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Abstract—Faults in a network may take various forms such as
hardware/software errors, vertex/edge faults, etc. Folded hypercube
is a well-known variation of the hypercube structure and can be con-
structed from a hypercube by adding a link to every pair of nodes with
complementary addresses. Let FFv (respectively, FFe) be the set of
faulty nodes (respectively, faulty links) in an n-dimensional folded
hypercube FQn. Hsieh et al. have shown that FQn − FFv − FFe

for n ≥ 3 contains a fault-free cycle of length at least 2n − 2|FFv|,
under the constraints that (1) |FFv| + |FFe| ≤ 2n − 4 and (2)
every node in FQn is incident to at least two fault-free links. In this
paper, we further consider the constraints |FFv|+ |FFe| ≤ 2n− 3.
We prove that FQn − FFv − FFe for n ≥ 5 still has a fault-free
cycle of length at least 2n − 2|FFv|, under the constraints : (1)
|FFv|+ |FFe| ≤ 2n− 3, (2) |FFe| ≥ n+ 2, and (3) every vertex
is still incident with at least two links.

Keywords—Folded hypercubes; Interconnection networks; Cycle
embedding; Faulty elements.

I. INTRODUCTION

HYPERCUBES are a powerful network that is able to
perform various kinds of parallel computations and

simulate many other networks [14], [15]. Hypercubes have
been widely studied in interconnection networks [6], [7], [8],
[20]. A number of other topologies, such as paths, trees, rings,
and meshes, can be embedded into a hypercube. There are also
many related results in hypercubes with faulty vertices or link
[2], [3], [5], [13], [16]. One of the most popular variants is
the folded hypercube, which is an extension of the hypercube
and can be constructed by adding a link to every pair of nodes
with complementary address. The folded hypercube has been
shown to be able to improve the system’s performance over a
regular hypercube in many measurements [1], [17].

Since faults may happen on both nodes and edges in a
network, it is practically meaningful and important to consider
faulty networks. A node is fault-free if it is not faulty. A link
is fault-free if the communication link between end-nodes is
not faulty. A path (cycle) is fault-free if it contains neither
faulty nodes nor faulty links. Previously, the problem of fault-
tolerant embedding on an n-dimensional folded hypercube
FQn has been studied in [9], [10], [17], [18], [19]. Let FFv

(respectively, FFe) be the set of faulty nodes (respectively,
faulty links) in an n-dimensional folded hypercube FQn.
Hsieh et al. [12] have shown that FQn − FFv − FFe for
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n ≥ 3 contains a fault-free cycle of length at least 2n−2|FFv|,
under the constraints that (1) |FFv| + |FFe| ≤ 2n − 4 and
(2) every node in FQn is incident to at least two fault-
free links. In this paper, we further consider the constraints
|FFv|+|FFe| ≤ 2n−3. We prove that FQn−FFv−FFe for
n ≥ 5 still has a fault-free cycle of length at least 2n−2|FFv|,
under the constraints : (1) |FFv| + |FFe| ≤ 2n − 3, (2)
|FFe| ≥ n + 2, and (3) every vertex is still incident with
at least two links.

The rest of this paper is organized as follows. In Section 2,
we describe some important properties in folded hypercubes.
We present our main result in Section 3. Concluding remarks
are given in Section 4.

II. PRELIMINARIES

An n-dimensional hypercube Qn, also called an n-cube,
can be modeled as a graph with vertex set V (Qn) and edge
set E(Qn). In Qn, there are 2n vertices and n2n−1 links.
Each vertex u of Qn can be distinctly labeled by an n-bit
string bnbn−1 · · · b2b1. For any i, 1 � i � n, we use u(i)

to denote the binary string bnbn−1 · · · b̄ibi−1 · · · b1. Thus, if
vertices u and v are adjacent, then u = v(i) and v = u(i) for
some 1 � i � n and we call the edge uu(i) an i-dimensional
edge. We will also refer to the edge uu(i) as di(u). Thus, if
v = u(i), then v(j) = (u(i))(j) is simplified as u(i)(j). Let Ei =
{di(u)|u ∈ V (Qn)}, i.e., the set containing all i-dimensional
edges of Qn. It is clear that |Ei| = 2n−1 for every 1 � i � n.

An n-dimensional folded hypercube FQn can be con-
structed from an n-dimensional hypercube by adding a link
to every pair of nodes with complementary addresses, e.g.,
node x = bnbn−1 · · · b2b1 and node x̄ = b̄nb̄n−1 · · · b̄2b̄1. Thus
FQn has 2n−1 more links than a regular hypercube. We call
these extra links skips to distinguish them from regular links.
Let Es be the set of skips in FQn. Figure 1 illustrates a 2-
dimensional and a 3-dimensional folded hypercubes.

A path P of length k from vertex x to vertex y in FQn is
a sequence of distinct vertices v0, v1, . . . , vk in which x = v0,
y = vk, and vivi+1 ∈ E(FQn), for i = 0, 1, . . . k − 1, where
k � 1. We also use 〈v0,P ,vk〉 as another representation of
P in order to indicate the two endpoints v0 and vk of P .
For consistency, an edge uv can also be represented as a
path 〈u, v〉. For two paths 〈x,P, y〉 and 〈u,Q, v〉 in which
y and u are adjacent, we use 〈x,P, y, u,Q, v〉 to denote the
concatenation of paths P and Q. A cycle is also a sequence
of distinct vertices v0, v1, . . . , vk except v0 = vk. In the
following, we introduce some previous results that will be
employed later.
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(a) FQ2

(b) FQ3

Fig. 1. Graphs of FQ2 and FQ3, in which complementary links are drawn
by dashed lines.

Lemma 1 ([19]). There is an automorphism δ of FQn such
that δ(Ei) = Ej for i, j ∈ {1, 2, . . . , n} ∪ {s}.

It directly derives the following corollary.

Corollary 2. FQn − Ei is isomorphic to Qn for i ∈
{1, 2, . . . , n} ∪ {s}.

In an n-dimensional faulty hypercube Qn, let Fv and Fe be
the sets of faulty nodes and faulty links of Qn, respectively. On
the problem of finding the lower bound of longest fault-free
cycle in Qn, Du et al. [4] have shown the result as Lemma 3.

Lemma 3 ([4]). Qn−Fv−Fe for n ≥ 3 contains a fault-free
cycle of length at least 2n − 2|Fv| if (1) |Fv|+ |Fe| ≤ 2n− 4
and |Fe| ≤ 2n− 5 and (2) every node in Qn is incident to at
least two fault-free links.

Lemma 4 ([11]). Every edge of Qn−Fv −Fe lies on a cycle
of every length from 4 to 2n−2|Fv| even if |Fv|+|Fe| ≤ n−2,
where n ≥ 3.

III. FAULT-FREE CYCLE IN THE FAULTY FOLDED
HYPERCUBES

In this section, we present our main result on considering
the constraints that (1) |FFv|+ |FFe| ≤ 2n− 3, (2) |FFe| ≥
n + 2, and (3) every vertex in FQn is incident with at least
two links, as shown in Theorem 6. In an n-dimensional faulty

folded hypercube FQn, we call a non-faulty node k-free if it
is incident to at most k fault-free links.

Lemma 5. If |FFv|+ |FFe| ≤ 2n− 3, there are at most two
2-free nodes contained in FQn.

Proof. By the definition of k-free node, a 2-free nodes is
adjacent to at least n−1 faulty elements, included faulty links
and faulty nodes. Since |FFv| + |FFe| ≤ 2n − 3, there is
at most two 2-free nodes contained in FQn and these two
nodes are adjacent with a common faulty link, say (u, v) (see
Figure 3 as an example). �

Theorem 6. FQn −FFv −FFe, for n ≥ 5 contains a fault-
free cycle of length at least 2n−2|FFv| if (1) |FFv|+|FFe| ≤
2n − 3, (2) |FFe| ≥ n + 2, and (3) every vertex is incident
with at least two links.

Proof. We consider the following three cases according to the
number of 2-free nodes:
Case 1: FQn contains no 2-free node.

Since |FFe| ≥ n + 2, there exists a dimension i such that
F (Ei) ≥ 2, for i ∈ {1, 2, . . . , n}∪{s}. By Corollary 2, FQn−
Ei is isomorphic to Qn. Thus, |FFv| + |FFe| ≤ 2n − 5 in
Qn. Since every node in FQn is k-free for some k ≥ 3,
every node in Qn is incident at least two fault-free links. By
Lemma 3, there exists a fault-free cycle of length 2n − 2|Fv|
(=2n − 2|FFv|) in Qn −Fv −Fe since |Fv|+ |Fe| ≤ 2n− 4,
|Fe| ≤ 2n−5, and every node in Qn is incident to at least two
fault-free links. Therefore, we obtain that FQn−FFv −FFe

contains a fault-free cycle of length at least 2n − 2|FFv|.
Case 2: There is a unique 2-free node u in FQn and every
node in FQn − {u} is k-free for some k ≥ 3.

Assume without loss of generality that d1(u) and d2(u) are
two non-faulty links and either di(u) is faulty link or u(i) is a
faulty node, for i ∈ {3, 4, . . . , n}∪{s}. Since |FFe| ≥ n+2,
there exists a dimension j such that F (Ej) ≥ 2, for j ∈
{1, 2, . . . , n} ∪ {s}. If j �∈ {1, 2}, FQn − Ej is isomorphic
to Qn. With the same arguments as Case 1, we have that
FQn−Ej also satisfies the constraints in Lemma 3. It derives
that FQn − FFv − FFe contains a fault-free cycle of length
at least 2n − 2|FFv|.

Now, we consider the case that j ∈ {1, 2}. There are two
subcases to consider.
Subcase 2.1: There exists a faulty link da(u) such that
d1(u(a)) is an non-faulty link and u(a) and u(a)(1) are non-
faulty nodes, where a ∈ {3, 4, . . . , n}∪ {s} (see Figure 2(a)).

Hence, FQn − Ek is isomorphic to Qn, where k ∈
{3, 4, . . . , n}∪{s}−{a}. Furthermore, Qn can be decomposed
to QL

n−1 and QR
n−1 at dimension 1 and u ∈ QL

n−1. Assume
that da(u) is an non-faulty link. Let FL

v and FL
e (respectively,

FR
v and FR

e ) denote the set of faulty nodes and faulty links in
QL

n−1 (respectively, QR
n−1), respectively. Since u is a 2-free

node, F (E1) ≥ 2, F (Ek) ≥ 1, and da(u) is an non-faulty link,
|FL

v |+ |FL
e | ≥ n−1 and |FL

v |+ |FL
e | ≤ 2n−3−4 = 2n−7.

Let FL(w) denote the set of faulty elements adjacent to
node w, where w ∈ QL

n−1. Since FL(u) = n − 3 and
|FL

v |+ |FL
e | ≤ 2n−7, FL(j) ≤ n−3 for all j ∈ QL

n−1 except
u. Thus, every node in QL

n−1 is incident at least two fault-free
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links. By Lemma 3, there exists a fault-free cycle CL of length
2n−1−2|FL

v | in QL
n−1−FL

v −FL
e since |FL

v |+|FL
e | ≤ 2n−6,

|FL
e | ≤ 2n−7, and every node in QL

n−1 is incident to at least
two fault-free links.

If u, u(a) ∈ CL, then we denote u(1) and u(a)(1) by x and y,
respectively; otherwise, we choice any link (p, q) ∈ CL such
that d1(p) and d1(q) are two non-faulty links and denote p(1)

and q(1) by x and y, respectively. Since u is a 2-free node,
F (E1) ≥ 2, and |FFv|+|FFe| ≤ 2n−3, |FR

v |+|FR
e | ≤ n−4.

By Lemma 4, edge da(x) lies on a fault-free cycle CR of length
2n−1 − 2|FR

v | in QR
n−1 − FR

v − FR
e since |FR

v | + |FR
e | ≤

(n − 1) − 2. Therefore, we can obtain a fault-free cycle 〈
u, CL, u(a), y, CR, x, u 〉 (respectively, 〈 p, CL, q, y, CR, x, p 〉)
of length 2n−1−2|FL

v |−1+2n−1−2|FR
v |−1+2=2n−2|FFv|.

Subcase 2.2: If da(u) is a faulty link, then d1(u(a)) is also a
faulty link, for a ∈ {3, 4, . . . , n} ∪ {s} (see Figure 2(b)).

Since |FFv| + |FFe| ≤ 2n − 3 and |FFe| ≥ n + 2,
|FFv| ≤ n−5. If |FFv| = 0, then |FFe| ≥ 2n−2 since every
faulty link da(u) is adjacent to another faulty link d1(u(a)),
for a ∈ {3, 4, . . . , n} ∪ {s}. Therefore, |FFv| > 0. Since u is
a 2-free node in FQn and |FFv| ≤ n−5, there exists at least
four faulty links, say d3(u), d4(u), d5(u), and d6(u), such
that d1(u(3)), d1(u(4)), d1(u(5)) , and d1(u(6)) are also fault.
Hence, FQn − E3 is isomorphic to Qn and Qn can be de-
composed to QL

n−1 and QR
n−1 at dimension 4 and u ∈ QL

n−1.
Note that, d1(u(3)), d1(u(5)), and d1(u(6)) are in QL

n−1 while
d1(u(4)) is in QR

n−1. Thus, |FL
v |+|FL

e | ≤ 2n−3−3 = 2n−6.
Since |FFv| > 0 and |FL

v |+ |FL
e | ≤ 2n− 6, |FL

e | ≤ 2n− 7.
Since FL(u) = n − 3, |FL

v | + |FL
e | ≤ 2n − 6, and d1(u(3)),

d1(u(5)) and d1(u(6)) are in QL
n−1, FL(j) ≤ n − 4 for all

j ∈ QL
n−1 except u. Thus, every node in QL

n−1 is incident at
least two fault-free links. By Lemma 3, there exists a fault-
free cycle CL of length 2n−1 − 2|FL

v | in QL
n−1 − FL

v − FL
e

since |FL
v |+ |FL

e | ≤ 2n− 6, |FL
e | ≤ 2n− 7, and every node

in QL
n−1 is incident to at least two fault-free links.

Choose any link, say da(x), in CL such that x(4) and x(a)(4)

are non-faulty nodes in QR
n−1 and d4(x) and d4(x(a)) are

non-faulty links. Since u is a 2-free node, both d1(u(3)) and
d1(u(5)) are in QL

n−1, and |FFv|+ |FFe| ≤ 2n− 3, |FR
v |+

|FR
e | ≤ n − 5. By Lemma 4 again, edge da(x(4)) lies on a

fault-free cycle CR of length 2n−1−2|FR
v | in QR

n−1−FR
v −FR

e

since |FR
v | + |FR

e | ≤ (n − 1) − 2. Therefore, we can obtain
a fault-free cycle 〈 x, CL, x(a), x(a)(4), CR, x(4), x 〉 of length
2n−1 − 2|FL

v | − 1+2n−1 − 2|FR
v | − 1+2=2n − 2|FFv|.

Case 3: There are two 2-free nodes u and v in FQn.
Since |FFv| + |FFe| ≤ 2n − 3 and there are two 2-free

nodes u and v in FQn, u and v are adjacent, |FFv|+|FFe| =
2n − 3. Assume without loss of generality that link (u, v) =
d1(u) = d1(v). Assume that da(u), db(u), dc(v), and dd(v)
are four non-fautly links with respect to u and v, where a �= b,
c �= d, and a, b, c, d ∈ {2, 3, . . . , n} ∪ {s}. Since n ≥ 5 and
|FFe| ≥ n + 2, there exists a dimension k such that dk(u)
and dk(v) are faulty links, where k ∈ {2, 3, . . . , n} ∪ {s} −
{a, b, c, d}. By Corollary 2, FQn − Ek is isomorphic to Qn.
Thus, |FFv|+ |FFe| ≤ 2n− 5 in Qn and every node in Qn

is incident at least two fault-free links. By Lemma 3, there
exists a fault-free cycle of length 2n − 2|Fv| (=2n − 2|FFv|)
in Qn − Fv − Fe since |Fv|+ |Fe| ≤ 2n− 4, |Fe| ≤ 2n− 5,

Qn = FQn − Ek

QL
n−1 QR

n−1

u(a)

u

u(a)(1) = y

u(1) = xCL

CR

u(2)

(a) Constraint (1)

Qn = FQn − E3

QL
n−1 QR

n−1

x(a)

x

x(a)(4)

x(4)CL

CR
u

u(1)
u(2)

d4(u)

(b) Constraint (2)

Fig. 2. An illustration of Constraints (1) and (2).

and every node in Qn is incident to at least two fault-free
links. Therefore, we obtain that FQn − FFv − FFe contains
a fault-free cycle of length at least 2n − 2|FFv|.

FQn

u v
d1(u)

da(u)
db(u) dc(v)

dd(v)

Fig. 3. There are two 2-free nodes u and v in FQn.

�

IV. CONCLUSION

In this paper, we consider the n-dimensional folded hyper-
cube with some faulty elements with the constraints that (1)
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|FFv| + |FFe| ≤ 2n − 3, (2) |FFe| ≥ n + 2, and (3) every
vertex is still incident with at least two links. We proved that
FQn−FFv−FFe for n ≥ 5 has a fault-free cycle of length at
least 2n−2|FFv|. In the further work, we interest to consider
whether FQn − FFv − FFe for n ≥ 5 still has a fault-free
cycle of length at least 2n−2|FFv| under the constraints : (1)
|FFv| + |FFe| ≤ 2n − 3, (2) |FFe| < n + 2, and (3) every
vertex is still incident with at least two links.

REFERENCES

[1] Ahmed EI-Amawy and Shahram Latifi, Properties and performance
of folded hypercubes, IEEE Transactions on Parallel and Distributed
Systems, 2(1) (1991) 31–42.

[2] P. Banerjee, J.T. Rahmeh, C. Stunkel, V.S. Nair, K. Roy, V. Balasubrama-
nian, and J.A. Abraham, Algorithm-based fault tolerance on a hypercube
multiprocessor, IEEE Transactions on Computers, 39(9) (1990) 1132–
1145.

[3] J. Bruck, R. Cypher, and C.T. Ho, Efficient fault-tolerant mesh and
hypercube architectures, Proceedings of IEEE Symposium on Fault-
Tolerant Computing, 1992, 162–169

[4] Z. Z. Du, J. Jin, M. J. Ma, J. M. Xu, Cycle embedding in hypercubes with
faulty vertices and edges, Journal of University of Science and Technology
of China, 38(9) (2008) 1020–1024.

[5] J.B. Dugan, S.J. Bavuso, and M.A. Boyd, Dynamic fault-tree models for
fault-tolerant computer systems, IEEE Transactions on Reliability, 41(3)
(1992) 363–377.

[6] D.R. Duh, G.H. Chen, and J.F. Fang, Algorithms and properties of a
new two-level network with folded hypercube as basic modules, IEEE
Transactions on Parallel and Distributed Systems, 6(7) (1995) 714–723.

[7] K. Efe, A variation on the hypercube with lower diameter, IEEE Trans-
actions on Computers, 40(11) (1991) 1312–1316.

[8] A. Esfahanian, L.M. Ni, and B.E. Sagan, The twisted n-cube with
application to multiprocessing, IEEE Transactions on Computers, 4(1)
(1991) 88–93.

[9] Jung-Sheng Fu, Fault-free cycles in folded hypercubes with more faulty
elements, Information Processing Letters, 108(5) (2008) 261–263.

[10] Sun-Yuan Hsieh, Some edge-fault-tolerant properties of the folded
hypercube, Networks, 51(2) (2008) 92–101.

[11] Sun-Yuan Hsieh and Tzu-Hsiung Shen, Edge-bipancyclicity of a hyper-
cube with faulty vertices and edges, Discrete Applied Mathematics, 156
(2008) 1802–1808.

[12] Sun-Yuan Hsieh, C. N. Kuo, and H. H. Chou, A further result on fault-
free cycles in faulty folded hypercubes, Information Processing Letters,
110 (2) (2009) 41–43.

[13] T.L. Kueng, T. Liang, J.J.M. Tan, and L.H. Hsu, Long paths in hy-
percubes with conditional node-faults, Information Sciences, 179 (2009)
667-681.

[14] F.T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes, Morgan Kaufmann Publishers Inc., 1992, 78–
82, 239–244.

[15] Y. Saad and M.H. Schultz, Topological properties of hypercubes, IEEE
Transactions on Computers, 37(7) (1988) 867–871.

[16] C.H. Tsai and Y.C. Lai, Conditional fault-tolerant edge-bipancyclicity
of hypercubes, Information Sciences, 177 (2007) 5590–5597.

[17] D. Wang, Embedding Hamiltonian cycles into folded hypercube with
faulty links, Journal of Parallel and Distributed Computing, 61(4) (2001)
545–564.

[18] J. M. Xu, M. J. Ma, Cycles in folded hypercubes, Applied Mathematics
Letters, 19(2) (2006) 140–145.

[19] J. M. Xu, M. J. Ma, Z. Z. Du, Edge-fault-tolerant properties of hyper-
cubes and folded hypercubes, Australasian Journal of Combinatorics, 35
(2006) 7–16.

[20] S.G. Ziavras, A versatile family of reduced hypercube interconnection
networks, IEEE Transactions on Parallel and Distributed Systems, 5(11)
(1993) 1210–1220.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:6, No:2, 2012 

184International Scholarly and Scientific Research & Innovation 6(2) 2012 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:6
, N

o:
2,

 2
01

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
58

6.
pd

f




