acid hydrolysis, Biodegradation, Hemicellulose, Pachysolen tannophilus, Water hyacinth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
1597 Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage

Authors: Parastou Kharazmi, Folke Björk

Abstract:

Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing.

Keywords: Composite, epoxy, polyester, relining, sewage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
1596 Industrial Production and Clinical Application of L-Asparaginase: A Chemotherapeutic Agent

Authors: Soni Yadav, Sitansu Kumar Verma, Jitendra Singh, Ajay Kumar

Abstract:

This article comprises detail information about L-asparaginase, encompassing topic such as various sources of L-asparaginase, mechanism and properties of L-asparaginase. Also describe the production, cultivation and purification of L-asparaginase along with information about the application of L-asparaginase. L-asparaginase catalyzes the conversion reaction to convert asparagine to aspartic acid and ammonia. Asparagine is a nutritional requirement for both normal and tumor cell. Present scenario has found that L-asparaginase has been found to be a best anti tumor or antileukemic agent. In the recent years this enzyme gained application in the field of clinical research pharmacologic and food industry. It has been characterized based on the enzyme assay principle hydrolyzing L-asparagine into L-aspartic acid and ammonia. It has been observed that eukaryotic microorganisms such as yeast and filamentous fungi have a potential for L-asparaginase production. L-asparaginase has been and is still one of the most lengthily studied therapeutic enzymes by scientist and researchers worldwide.

Keywords: L-asparaginase, antitumor, solid state fermentation, chemotherapeutic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6870
1595 Identification Characterization and Production of Phytase from Endophytic Fungi

Authors: Yetti Marlida , Rina Delfita , Neni Gusmanizar, Gita Ciptaan

Abstract:

Phytases are acid phosphatase enzymes, which efficiently cleave phosphate moieties from phytic acid, thereby generating myo-inositol and inorganic phosphate. Thirty four isolates of endophytic fungi to produce of phytases were isolated from leaf, stem and root fragments of soybean. Screening of 34 isolates of endophytic fungi identified the phytases produced by Rhizoctonia sp. and Fusarium verticillioides . The phytase production were the best induced by phytic acid and rice bran compared the others inducer in submerged fermentation medium used. The phytase produced by both Rhizoctonia sp. and F. verticillioides have pH optimum at 4.0 and 5.0 respectively. The characterization of phytase from Fusarium verticillioides showed that temperature optimum was 500C and stability until 600C, the pH optimum 5.0 and pH stability was 2.5 – 6.0, and substrate specificity were rice bran>soybean meal>corn> coconut cake, respectively.

Keywords: endophytic fungus, phytase, soybean, Rhizoctoniasp., Fusarium verticillioides,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
1594 Project Base Learning for IT Personnel Resources Development using TVML

Authors: Tansuriyavong Suriyon, Endo Takanobu, Boonmee Choompol

Abstract:

Using the animations video of teaching materials is an effective learning method. However, we thought that more effective learning method is to produce the teaching video by learners themselves. The learners who act as the producer must learn and understand well to produce and present video of teaching materials to others. The purpose of this study is to propose the project based learning (PBL) technique by co-producing video of IT (information technology) teaching materials. We used the T2V player to produce the video based on TVML a TV program description language. By proposed method, we have assigned the learners to produce the animations video for “National Examination for Information Processing Technicians (IPA examination)" in Japan, in order to get them learns various knowledge and skill on IT field. Experimental result showed that learning effect has occurred at the video production process that useful for IT personnel resources development.

Keywords: TVML , T2V Player, The animation made as learning materials, National Examination for Information Processing Technicians, IT Education, Problem Based Learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
1593 Producing New Composite Materials by Using Tragacanth and Waste Ash

Authors: Yasar Bicer, Serif Yilmaz

Abstract:

In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conductivity decreases with increasing amount of tragacanth in the mixture. The compressive, tensile strength increases when the rate of tragacanth is up to 1%, whilst as the amount of tragacanth increases up to 1.5%, the compressive, tensile strength decreases slightly. The rate of water absorption of samples was more than 30%. From this result, it is concluded that these materials can not be used as external plaster or internal plaster material that faces to water. They can be used in internal plaster unless touching water and they can be used as cover plaster under roof and riprap material in sandwich panels. It is also found that, these materials can be cut with saw, drilled with screw and painted with any kind of paint.

Keywords: Fly ash, tragacanth, cement, composite material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
1592 A Simulation Study of E-Glass Reinforced Polyurethane Footbed and Investigation of Parameters Effecting Elastic Behaviour of Footbed Material

Authors: Berkay Ergene, Çağın Bolat

Abstract:

In this study, we mainly focused on a simulation study regarding composite footbed in order to contribute to shoe industry. As a footbed, e-glass fiber reinforced polyurethane was determined since polyurethane based materials are already used for footbed in shoe manufacturing frequently. Flat, elliptical and rectangular grooved shoe soles were modeled and analyzed separately as TPU, 10% glass fiber reinforced, 30% glass fiber reinforced and 50% glass fiber reinforced materials according to their properties under three point bending and compression situations to determine the relationship between model, material type and mechanical behaviours of composite model. ANSYS 14.0 APDL mechanical structural module is utilized in all simulations and analyzed stress and strain distributions for different footbed models and materials. Furthermore, materials constants like young modulus, shear modulus, Poisson ratio and density of the composites were calculated theoretically by using composite mixture rule and interpreted for mechanical aspects.

Keywords: Composite, elastic behaviour, footbed, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
1591 Atmospheric Plasma Innovative Roll-to-Roll Machine for Continuous Materials

Authors: I. Kulyk, M. Stefan

Abstract:

Atmospheric plasma is emerging as a promising technology for many industrial sectors, because of its ecological and economic advantages respect to the traditional production processes. For textile industry, atmospheric plasma is becoming a valid alternative to the conventional wet processes, but the plasma machines realized so far do not allow the treatment of fibrous mechanically weak material. Novel atmospheric plasma machine for industrial applications, developed by VenetoNanotech SCpA in collaboration with Italian producer of corona equipment ME.RO SpA is presented. The main feature of this pre-industrial scale machine is the possibility of the inline plasma treatment of delicate fibrous substrates such as fibre sleeves, for example wool tops, cotton fibres, polymeric tows, mineral fibers and so on, avoiding burnings and disruption of the faint materials.

Keywords: Atmospheric plasma, industrial machine, fibrous materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
1590 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications

Authors: Manisha A. Hira, Arup Rakshit

Abstract:

Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.

Keywords: Carbon fiber, hybrid yarns, electrostatic dissipative fabrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
1589 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials

Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin

Abstract:

Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.

Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
1588 Microbial Oil Production by Isolated Oleaginous Yeast Torulaspora globosa YU5/2

Authors: Ratanaporn Leesing, Ratanaporn Baojungharn

Abstract:

Microbial oil was produced by soil isolated oleaginous yeast YU5/2 in flask-batch fermentation. The yeast was identified by molecular genetics technique based on sequence analysis of the variable D1/D2 domain of the large subunit (26S) ribosomal DNA and it was identified as Torulaspora globosa. T. globosa YU5/2 supported maximum values of 0.520 g/L/d, 0.472 g lipid/g cells, 4.16 g/L, and 0.156 g/L/d for volumetric lipid production rate, and specific yield of lipid, lipid concentration, and specific rate of lipid production respectively, when culture was performed in nitrogen-limiting medium supplemented with 80g/L glucose. Among the carbon sources tested, maximum cell yield coefficient (YX/S, g/L), maximum specific yield of lipid (YP/X, g lipid/g cells) and volumetric lipid production rate (QP, g/L/d) were found of 0.728, 0.237, and 0.619, respectively, using sweet potato tubers hydrolysates as carbon source.

Keywords: Microbial oil, oleaginous yeast, Torulasporaglobosa YU5/2, sweet potato tubers, kinetic parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
1587 Determination of Effective Variables on Arachidonic Acid Production by Mortierella alpina CBS 754.68in Solid-State Fermentation using Plackett-Burman Screening Design

Authors: Z. Ghobadi, Z. Hamidi- Esfahani, M. H. Azizi

Abstract:

In the present study, the oleaginous fungus Mortierella alpina CBS 754.68 was screened for arachidonic acidproduction using inexpensive agricultural by-products as substrate. Four oilcakes were analysed to choose the best substrate among them. Sunflower oilcake was the most effective substrate for ARA production followed by soybean, colza and olive oilcakes. In the next step, seven variables including substrate particle size, moisture content, time, temperature, yeast extract supply, glucose supply and glutamate supply were surveyed and effective variables for ARA production were determined using a Plackett-Burman screening design. Analysis results showed that time (12 days), substrate particle size (1-1.4 mm) and temperature (20ºC) were the most effective variables for the highest level of ARA production respectively.

Keywords: Arachidonic acid, Mortierella alpine, Solid-statefermentation, Plackett-Burman design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
1586 Effects of Specific Essential Oil Compounds on, Feed Intake, Milk Production, and Ruminal Environment in Dairy Cows during Heat Exposure

Authors: K. Reza-Yazdi, M. Fallah, M. Khodaparast, F. Kateb, M. Hosseini-Ghaffari

Abstract:

The objective of this study was to determine effect of dietary essential oil (EO) compounds, which contained cinnamaldehyde, eugenol, peppermint, coriander, cumin, lemongrass, and an organic carrier on feed intake, milk composition, and rumen fermentation of dairy cows during heat exposure. Thirty-two Holstein cows (days in milk= 60 ± 5) were assigned to one of two treatment groups: a Control and EO fed. The experiment lasted 28 days. Dry matter intake (DMI) was measured daily while and milk production was measured weekly. Our result showed that DMI and milk yield was decreased (P < 0.01) in control cows relative to EO cows. Furthermore, supplementation with EO was associated with a decrease in the molar proportion of propionate (P < 0.05) and increase (P < 0.05) in acetate to propionate ratio. In conclusion, EO supplementations in diets can be useful nutritional modification to alleviate for the decrease DMI and milk production during heat exposure in lactating dairy cows.

Keywords: Dairy cow, feed additive, plant extract.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3327
1585 Effect on Surface Temperature Reduction of Asphalt Pavements with Cement–Based Materials Containing Ceramic Waste Powder

Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, O. Takahashi, S. Tsukuma

Abstract:

The heat island phenomenon becomes one of the environmental problems. As countermeasures in the field of road engineering, cool pavements such as water retaining pavements and solar radiation reflective pavements have been developed to reduce the surface temperature of asphalt pavements in the hot summer climate in Japan. The authors have studied on the water retaining pavements with cement–based grouting materials. The cement–based grouting materials consist of cement, ceramic waste powder, and natural zeolite. The ceramic waste powder is collected through the recycling process of electric porcelain insulators. In this study, mixing ratio between the ceramic waste powder and the natural zeolite and a type of cement for the cement–based grouting materials is investigated to measure the surface temperature of asphalt pavements in the outdoor. All of the developed cement–based grouting materials were confirmed to effectively reduce the surface temperature of the asphalt pavements. Especially, the cement–based grouting material using the ultra–rapid hardening cement with the mixing ratio of 0.7:0.3 between the ceramic waste powder and the natural zeolite reduced mostly the surface temperature by 20 °C and more.

Keywords: Ceramic waste powder, natural zeolite, road surface temperature, water retaining pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
1584 Characterising the Effects of Sand Blasting on Formed Steel Samples

Authors: Esther T. Akinlabi, Enoch Ogunmuyiwa, Stephen A. Akinlabi

Abstract:

The present research study focuses on the investigation of the influence of sand blasting on formed mild steel samples. The investigation involved the examinations on the parent material and a sand blasted material. The results were compared to the mechanically formed materials (sand and non-sand blasted) as well as a laser formed material (sand and non-sand blasted). Each material was characterized for the grain sizes and hardness. The percentage change in the grain sizes was quantified and correlation to the microhardness values was established. The Ultimate Tensile Strength (UTS) of the materials was also quantified using the obtained hardness values. The investigations revealed that the sand blasting causes an increase in the Vickers microhardness values of all the materials which also led to an increase in the UTS. After the forming operation, the microstructure revealed elongated grains as compared to almost equiaxed obtained from the parent non-sand blasted materials.

Keywords: Grain size, hardness, metal forming, sand blasting, ultimate tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5575
1583 Effect of Capsule Storage on Viability of Lactobacillus bulgaricus and Streptococcus thermophilus in Yogurt Powder

Authors: Kanchana Sitlaothaworn

Abstract:

Yogurt capsule was made by mixing 14% w/v of reconstitution of skim milk with 2% FOS. The mixture was fermented by commercial yogurt starter comprising Lactobacillus bulgaricus and Streptococcus thermophilus. These yogurts were made as yogurt powder by freeze-dried. Yogurt powder was put into capsule then stored for 28 days at 4oc. 8ml of commercial yogurt was found to be the most suitable inoculum size in yogurt production. After freeze-dried, the viability of L. bulgaricus and S. thermophilus reduced from 109 to 107 cfu/g. The precence of sucrose cannot help to protect cell from ice crystal formation in freeze-dried process, high (20%) sucrose reduced L. bulgaricus and S. thermophilus growth during fermentation of yogurt. The addition of FOS had reduced slowly the viability of both L. bulgaricus and S. thermophilus similar to control (without FOS) during 28 days of capsule storage. The viable cell exhibited satisfactory viability level in capsule storage (6.7x106cfu/g) during 21 days at 4oC.

Keywords: Yogurt capsule, Lactobacillus bulgaricus, Streptococcus thermophilus, freeze-drying, sucrose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
1582 Testing of DISAL D240 and D420 Ceramic Tool Materials with an Interrupted Cut Simulator

Authors: Robert Cep, Marek Sadilek, Lenka Ocenasova, Josef Brychta, Michal Hatala, Branimir Barisic

Abstract:

This paper presents a solution for ceramic cutting tools availability in interrupted machining. Experiments were performed on a special fixture – the interrupted cut simulator. This fixture was constructed at our Department of Machining and Assembly within the scope of a project by the Czech Science Foundation. The goals of the tests were to contribute to the wider usage of these cutting materials in machining, especially in interrupted machining. Through the centuries, producers of ceramic cutting tools have taken big steps forward. Namely, increasing durability in maintaining high levels of strength and hardness lends an advantage. Some producers of these materials advise cutting inserts for interrupted machining at the present time [1, 2].

Keywords: Ceramic cutting tool, cutting tool tests, interrupted cutting, machining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
1581 Performance Evaluation of an Amperometric Biosensor using a Simple Microcontroller based Data Acquisition System

Authors: V. G. Sangam, Balasaheb M. Patre

Abstract:

In this paper we have proposed a methodology to develop an amperometric biosensor for the analysis of glucose concentration using a simple microcontroller based data acquisition system. The work involves the development of Detachable Membrane Unit (enzyme based biomembrane) with immobilized glucose oxidase on the membrane and interfacing the same to the signal conditioning system. The current generated by the biosensor for different glucose concentrations was signal conditioned, then acquired and computed by a simple AT89C51-microcontroller. The optimum operating parameters for the better performance were found and reported. The detailed performance evaluation of the biosensor has been carried out. The proposed microcontroller based biosensor system has the sensitivity of 0.04V/g/dl, with a resolution of 50mg/dl. It has exhibited very good inter day stability observed up to 30 days. Comparing to the reference method such as HPLC, the accuracy of the proposed biosensor system is well within ± 1.5%. The system can be used for real time analysis of glucose concentration in the field such as, food and fermentation and clinical (In-Vitro) applications.

Keywords: Biosensor, DMU, Glucose oxidase andMicrocontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
1580 Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles

Authors: J. Thirunavukkarasu, M. Poulet, T. Turner, S. Pickering

Abstract:

Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is blended with glass fibers, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled fiber without sizing agent were identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste. 

Keywords: electrostatic charging, hybrid fiber composite, recycling, short fiber composites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
1579 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials

Authors: O. Alelweet, S. Pavia

Abstract:

In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.

Keywords: Reactivity, water demand, alkali-activated materials, brick, bauxite, illitic clay, fly ash, slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698