Search results for: fault analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8823

Search results for: fault analysis

8733 Earth Potential Rise (EPR) Computation for a Fault on Transmission Mains Pole

Authors: M. Nassereddine, J. Rizk, A. Hellany, M. Nagrial

Abstract:

The prologue of new High Voltage (HV) transmission mains into the community necessitates earthing design to ensure safety compliance of the system. Conductive structures such as steel or concrete poles are widely used in HV transmission mains. The earth potential rise (EPR) generated by a fault on these structures could result to an unsafe condition. This paper discusses information on the input impedance of the over head earth wire (OHEW) system for finite and infinite transmission mains. The definition of finite and infinite system is discussed, maximum EPR due to pole fault. The simplified equations for EPR assessments are introduced and discussed for the finite and infinite conditions. A case study is also shown.

Keywords: Coupling Factor, Earth Grid, EPR, Fault Current Distribution, High Voltage, Line Impedance, OHEW, Split Factor, Transmission Mains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3776
8732 A New Method Presentation for Fault Location in Power Transformers

Authors: Hossein Mohammadpour, Rahman Dashti

Abstract:

Power transformers are among the most important and expensive equipments in the electric power systems. Consequently the transformer protection is an essential part of the system protection. This paper presents a new method for locating transformer winding faults such as turn-to-turn, turn-to-core, turn-totransformer body, turn-to-earth, and high voltage winding to low voltage winding. In this study the current and voltage signals of input and output terminals of the transformer are measured, which the Fourier transform of measured signals and harmonic analysis determine the fault's location.

Keywords: turn-to-turn faults, short circuit, Fourier transform, harmonic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
8731 A Fault-Tolerant Full Adder in Double Pass CMOS Transistor

Authors: Abdelmonaem Ayachi, Belgacem Hamdi

Abstract:

This paper presents a fault-tolerant implementation for adder schemes using the dual duplication code. To prove the efficiency of the proposed method, the circuit is simulated in double pass transistor CMOS 32nm technology and some transient faults are voluntary injected in the Layout of the circuit. This fully differential implementation requires only 20 transistors which mean that the proposed design involves 28.57% saving in transistor count compared to standard CMOS technology.

Keywords: Semiconductors, digital electronics, double pass transistor technology, Full adder, fault tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
8730 Impact of GCSC on Measured Impedance by Distance Relay in the Presence of Single Phase to Earth Fault

Authors: M. Zellagui, A. Chaghi

Abstract:

This paper presents the impact study of GTO Controlled Series Capacitor (GCSC) parameters on measured impedance (Zseen) by MHO distance relays for single transmission line high voltage 220 kV in the presence of single phase to earth fault with fault resistance (RF). The study deals with a 220 kV single electrical transmission line of Eastern Algerian transmission networks at Group Sonelgaz (Algerian Company of Electrical and Gas) compensated by series Flexible AC Transmission System (FACTS) i.e. GCSC connected at midpoint of the transmission line. The transmitted active and reactive powers are controlled by three GCSC-s. The effects of maximum reactive power injected as well as injected maximum voltage by GCSC on distance relays measured impedance is treated. The simulations results investigate the effects of GCSC injected parameters: variable reactance (XGCSC), variable voltage (VGCSC) and reactive power injected (QGCSC) on measured resistance and reactance in the presence of earth fault with resistance fault varied between 5 to 50 Ω for three cases study.

Keywords: GCSC Parameters, Transmission line, Earth fault, Symmetrical components, Distance protection, Measured impedance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
8729 Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment

Authors: A. Idawaty, O. Mohamed, A. Z. Zuriati

Abstract:

This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment.

Keywords: Time Utility Function/ Utility Accrual (TUF/UA) scheduling, Real-time system (RTS), Backward Recovery, Multiprocessor, Discrete Event Simulation (DES).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925
8728 A Neuro-Fuzzy Approach Based Voting Scheme for Fault Tolerant Systems Using Artificial Bee Colony Training

Authors: D. Uma Devi, P. Seetha Ramaiah

Abstract:

Voting algorithms are extensively used to make decisions in fault tolerant systems where each redundant module gives inconsistent outputs. Popular voting algorithms include majority voting, weighted voting, and inexact majority voters. Each of these techniques suffers from scenarios where agreements do not exist for the given voter inputs. This has been successfully overcome in literature using fuzzy theory. Our previous work concentrated on a neuro-fuzzy algorithm where training using the neuro system substantially improved the prediction result of the voting system. Weight training of Neural Network is sub-optimal. This study proposes to optimize the weights of the Neural Network using Artificial Bee Colony algorithm. Experimental results show the proposed system improves the decision making of the voting algorithms.

Keywords: Voting algorithms, Fault tolerance, Fault masking, Neuro-Fuzzy System (NFS), Artificial Bee Colony (ABC)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609
8727 Evaluating Probable Bending of Frames for Near-Field and Far-Field Records

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

Most reinforced concrete structures are designed only under heavy loads have large transverse reinforcement spacing values, and therefore suffer severe failure after intense ground movements. The main goal of this paper is to compare the shear- and axial failure of concrete bending frames available in Tehran using Incremental Dynamic Analysis (IDA) under near- and far-field records. For this purpose, IDA of 5, 10, and 15-story concrete structures were done under seven far-fault records and five near-faults records. The results show that in two-dimensional models of short-rise, mid-rise and high-rise reinforced concrete frames located on Type-3 soil, increasing the distance of the transverse reinforcement can increase the maximum inter-story drift ratio values up to 37%. According to the existing results on 5, 10, and 15-story reinforced concrete models located on Type-3 soil, records with characteristics such as fling-step and directivity create maximum drift values between floors more than far-fault earthquakes. The results indicated that in the case of seismic excitation modes under earthquake encompassing directivity or fling-step, the probability values of failure and failure possibility increasing rate values are much smaller than the corresponding values of far-fault earthquakes. However, in near-fault frame records, the probability of exceedance occurs at lower seismic intensities compared to far-fault records.

Keywords: Directivity, fling-step, fragility curve, IDA, inter story drift ratio.v

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 309
8726 Ultra Fast Solid State Ground Fault Isolator

Authors: I Made Darmayuda, Zhou Jun, Krishna Mainali, Simon Ng Sheung Yan, Saisundar S, Eran Ofek

Abstract:

Personnel protection devices are cardinal in safety hazard applications. They are widely used in home, office and in industry environments to reduce the risk of lethal shock to human being and equipment safety. This paper briefly reviews various personnel protection devices also describes the basic working principle of conventional ground fault circuit interrupter (GFCI) or ground fault isolator (GFI), its disadvantages and ways to overcome the disadvantages with solid-state relay (SSR) based GFI with ultrafast response up on fault implemented in printed circuit board. This solid state GFI comprises discrete MOSFET based alternating current (AC) switches, linear optical amplifier, photovoltaic isolator and sense resistor. In conventional GFI, current transformer is employed as a sensing element to detect the difference in current flow between live and neutral conductor. If there is no fault in equipment powered through GFI, due to insulation failure of internal wires and windings of motors, both live and neutral currents will be equal in magnitude and opposite in phase.

Keywords: current transformer, electrocution, GFCI, GFI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
8725 Application of Computational Intelligence for Sensor Fault Detection and Isolation

Authors: A. Jabbari, R. Jedermann, W. Lang

Abstract:

The new idea of this research is application of a new fault detection and isolation (FDI) technique for supervision of sensor networks in transportation system. In measurement systems, it is necessary to detect all types of faults and failures, based on predefined algorithm. Last improvements in artificial neural network studies (ANN) led to using them for some FDI purposes. In this paper, application of new probabilistic neural network features for data approximation and data classification are considered for plausibility check in temperature measurement. For this purpose, two-phase FDI mechanism was considered for residual generation and evaluation.

Keywords: Fault detection and Isolation, Neural network, Temperature measurement, measurement approximation and classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
8724 An Enhanced Fault-Tolerant Conference Key Agreement Protocol

Authors: Cheng-Chi Lee, Chun-Ta Li, Chia-Ying Wu, Shiow-Yuan Huang

Abstract:

Establishing a secure communication of Internet conferences for participants is very important. Before starting the conference, all the participants establish a common conference key to encrypt/decrypt communicated messages. It enables participants to exchange the secure messages. Nevertheless, in the conference, if there are any malicious participants who may try to upset the key generation process causing other legal participants to obtain a different conference key. In this article, we propose an improved conference key agreement with fault-tolerant capability. The proposed scheme can filter malicious participants at the beginning of the conference to ensure that all participants obtain the same conference key. Compare with other schemes, our scheme is more secure and efficient than others.

Keywords: Conference key, Diffie-Hellman protocol, key agreement, fault tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
8723 A Performance Evaluation of Oscillation Based Test in Continuous Time Filters

Authors: Eduardo Romero, Marcelo Costamagna, Gabriela Peretti, Carlos Marqués

Abstract:

This work evaluates the ability of OBT for detecting parametric faults in continuous-time filters. To this end, we adopt two filters with quite different topologies as cases of study and a previously reported statistical fault model. In addition, we explore the behavior of the test schemes when a particular test condition is changed. The new data reported here, obtained from a fault simulation process, reveal a lower performance of OBT not observed in previous work using single-deviation faults, even under the change in the test condition.

Keywords: Testing, analog fault simulation, analog filter test, oscillation based test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
8722 A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method

Authors: Murray L. Ireland, Kevin J. Worrall, Rebecca Mackenzie, Thaleia Flessa, Euan McGookin, Douglas Thomson

Abstract:

Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing input residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances.

Keywords: Fault detection, inverse simulation, rover, ground robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
8721 Access Control System: Monitoring Tool for Fiber to the Home Passive Optical Network

Authors: Aswir Premadi, Mohammad Syuhaimi Ab. Rahman, Mohamad Najib Moh. Saupe, KasmiranJumari

Abstract:

An optical fault monitoring in FTTH-PON using ACS is demonstrated. This device can achieve real-time fault monitoring for protection feeder fiber. In addition, the ACS can distinguish optical fiber fault from the transmission services to other customers in the FTTH-PON. It is essential to use a wavelength different from the triple-play services operating wavelengths for failure detection. ACS is using the operating wavelength 1625 nm for monitoring and failure detection control. Our solution works on a standard local area network (LAN) using a specially designed hardware interfaced with a microcontroller integrated Ethernet.

Keywords: ACS, monitoring tool, FTTH-PON.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647
8720 MATLAB-based System for Centralized Monitoring and Self Restoration against Fiber Fault in FTTH

Authors: Mohammad Syuhaimi Ab-Rahman, Boonchuan Ng, Kasmiran Jumari

Abstract:

This paper presented a MATLAB-based system named Smart Access Network Testing, Analyzing and Database (SANTAD), purposely for in-service transmission surveillance and self restoration against fiber fault in fiber-to-the-home (FTTH) access network. The developed program will be installed with optical line terminal (OLT) at central office (CO) to monitor the status and detect any fiber fault that occurs in FTTH downwardly from CO towards residential customer locations. SANTAD is interfaced with optical time domain reflectometer (OTDR) to accumulate every network testing result to be displayed on a single computer screen for further analysis. This program will identify and present the parameters of each optical fiber line such as the line's status either in working or nonworking condition, magnitude of decreasing at each point, failure location, and other details as shown in the OTDR's screen. The failure status will be delivered to field engineers for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.

Keywords: MATLAB, SANTAD, in-service transmission surveillance, self restoration, fiber fault, FTTH

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
8719 Self-Sensing versus Reference Air Gaps

Authors: Alexander Schulz, Ingrid Rottensteiner, Manfred Neumann, Michael Wehse, Johann Wassermann

Abstract:

Self-sensing estimates the air gap within an electro magnetic path by analyzing the bearing coil current and/or voltage waveform. The self-sensing concept presented in this paper has been developed within the research project “Active Magnetic Bearings with Supreme Reliability" and is used for position sensor fault detection. Within this new concept gap calculation is carried out by an alldigital analysis of the digitized coil current and voltage waveform. For analysis those time periods within the PWM period are used, which give the best results. Additionally, the concept allows the digital compensation of nonlinearities, for example magnetic saturation, without degrading signal quality. This increases the accuracy and robustness of the air gap estimation and additionally reduces phase delays. Beneath an overview about the developed concept first measurement results are presented which show the potential of this all-digital self-sensing concept.

Keywords: digital signal analysis, active magnetic bearing, reliability, fault detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
8718 Conditions for Fault Recovery of Interconnected Asynchronous Sequential Machines with State Feedback

Authors: Jung–Min Yang

Abstract:

In this paper, fault recovery for parallel interconnected asynchronous sequential machines is studied. An adversarial input can infiltrate into one of two submachines comprising parallel composition of the considered asynchronous sequential machine, causing an unauthorized state transition. The control objective is to elucidate the condition for the existence of a corrective controller that makes the closed-loop system immune against any occurrence of adversarial inputs. In particular, an efficient existence condition is presented that does not need the complete modeling of the interconnected asynchronous sequential machine.

Keywords: Asynchronous sequential machines, parallel composition, corrective control, fault tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
8717 Hierarchical Checkpoint Protocol in Data Grids

Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed

Abstract:

Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.

Keywords: Data grids, fault tolerance, chandy-lamport, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
8716 A Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor

Authors: Wenji Zhu, Yigang He

Abstract:

This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse response drastically de-noises the inputs to the neural network. The second preprocessing by fractal dimension can extract unique features, which are the fed to a neural network as inputs for further classification. A comparison of our work with [1] and [6], which also employs back-propagation (BP) neural networks, reveals that our system requires a much smaller network and performs significantly better in fault diagnosis of analog circuits due to our proposed preprocessing techniques.

Keywords: Analog circuits, fault diagnosis, tolerance, wavelettransform, fractal dimension, box dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
8715 Testing Loaded Programs Using Fault Injection Technique

Authors: S. Manaseer, F. A. Masooud, A. A. Sharieh

Abstract:

Fault tolerance is critical in many of today's large computer systems. This paper focuses on improving fault tolerance through testing. Moreover, it concentrates on the memory faults: how to access the editable part of a process memory space and how this part is affected. A special Software Fault Injection Technique (SFIT) is proposed for this purpose. This is done by sequentially scanning the memory of the target process, and trying to edit maximum number of bytes inside that memory. The technique was implemented and tested on a group of programs in software packages such as jet-audio, Notepad, Microsoft Word, Microsoft Excel, and Microsoft Outlook. The results from the test sample process indicate that the size of the scanned area depends on several factors. These factors are: process size, process type, and virtual memory size of the machine under test. The results show that increasing the process size will increase the scanned memory space. They also show that input-output processes have more scanned area size than other processes. Increasing the virtual memory size will also affect the size of the scanned area but to a certain limit.

Keywords: Complex software systems, Error detection, Fault tolerance, Injection and testing methodology, Memory faults, Process and virtual memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
8714 Design and Implementation of Rule-based Expert System for Fault Management

Authors: Su Myat Marlar Soe, May Paing Paing Zaw

Abstract:

It has been defined that the “network is the system". This implies providing levels of service, reliability, predictability and availability that are commensurate with or better than those that individual computers provide today. To provide this requires integrated network management for interconnected networks of heterogeneous devices covering both the local campus. In this paper we are addressing a framework to effectively deal with this issue. It consists of components and interactions between them which are required to perform the service fault management. A real-world scenario is used to derive the requirements which have been applied to the component identification. An analysis of existing frameworks and approaches with respect to their applicability to the framework is also carried out.

Keywords: To diagnose the possible network faults by using thepredetermined rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
8713 Performance Analysis of Expert Systems Incorporating Neural Network for Fault Detection of an Electric Motor

Authors: M. Khatami Rad, N. Jamali, M. Torabizadeh, A. Noshadi

Abstract:

In this paper, an artificial neural network simulator is employed to carry out diagnosis and prognosis on electric motor as rotating machinery based on predictive maintenance. Vibration data of the primary failed motor including unbalance, misalignment and bearing fault were collected for training the neural network. Neural network training was performed for a variety of inputs and the motor condition was used as the expert training information. The main purpose of applying the neural network as an expert system was to detect the type of failure and applying preventive maintenance. The advantage of this study is for machinery Industries by providing appropriate maintenance that has an essential activity to keep the production process going at all processes in the machinery industry. Proper maintenance is pivotal in order to prevent the possible failures in operating system and increase the availability and effectiveness of a system by analyzing vibration monitoring and developing expert system.

Keywords: Condition based monitoring, expert system, neural network, fault detection, vibration monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
8712 Reducing Test Vectors Count Using Fault Based Optimization Schemes in VLSI Testing

Authors: Vinod Kumar Khera, R. K. Sharma, A. K. Gupta

Abstract:

Power dissipation increases exponentially during test mode as compared to normal operation of the circuit. In extreme cases, test power is more than twice the power consumed during normal operation mode. Test vector generation scheme is key component in deciding the power hungriness of a circuit during testing. Test vector count and consequent leakage current are functions of test vector generation scheme. Fault based test vector count optimization has been presented in this work. It helps in reducing test vector count and the leakage current. In the presented scheme, test vectors have been reduced by extracting essential child vectors. The scheme has been tested experimentally using stuck at fault models and results ensure the reduction in test vector count.

Keywords: Low power VLSI testing, independent fault, essential faults, test vector reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
8711 An Investigative Study into Observer based Non-Invasive Fault Detection and Diagnosis in Induction Motors

Authors: Padmakumar S., Vivek Agarwal, Kallol Roy

Abstract:

A new observer based fault detection and diagnosis scheme for predicting induction motors- faults is proposed in this paper. Prediction of incipient faults, using different variants of Kalman filter and their relative performance are evaluated. Only soft faults are considered for this work. The data generation, filter convergence issues, hypothesis testing and residue estimates are addressed. Simulink model is used for data generation and various types of faults are considered. A comparative assessment of the estimates of different observers associated with these faults is included.

Keywords: Extended Kalman Filter, Fault detection and diagnosis, Induction motor model, Unscented Kalman Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
8710 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network

Authors: Jing Zhou, Steven Su, Aihuang Guo

Abstract:

COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.

Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3031
8709 Cycle Embedding in Folded Hypercubes with More Faulty Elements

Authors: Wen-Yin Huang, Jia-Jie Liu, Jou-Ming Chang

Abstract:

Faults in a network may take various forms such as hardware/software errors, vertex/edge faults, etc. Folded hypercube is a well-known variation of the hypercube structure and can be constructed from a hypercube by adding a link to every pair of nodes with complementary addresses. Let FFv (respectively, FFe) be the set of faulty nodes (respectively, faulty links) in an n-dimensional folded hypercube FQn. Hsieh et al. have shown that FQn - FFv - FFe for n ≥ 3 contains a fault-free cycle of length at least 2n -2|FFv|, under the constraints that (1) |FFv| + |FFe| ≤ 2n - 4 and (2) every node in FQn is incident to at least two fault-free links. In this paper, we further consider the constraints |FFv| + |FFe| ≤ 2n - 3. We prove that FQn - FFv - FFe for n ≥ 5 still has a fault-free cycle of length at least 2n - 2|FFv|, under the constraints : (1) |FFv| + |FFe| ≤ 2n - 3, (2) |FFe| ≥ n + 2, and (3) every vertex is still incident with at least two links.

Keywords: Folded hypercubes, interconnection networks, cycle embedding, faulty elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
8708 Modern Vibration Signal Processing Techniques for Vehicle Gearbox Fault Diagnosis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

This paper presents modern vibration signalprocessing techniques for vehicle gearbox fault diagnosis, via the wavelet analysis and the Squared Envelope (SE) technique. The wavelet analysis is regarded as a powerful tool for the detection of sudden changes in non-stationary signals. The Squared Envelope (SE) technique has been extensively used for rolling bearing diagnostics. In the present work a scheme of using the Squared Envelope technique for early detection of gear tooth pit. The pitting defect is manufactured on the tooth side of a fifth speed gear on the intermediate shaft of a vehicle gearbox. The objective is to supplement the current techniques of gearbox fault diagnosis based on using the raw vibration and ordered signals. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of output joint shafts. The gearbox used for experimental measurements is the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive; a five-speed gearbox with final drive gear and front wheel differential. The results show that the approaches methods are effective for detecting and diagnosing localized gear faults in early stage under different operation conditions, and are more sensitive and robust than current gear diagnostic techniques.

Keywords: Wavelet analysis, Squared Envelope, gear faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538
8707 A Novel Solution to Restricted Earth Fault Low Impedance Relay Maloperation

Authors: K. N. Dinesh Babu, R. Ramaprabha, V. Rajini, V. Nagarajan

Abstract:

In this paper, various methods of providing restricted earth fault protection are discussed. The proper operation of high and low impedance Restricted Earth Fault (REF) protection for various applications has been discussed. The maloperation of a relay due to improper placement of CTs has been identified and a simple/unique solution has been proposed in this work with a case study. Moreover, it is found that the proper placement of CT in high impedance method will provide the same result with reduced CT. This methodology has been successfully implemented in Al Takreer refinery for a 2000 KVA transformer. The outcome of the paper may be included in IEEEC37.91 standard to give the proper guidance for protection engineers to sort out the issues related to mal functioning of REF relays.

Keywords: Relay maloperation, transformer, low impedance REF, MatLab, 64R, IEEE C37.91.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3879
8706 A Study on Early Prediction of Fault Proneness in Software Modules using Genetic Algorithm

Authors: Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K. Bains, Manpreet Kaur, Gurvinder Singh

Abstract:

Fault-proneness of a software module is the probability that the module contains faults. To predict faultproneness of modules different techniques have been proposed which includes statistical methods, machine learning techniques, neural network techniques and clustering techniques. The aim of proposed study is to explore whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules using Genetic Algorithm technique. This approach has been tested with real time defect C Programming language datasets of NASA software projects. The results show that the fusion of requirement and code metric is the best prediction model for detecting the faults as compared with commonly used code based model.

Keywords: Genetic Algorithm, Fault Proneness, Software Faultand Software Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
8705 Improvement in Power Transformer Intelligent Dissolved Gas Analysis Method

Authors: S. Qaedi, S. Seyedtabaii

Abstract:

Non-Destructive evaluation of in-service power transformer condition is necessary for avoiding catastrophic failures. Dissolved Gas Analysis (DGA) is one of the important methods. Traditional, statistical and intelligent DGA approaches have been adopted for accurate classification of incipient fault sources. Unfortunately, there are not often enough faulty patterns required for sufficient training of intelligent systems. By bootstrapping the shortcoming is expected to be alleviated and algorithms with better classification success rates to be obtained. In this paper the performance of an artificial neural network, K-Nearest Neighbour and support vector machine methods using bootstrapped data are detailed and shown that while the success rate of the ANN algorithms improves remarkably, the outcome of the others do not benefit so much from the provided enlarged data space. For assessment, two databases are employed: IEC TC10 and a dataset collected from reported data in papers. High average test success rate well exhibits the remarkable outcome.

Keywords: Dissolved gas analysis, Transformer incipient fault, Artificial Neural Network, Support Vector Machine (SVM), KNearest Neighbor (KNN)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690
8704 DAMQ-Based Approach for Efficiently Using the Buffer Spaces of a NoC Router

Authors: Mohammad Ali Jabraeil Jamali, Ahmad khademzadeh

Abstract:

In this paper we present high performance dynamically allocated multi-queue (DAMQ) buffer schemes for fault tolerance systems on chip applications that require an interconnection network. Two virtual channels shared the same buffer space. Fault tolerant mechanisms for interconnection networks are becoming a critical design issue for large massively parallel computers. It is also important to high performance SoCs as the system complexity keeps increasing rapidly. On the message switching layer, we make improvement to boost system performance when there are faults involved in the components communication. The proposed scheme is when a node or a physical channel is deemed as faulty, the previous hop node will terminate the buffer occupancy of messages destined to the failed link. The buffer usage decisions are made at switching layer without interactions with higher abstract layer, thus buffer space will be released to messages destined to other healthy nodes quickly. Therefore, the buffer space will be efficiently used in case fault occurs at some nodes.

Keywords: DAMQ, NoC, fault tolerant, odd-even routingalgorithm, buffer space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357