Search results for: coal devolatisation
115 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal
Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey
Abstract:
Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.Keywords: Alternative ironmaking, coal devolatisation, extent of reduction, nugget making, syngas based DRI, solid state reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487114 Analysis of Coal Tar Compositions Produced from Sub-Bituminous Kalimantan Coal Tar
Authors: D. S. Fardhyanti, A. Damayanti
Abstract:
Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kinds of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the coal tar components. The obtained coal tar has the viscosity of 3.12 cp, the density of 2.78 g/cm3, the calorific value of 11,048.44 cal/g, and the molecular weight of 222.67. The analysis result showed that the coal tar contained more than 78 chemical compounds such as benzene, cresol, phenol, xylene, naphtalene, etc. The total phenolic compounds contained in coal tar are 33.25% (PT KPC) and 17.58% (Arutmin-Kalimantan). The total naphtalene compounds contained in coal tar is 14.15% (PT KPC) and 17.13% (Arutmin-Kalimantan).Keywords: Coal tar, pyrolysis, gas chromatography-mass spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3664113 Effect of Pulp Density on Biodesulfurization of Mongolian Lignite Coal
Authors: Ashish Pathak, Dong-Jin Kim, Byoung-Gon Kim
Abstract:
Biological processes based on oxidation of sulfur compounds by chemolithotrophic microorganisms are emerging as an efficient and eco-friendly technique for removal of sulfur from the coal. In the present article, study was carried out to investigate the potential of biodesulfurization process in removing the sulfur from lignite coal sample collected from a Mongolian coal mine. The batch biodesulfurization experiments were conducted in 2.5 L borosilicate baffle type reactors at 35 ºC using Acidithiobacillus ferrooxidans. The effect of pulp density on efficiency of biodesulfurization was investigated at different solids concentration (1-10%) of coal. The results of the present study suggested that the rate of desulfurization was retarded at higher coal pulp density. The optimum pulp density found 5% at which about 48% of the total sulfur was removed from the coal.Keywords: Biodesulfurization, bioreactor, coal, pyrite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406112 Evaluation of Biomass Introduction Methods in Coal Co-Gasification
Authors: Ruwaida Abdul Rasid, Kevin J. Hughes, Peter J. Heggs, Mohamed Pourkashanian
Abstract:
Heightened concerns over the amount of carbon emitted from coal-related processes are generating shifts to the application of biomass. In co-gasification, where coal is gasified along with biomass, the biomass may be fed together with coal (cofeeding) or an independent biomass gasifier needs to be integrated with the coal gasifier. The main aim of this work is to evaluate the biomass introduction methods in coal co-gasification. This includes the evaluation of biomass concentration input (B0 to B100) and its gasification performance. A process model is developed and simulated in Aspen HYSYS, where both coal and biomass are modelled according to its ultimate analysis. It was found that the syngas produced increased with increasing biomass content for both co-feeding and independent schemes. However, the heating values and heat duties decreases with biomass concentration as more CO2 are produced from complete combustion.
Keywords: Aspen HYSYS, biomass, coal, co-gasification modelling and simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327111 On Unburned Carbon in Coal Ash from Various Combustion Units
Authors: L. Bartonová, D. Juchelková, Z. Klika, B. Cech
Abstract:
Work is focused to the study of unburned carbon in ash from coal (and wastes) combustion in 8 combustion tests at 3 fluidised-bed power station, at co-combustion of coal and wastes (also at fluidized bed) and at bench-scale unit simulating coal combustion in small domestic furnaces. The attention is paid to unburned carbon contents in bottom ashes and fly ashes at these 8 combustion tests and to morphology of unburned carbons. Specific surface area of coals, unburned carbons and ashes and the relation of specific surface area of unburned carbon and the content of volatile combustibles in coal were studied as well.Keywords: Coal combustion, emissions, toxic elements, unburned carbon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3751110 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks
Authors: Bachir Chemani, Halima Chemani
Abstract:
The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25mm to 1.60mm.
Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.
Keywords: Clay, coal, resistance to compression, insulating bricks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181109 Design of Coal Quality Disturbance Free System for Coordinated Control System Based on Gain Scheduling
Authors: Liu Ji-Wei, Pei Yu-Liang, Liu Qian, Han Xiang, Zeng De-Liang
Abstract:
The economic and stable operation was affected seriously by coal quality disturbance for power plants. Based on model analysis, influence of the disturbance can be considered as gain change of control system. Power capability coefficient of coal was constructed to inhibit it. Accuracy of the coefficient was verified by operating data. Then coal quality disturbance free system based on gain scheduling was designed for coordinated control system. Simulation showed that, the strategy improved control quality obviously, and inhibited the coal quality disturbance.Keywords: coordinate control system, coal quality disturbance, energy coefficient of coal quality, gain scheduling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421108 Depyritization of US Coal Using Iron-Oxidizing Bacteria: Batch Stirred Reactor Study
Authors: Ashish Pathak, Dong-Jin Kim, Haragobinda Srichandan, Byoung-Gon Kim
Abstract:
Microbial depyritization of coal using chemoautotrophic bacteria is gaining acceptance as an efficient and eco-friendly technique. The process uses the metabolic activity of chemoautotrophic bacteria in removing sulfur and pyrite from the coal. The aim of the present study was to investigate the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 8L bench scale stirred tank reactor having 1% (w/v) pulp density of coal. The reactor was operated at 35ºC and aerobic conditions were maintained by sparging the air into the reactor. It was found that at the end of bio-depyritization process, about 90% of pyrite and 67% of pyritic sulfur was removed from the coal. The results indicate that the bio-depyritization process is an efficient process in treating the high pyrite and sulfur containing coal.
Keywords: At. ferrooxidans, Batch reactor, Coal desulfurization, Pyrite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949107 Geochemistry of Coal Ash in the Equatorial Wet Disposal System Environment
Authors: Kolay P. K., Singh H.
Abstract:
The coal utilization in thermal power plants in Malaysia has increased significantly which produces an enormous amount of coal combustion by-product (CCBP) or coal ash and poses severe disposal problem. As each coal ash is distinct, this study presents the geochemistry of the coal ash, in particular fly ash, produced from the combustion of local coal from Kuching Sarawak, Malaysia. The geochemical composition of the ash showed a high amount of silica, alumina, iron oxides and alkalies which was found to be a convenient starting material for the hydrothermal synthesis of zeolites with the higher Na2O percentage being a positive factor for its alkaline activation; while the mineral phases are mainly quartz, mullite, calcium oxide, silica, and iron oxide hydrate. The geochemical changes upon alkali activation that can be predicted in a similar type of ash have been described in this paper. The result shows that this particular ash has a good potential for a high value industrial product like zeolites upon alkali activation.
Keywords: Coal ash, chemical composition, mineralogical composition, alkali activation, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052106 Extraction of Phenol, o-Cresol, and p-Cresol from Coal Tar: Effect of Temperature and Mixing
Authors: Dewi S. Fardhyanti, Panut Mulyono, Wahyudi B. Sediawan, Muslikhin Hidayat
Abstract:
Coal tar is a liquid by-product of the process of coal gasification and carbonation. This liquid oil mixture contains various kinds of useful compounds such as phenol, o-cresol, and p-cresol. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research needed to be done that given the optimum conditions for the separation of phenol, o-cresol, and p-cresol from the coal tar by solvent extraction process. The aim of the present work was to study the effect of two kinds of aqueous were used as solvents: methanol and acetone solutions, the effect of temperature (298, 306, and 313K) and mixing (30, 35, and 40rpm) for the separation of phenol, o-cresol, and p-cresol from coal tar by solvent extraction. Results indicated that phenol, o-cresol, and p-cresol in coal tar were selectivity extracted into the solvent phase and these components could be separated by solvent extraction. The aqueous solution of methanol, mass ratio of solvent to feed, Eo/Ro=1, extraction temperature 306K and mixing 35 rpm were the most efficient for extraction of phenol, o-cresol, and p-cresol from coal tar.Keywords: Coal tar, Distribution coefficient, Extraction, Yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4530105 Rare Earth Elements in Soils of Jharia Coal Field
Authors: R. E. Masto, L. C. Ram, S. K. Verma, V. A. Selvi, J. George, R. C. Tripathi, N. K. Srivastava, D. Mohanty, S. K.Jha, A. K. Sinha, A. Sinha
Abstract:
There are many sources trough which the soil get enriched and contaminated with REEs. The determination of REEs in environmental samples has been limited because of the lack of sensitive analytical techniques. Soil samples were collected from four sites including open cast coal mine, natural coal burning, coal washery and control in the coal field located in Dhanbad, India. Total concentrations of rare earth elements (REEs) were determined using the inductively coupled plasma atomic absorption spectrometry in order to assess enrichment status in the coal field. Results showed that the mean concentrations of La, Pr, Eu, Tb, Ho, and Tm in open cast mine and natural coal burning sites were elevated compared to the reference concentrations, while Ce, Nd, Sm, and Gd were elevated in coal washery site. When compared to reference soil, heavy REEs (HREEs) were enriched in open cast mines and natural coal burning affected soils, however, the HREEs were depleted in the coal washery sites. But, the Chondrite-normalization diagram showed significant enrichment for light REEs (LREEs) in all the soils. High concentration of Pr, Eu, Tb, Ho, Tm, and Lu in coal mining and coal burning sites may pose human health risks. Factor analysis showed that distribution and relative abundance of REEs of the coal washery site is comparable with the control. Eventually washing or cleaning of coal could significantly decrease the emission of REEs from coal into the environment.Keywords: Rare earth elements, coal, soil, factor analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830104 Application of Acidithiobacillus ferrooxidans in Desulfurization of US Coal: 10 L Batch Stirred Reactor Study
Authors: Ashish Pathak, Dong-Jin Kim, S. Singh, H. Srichandan, Byoung-Gon Kim
Abstract:
The desulfurization of coal using biological methods is an emerging technology. The biodesulfurization process uses the catalytic activity of chemolithotrophic acidpohiles in removing sulfur and pyrite from the coal. The present study was undertaken to examine the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 10 L batch stirred tank reactor having 10% pulp density of coal. The reactor was operated under mesophilic conditions and aerobic conditions were maintained by sparging the air into the reactor. After 35 days of experiment, about 64% of pyrite and 21% of pyritic sulfur was removed from the coal. The findings of the present study indicate that the biodesulfurization process does have potential in treating the high pyrite and sulfur containing coal. A good mass balance was also obtained with net loss of about 5% showing its feasibility for large scale application.
Keywords: At.ferrroxidans, Batch reactor, Coal desulfurization, Pyrite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669103 Methodology of Restoration Research in Czech Republic
Authors: M. Rehor, V. Ondracek
Abstract:
Restoration research has become important on principle recently in Czech Republic. The reason is simple. More than 70 % of mined brown coal comes from the North Bohemian Basin these days. Open cast brown coal mining has lead to large damage on the landscape. Reclamation of phytotoxic areas is one of the serious problems in the North Bohemian Basin. It mainly concerns the areas with the occurrence of overburden rocks from the coal bed enriched with coal. The presented paper includes the characteristics of the important phytotoxic areas and the methodology of their reclamation. The results are documented with the long term monitoring of physical, mineralogical, chemical and pedological parameters of rocks in the testing areas.
Keywords: Brown coal, dump, methodology, restoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543102 A Novel Approach for Beneficiation and Dewatering of Coal Fines for Indian Coal Preparation Plant
Authors: K.K. Sharma, K.M.K. Sinha, T.G. Charan, D.D. Haldar
Abstract:
An attempt has been made to beneficiate the Indian coking coal fines by a combination of Spiral, flotation and Oleo Flotation processes. Beneficiation studies were also carried out on - 0.5mm coal fines using flotation and oleo flotation by splitting at size 0.063mm.Size fraction of 0.5mm-0.063mm and -0.063mm size were treated in flotation and Oleo flotation respectively. The washability studies on the fraction 3-0.5 mm indicated that good separation may be achieved when it is fed in a spiral. Combined product of Spiral, Flotation and Oleo Flotation has given a significant yield at acceptable ash%. Studies were also conducted to see the dewatering of combined product by batch type centrifuge. It may further be suggested that combination of different processes may be used to treat the -3 mm fraction in an integrated manner to achieve the yield at the desired ash level. The treatment of the 3/1 mm -0.5 mm size fraction by spiral,-0.5-0.63 mm by conventional froth flotation and - 0.063 fractions by oleo flotation may provide a complete solution of beneficiation and dewatering of coal fines, and can effectively address the environmental problems caused by coal fines.Keywords: coal fines, dewatering, environment, flotation, oleoflotation, spiral
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124101 Benefits and Issues of Open-Cut Coal Mining on the Socio-Economic Environment - The Iban Community in Mukah, Sarawak, Malaysia
Authors: Edward Lim
Abstract:
This paper deals principally with the socio-economic impact on the local Iban community in Mukah Division, Sarawak; with the commencement of the open-cut coal mining industry since 2003. To-date there are no actual studies being carried out by either the public or private sector to truly analyze how the Iban community is coping with the advent of a large influx of cash into their society. The Iban community has traditionally been practicing shifting cultivation and farming of domesticated animals; with a portion of the younger generation working as laborers and professional. This paper represents the views and observations of the author supported by some statistical facts extracted from published articles and non-published reports. The paper deals primarily in the following areas: • Background of the coal mining industry in Mukah Division, Sarawak; • Benefits of the coal mining industry towards the Iban community; • Issues / Problems arise in the Iban community because of the presence of the coal mining industry; and • Possible actions that need to be taken to overcome these issues/ problems.
Keywords: Coal Mining, Iban Community, Malaysia, Sub-Bituminous Coal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443100 Experimental Study on Effects of Addition of Rice Husk on Coal Gasification
Authors: M. Bharath, Vasudevan Raghavan, B. V. S. S. S. Prasad, S. R. Chakravarthy
Abstract:
In this experimental study, effects of addition of rice husk on coal gasification in a bubbling fluidized bed gasifier, operating at atmospheric pressure with air as gasifying agent, are reported. Rice husks comprising of 6.5% and 13% by mass are added to coal. Results show that, when rice husk is added the methane yield increases from volumetric percentage of 0.56% (with no rice husk) to 2.77% (with 13% rice husk). CO and H2 remain almost unchanged and CO2 decreases with addition of rice husk. The calorific value of the synthetic gas is around 2.73 MJ/Nm3. All performance indices, such as cold gas efficiency and carbon conversion, increase with addition of rice husk.
Keywords: Bubbling fluidized bed reactor, coal gasification, calorific value, rice husk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146499 Volatility of Cu, Ni, Cr, Co, Pb, and As in Fluidised-Bed Combustion Chamber in Relation to Their Modes of Occurrence in Coal
Authors: L. Bartoňová, Z. Klika
Abstract:
Modes of occurrence of Pb, As, Cr, Co, Cu, and Ni in bituminous coal and lignite were determined by means of sequential extraction using NH4OAc, HCl, HF and HNO3 extraction solutions. Elemental affinities obtained were then evaluated in relation to volatility of these elements during the combustion of these coals in two circulating fluidised-bed power stations. It was found out that higher percentage of the elements bound in silicates brought about lower volatility, while higher elemental proportion with monosulphides association (or bound as exchangeable ion) resulted in higher volatility. The only exception was the behavior of arsenic, whose volatility depended on amount of limestone added during the combustion process (as desulphurisation additive) rather than to its association in coal.
Keywords: Coal combustion, sequential extraction, trace elements, volatility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179298 Modelling of Powered Roof Supports Work
Authors: Marcin Michalak
Abstract:
Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles.Keywords: Machine modelling, underground mining, coal mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192697 Plasma Arc Burner for Pulverized Coal Combustion
Authors: Gela Gelashvili, David Gelenidze, Sulkhan Nanobashvili, Irakli Nanobashvili, George Tavkhelidze, Tsiuri Sitchinava
Abstract:
Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.Keywords: Coal combustion, plasma arc, plasma torches, pulverized coal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127596 Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal: Strengthen the Energy Supply and Save the Environment
Authors: Mahidin, Yanna Syamsuddin, Samsul Rizal
Abstract:
In order to fulfill world energy demand, several efforts have been done to look for new and renewable energy candidates to substitute oil and gas. Biomass is one of new and renewable energy sources, which is abundant in Indonesia. Palm kernel shell is a kind of biomass discharge from palm oil industries as a waste. On the other hand, Jatropha curcas that is easy to grow in Indonesia is also a typical energy source either for bio-diesel or biomass. In this study, biomass was used as co-fuel in briquetting of low-rank coal to suppress the release of emission (such as CO, NOx and SOx) during coal combustion. Desulfurizer, CaO-base, was also added to ensure the SOx capture is effectively occurred. Ratio of coal to palm kernel shell (w/w) in the bio-briquette were 50:50, 60:40, 70:30, 80:20 and 90:10, while ratio of calcium to sulfur (Ca/S) in mole/mole were 1:1; 1.25:1; 1.5:1; 1.75:1 and 2:1. The bio-briquette then subjected to physical characterization and combustion test. The results show that the maximum weight loss in the durability measurement was ±6%. In addition, the highest stove efficiency for each desulfurizer was observed at the coal/PKS ratio of 90:10 and Ca/S ratio of 1:1 (except for the scallop shell desulfurizer that appeared at two Ca/S ratios; 1.25:1 and 1.5:1, respectively), i.e. 13.8% for the lime; 15.86% for the oyster shell; 14.54% for the scallop shell and 15.84% for the green mussel shell desulfurizers.
Keywords: Biomass, low-rank coal, bio-briquette, new and renewable energy, palm kernel shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 267995 Hydrodynamic Characteristics of Dry Beneficiation of Iron Ore and Coal in a Fast Fluidized Bed
Authors: M. Das, R. K. Saha, B. C. Meikap
Abstract:
Iron ore and coal are the two major important raw materials being used in Iron making industries. Usually ore fines containing around 5% Alumina are rejected due to higher proportion of alumina. Therefore, a technology or process which may reduce the alumina content by 2% by beneficiation process will be highly attractive . In addition fine coals with ash content is used nearly 12% is directly injected in blast furnace. Fast fluidization is a technology by using dry beneficiation of coal and iron ore can be done. During the fluidization process the iron ore band coal is fluidized at high velocity in the riser of a fast fluidized bed, the heavier and coarse particles is generally settled at the bottom in a dense zone of the riser while the finer and lighter particle are entrained to the top dilute zone and then via a cyclone is fed back to the bottom of the riser column. Most of the alumina and low ash fine size coals being lighter are expected to move up to the riser and by a natural beneficiation of ores is expected to take place in the riser. Therefore in this study an attempt has been made for dry beneficiation of iron ore and coal in a fluidized bed and its hydrodynamic characterization.Keywords: beneficiation, fluidization, gas-solid fluidization, riser .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219094 Forest Risk and Vulnerability Assessment: A Case Study from East Bokaro Coal Mining Area in India
Authors: Sujata Upgupta, Prasoon Kumar Singh
Abstract:
The expansion of large scale coal mining into forest areas is a potential hazard for the local biodiversity and wildlife. The objective of this study is to provide a picture of the threat that coal mining poses to the forests of the East Bokaro landscape. The vulnerable forest areas at risk have been assessed and the priority areas for conservation have been presented. The forested areas at risk in the current scenario have been assessed and compared with the past conditions using classification and buffer based overlay approach. Forest vulnerability has been assessed using an analytical framework based on systematic indicators and composite vulnerability index values. The results indicate that more than 4 km2 of forests have been lost from 1973 to 2016. Large patches of forests have been diverted for coal mining projects. Forests in the northern part of the coal field within 1-3 km radius around the coal mines are at immediate risk. The original contiguous forests have been converted into fragmented and degraded forest patches. Most of the collieries are located within or very close to the forests thus threatening the biodiversity and hydrology of the surrounding regions. Based on the vulnerability values estimated, it was concluded that more than 90% of the forested grids in East Bokaro are highly vulnerable to mining. The forests in the sub-districts of Bermo and Chandrapura have been identified as the most vulnerable to coal mining activities. This case study would add to the capacity of the forest managers and mine managers to address the risk and vulnerability of forests at a small landscape level in order to achieve sustainable development.
Keywords: Coal mining, forest, indicators, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 116093 The Adsorption of Lead from Aqueous Solutions Using Coal Fly Ash : Effect of Crystallinity
Authors: Widi Astuti, Agus Prasetya, Endang Tri Wahyuni, I Made Bendiyasa
Abstract:
Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of some oxides having high crystallinity, like quartz and mullite. In this study, the effect of CFA crystallinity toward lead adsorption capacity was investigated. To get solid with various crystallinity, the solution of sodium hydroxide (NaOH) of 1-7 M was used to treat CFA at various temperature and reflux time. Furthermore, to evaluate the effect of NaOH-treated CFA with respect to adsorption capacity, the treated CFA were examine as adsorbent for removing lead in the solution. The result shows that using NaOH to treat CFA causes crystallinity of quartz and mullite decrease. At higher NaOH concentration (>3M), in addition the damage of quartz and mullite crystallinity is followed by crystal formation called hydroxysodalite. The lower crystalllinity, the higher adsorption capacity.Keywords: Coal fly ash, crystallinity, lead, adsorption capacity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213692 Decolourization of Melanoidin Containing Wastewater Using South African Coal Fly Ash
Authors: V.O. Ojijo, M.S. Onyango, Aoyi Ochieng, F.A.O. Otieno
Abstract:
Batch adsorption of recalcitrant melanoidin using the abundantly available coal fly ash was carried out. It had low specific surface area (SBET) of 1.7287 m2/g and pore volume of 0.002245 cm3/g while qualitative evaluation of the predominant phases in it was done by XRD analysis. Colour removal efficiency was found to be dependent on various factors studied. Maximum colour removal was achieved around pH 6, whereas increasing sorbent mass from 10g/L to 200 g/L enhanced colour reduction from 25% to 86% at 298 K. Spontaneity of the process was suggested by negative Gibbs free energy while positive values for enthalpy change showed endothermic nature of the process. Non-linear optimization of error functions resulted in Freundlich and Redlich-Peterson isotherms describing sorption equilibrium data best. The coal fly ash had maximum sorption capacity of 53 mg/g and could thus be used as a low cost adsorbent in melanoidin removal.
Keywords: Adsorption, Isotherms, Melanoidin, South African coal fly ash.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 252191 Benchmarking Cleaner Production Performance of Coal-fired Power Plants Using Two-stage Super-efficiency Data Envelopment Analysis
Authors: Shao-lun Zeng, Yu-long Ren
Abstract:
Benchmarking cleaner production performance is an effective way of pollution control and emission reduction in coal-fired power industry. A benchmarking method using two-stage super-efficiency data envelopment analysis for coal-fired power plants is proposed – firstly, to improve the cleaner production performance of DEA-inefficient or weakly DEA-efficient plants, then to select the benchmark from performance-improved power plants. An empirical study is carried out with the survey data of 24 coal-fired power plants. The result shows that in the first stage the performance of 16 plants is DEA-efficient and that of 8 plants is relatively inefficient. The target values for improving DEA-inefficient plants are acquired by projection analysis. The efficient performance of 24 power plants and the benchmarking plant is achieved in the second stage. The two-stage benchmarking method is practical to select the optimal benchmark in the cleaner production of coal-fired power industry and will continuously improve plants- cleaner production performance.Keywords: benchmarking, cleaner production performance, coal-fired power plant, super-efficiency data envelopment analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243490 Total and Leachable Concentration of Trace Elements in Soil towards Human Health Risk, Related with Coal Mine in Jorong, South Kalimantan, Indonesia
Authors: Arie Pujiwati, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai
Abstract:
Coal mining is well known to cause considerable environmental impacts, including trace element contamination of soil. This study aimed to assess the trace element (As, Cd, Co, Cu, Ni, Pb, Sb, and Zn) contamination of soil in the vicinity of coal mining activities, using the case study of Asam-asam River basin, South Kalimantan, Indonesia, and to assess the human health risk, incorporating total and bioavailable (water-leachable and acid-leachable) concentrations. The results show the enrichment of As and Co in soil, surpassing the background soil value. Contamination was evaluated based on the index of geo-accumulation, Igeo and the pollution index, PI. Igeo values showed that the soil was generally uncontaminated (Igeo ≤ 0), except for elevated As and Co. Mean PI for Ni and Cu indicated slight contamination. Regarding the assessment of health risks, the Hazard Index, HI showed adverse risks (HI > 1) for Ni, Co, and As. Further, Ni and As were found to pose unacceptable carcinogenic risk (risk > 1.10-5). Farming, settlement, and plantation were found to present greater risk than coal mines. These results show that coal mining activity in the study area contaminates the soils by particular elements and may pose potential human health risk in its surrounding area. This study is important for setting appropriate countermeasure actions and improving basic coal mining management in Indonesia.
Keywords: Coal mine, risk, soil, trace elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117589 The Preparation of Silicon and Aluminum Extracts from Tuncbilek and Orhaneli Fly Ashes by Alkali Fusion
Authors: M. Sari Yilmaz, N. Karamahmut Mermer
Abstract:
Coal fly ash is formed as a solid waste product from the combustion of coal in coal fired power stations. Huge amounts of fly ash are produced globally every year and are predicted to increase. Nowadays, less than half of the fly ash is used as a raw material for cement manufacturing, construction and the rest of it is disposed as a waste causing yet another environmental concern. For this reason, the recycling of this kind of slurries into useful materials is quite important in terms of economical and environmental aspects. The purpose of this study is to evaluate the Orhaneli and Tuncbilek coal fly ashes for utilization in some industrial applications. Therefore the mineralogical and chemical compositions of these fly ashes were analyzed by X-ray fluorescence spectroscopy, ourier-transform infrared spectrometer, and X-ray diffraction. The silicon (Si) and aluminum (Al) in the fly ashes were activated by alkali fusion technique with sodium hydroxide. The obtained extracts were analyzed for Si and Al content by inductively coupled plasma optical emission spectrometry.Keywords: Extraction, Fly ash, Fusion, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189488 Influence of S. carnosus Bacteria as Biocollector for the Recovery Organic Matter in the Flotation Process
Authors: G. T. Ramos-Escobedo, E. T. Pecina-Treviño, L. F. Camacho-Ortegon, E. Orrantia-Borunda
Abstract:
The mineral bioflotation represents a viable alternative for the evaluation of new processes benefit alternative. The adsorption bacteria on minerals surfaces will depend mainly on the type of the microorganism as well as of the studied mineral surface. In the current study, adhesion of S. carnosus on coal was studied. Several methods were used as: DRX, Fourier Transform Infra-Red (FTIR) adhesion isotherms and kinetic. The main goal is to recovery of organic matter by the microflotation process on coal particles with biological reagent (S. carnosus). Adhesion tests revealed that adhesion took place after of 8 h at pH 9. The results suggest that the adhesion of bacteria to solid substrates can be considered an abiotic physicochemical process that is consequently governed by bacterial surface properties such as their specific surface area, hydrophobicity and surface functionalities. The greatest coal fine flotability was of 75%, after 5 min of flotation.
Keywords: Fine Coal, Bacteria, Adhesion, recovery matter organic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208587 A Case Study on Management of Coal Seam Gas By-Product Water
Authors: Mojibul Sajjad, Mohammad G. Rasul, Md. Sharif Imam Ibne Amir
Abstract:
The rate of natural gas dissociation from the Coal Matrix depends on depressurization of reservoir through removing of the cleat water from the coal seam. These waters are similar to brine and aged of very long years. For improving the connectivity through fracking /fracturing, high pressure liquids are pumped off inside the coal body. A significant quantity of accumulated water, a combined mixture of cleat water and fracking fluids (back flow water) is pumped out through gas well. In Queensland, Australia Coal Seam Gas (CSG) industry is in booming state and estimated of 30,000 wells would be active for CSG production forecasting life span of 30 years. Integrated water management along with water softening programs is practiced for subsequent treatment and later on discharge to nearby surface water catchment. Water treatment is an important part of the CSG industry. A case study on a CSG site and review on the test results are discussed for assessing the Standards & Practices for management of CSG by-product water and their subsequent disposal activities. This study was directed toward (i) water management and softening process in Spring Gully CSG field, (ii) Comparative analysis on experimental study and standards and (iii) Disposal of the treated water. This study also aimed for alternative usages and their impact on vegetation, living species as well as long term effects.
Keywords: Coal Seam Gas (CSG), Cleat Water, Hydro-Fracking, Desalination, Reverse Osmosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268586 The Effect of Unburned Carbon on Coal Fly Ash toward its Adsorption Capacity for Methyl Violet
Authors: Widi Astuti, Agus Prasetya, Endang Tri Wahyuni, I Made Bendiyasa
Abstract:
Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of quartz, mullite, and unburned carbon. In this study, the effect of unburned carbon on CFA toward its adsorption capacity was investigated. CFA with various carbon content was obtained by refluxing it with sulfuric acid having various concentration at various temperature and reflux time, by heating at 400-800°C, and by sieving into 100-mesh in particle size. To evaluate the effect of unburned carbon on CFA toward its adsorption capacity, adsorption of methyl violet solution with treated CFA was carried out. The research shows that unburned carbon leads to adsorption capacity decrease. The highest adsorption capacity of treated CFA was found 5.73 x 10-4mol.g-1.Keywords: CFA, carbon, methyl violet, adsorption capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170