Search results for: bio-diesel cogeneration
113 Microalgae-based Oil for Biodiesel Production
Authors: Marc Veillette, Mostafa Chamoumi, Nathalie Faucheux, Michèle Heitz
Abstract:
Biodiesel is traditionally produced from oleaginous plants. On the other hand, increasing biodiesel production from these raw materials could create problems of food supply. Producing biodiesel from microalgae could help to overcome this difficulty, because microalgae are rich in lipids and do not compete for arable lands. However, no studies had compared vegetable and microalgae oil-based biodiesel in terms of yield, viscosity and heat of combustion. In the present study, commercial canola and microalgae oil were therefore transesterified with methanol under a homogenous alkali catalyst (potassium hydroxide) at 100oC for 1h. The result showed that microalgae-based oil has a higher yield in biodiesel with 89.7% (g biodiesel/g oil) and a lower kinematic viscosity (22oC) of 4.31 mm/s2 than canola oil.Keywords: Biodiesel, microalgae, canola, alkalitransesterification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992112 Exergy Analysis of a Cogeneration Plant
Authors: Derya Burcu Ozkan, Onur Kiziler, Duriye Bilge
Abstract:
Cogeneration may be defined as a system which contains electricity production and regain of the thermo value of exhaust gases simultaneously. The examination is based on the data-s of an active cogeneration plant. This study, it is aimed to determine which component of the system should be revised first to raise the efficiency and decrease the loss of exergy. For this purpose, second law analysis of thermodynamics is applied to each component due to consider the effects of environmental conditions and take the quality of energy into consideration as well as the quantity of it. The exergy balance equations are produced and exergy loss is calculated for each component. 44,44 % loss of exergy in heat exchanger, 29,59 % in combustion chamber, 18,68 % in steam boiler, 5,25 % in gas turbine and 2,03 % in compressor is calculated.Keywords: Cogeneration, Exergy loss, Second law analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515111 Contribution of the Cogeneration Systems to Environment and Sustainability
Authors: Kemal Çomakli, Uğur Çakir, Ayşegül Çokgez Kuş, Erol Şahin
Abstract:
A lower consumption of thermal energy will contribute not only to a reduction in the running costs, but also in the reduction of pollutant emissions that contribute to the greenhouse effect. Cogeneration or CHP (Combined Heat and Power) is the system that produces power and usable heat simultaneously by decreasing the pollutant emissions and increasing the efficiency. Combined production of mechanical or electrical and thermal energy using a simple energy source, such as oil, coal, natural or liquefied gas, biomass or the sun; affords remarkable energy savings and frequently makes it possible to operate with greater efficiency when compared to a system producing heat and power separately. This study aims to bring out the contributions of cogeneration systems to the environment and sustainability by saving the energy and reducing the emissions. In this way we made a comprehensive investigation in the literature by focusing on the environmental aspects of the cogeneration systems. In the light of these studies we reached that, cogeneration systems must be consider in sustainability and their benefits on protecting the ecology must be investigated.Keywords: Sustainability, cogeneration systems, energy economy, energy saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2656110 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel
Authors: Supriyono, Sumardiyono, Rendy J. Pramono
Abstract:
Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.Keywords: Antioxidant, biodiesel, decomposition, oxidation, tocopherol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629109 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel
Authors: Supriyono, Sumardiyono, Rendy J. Pramono
Abstract:
Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.Keywords: Antioxidant, biodiesel, decomposition, oxidation, tocopherol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700108 Influence of Synthetic Antioxidant in the Iodine Value and Acid Number of Jatropha Curcas Biodiesel
Authors: Supriyono, Sumardiyono
Abstract:
Biodiesel is one of the alternative fuels that promising for substituting petro diesel as energy source which is advantage on sustainability and ecofriendly. Due to the raw material that tend to decompose during storage, biodiesel also have the same characteristic that tend to decompose and formed higher acid value which is the result of oxidation to double bond on a chain of ester. Decomposition of biodiesel due to oxidation reaction could prevent by introduce a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. The quality degradation on biodiesel could evaluate by measuring iodine value and acid number of biodiesel. Biodiesel made from high fatty acid Jatropha curcas oil by using esterification and transesterification process will stand on the quality by introduce 90 ppm pyrogallol powder on the biodiesel, which could increase Induction period time from 2 hours to more than 6 hours in rancimat test evaluation.Keywords: Acid value, antioxidant, biodiesel, iodine value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289107 Optimization of Biodiesel Production from Sunflower Oil Using Central Composite Design
Authors: Pascal Mwenge, Jefrey Pilusa, Tumisang Seodigeng
Abstract:
The current study investigated the effect of catalyst ratio and methanol to oil ratio on biodiesel production by using central composite design. Biodiesel was produced by transesterification using sodium hydroxide as a homogeneous catalyst, a laboratory scale reactor consisting of flat bottom flask mounts with a reflux condenser and a heating plate was used to produce biodiesel. Key parameters, including, time, temperature and mixing rate were kept constant at 60 minutes, 60 oC and 600 RPM, respectively. From the results obtained, it was observed that the biodiesel yield depends on catalyst ratio and methanol to oil ratio. The highest yield of 50.65% was obtained at catalyst ratio of 0.5 wt.% and methanol to oil mole ratio 10.5. The analysis of variances of biodiesel yield showed the R Squared value of 0.8387. A quadratic mathematical model was developed to predict the biodiesel yield in the specified parameters ranges.
Keywords: ANOVA, biodiesel, catalyst, CCD, transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099106 Using Mixtures of Waste Frying Oil and Pork Lard to Produce Biodiesel
Authors: Joana M. Dias, Conceição A. Ferraz, Manuel F. Almeida
Abstract:
Studying alternative raw materials for biodiesel production is of major importance. The use of mixtures with incorporation of wastes is an environmental friendly alternative and might reduce biodiesel production costs. The objective of the present work was: (i) to study biodiesel production using waste frying oil mixed with pork lard and (ii) to understand how mixture composition influences biodiesel quality. Biodiesel was produced by transesterification and quality was evaluated through determination of several parameters according to EN 14214. The weight fraction of lard in the mixture varied from 0 to 1 in 0.2 intervals. Biodiesel production yields varied from 81.7 to 88.0 (wt%), the lowest yields being the ones obtained using waste frying oil and lard alone as raw materials. The obtained products fulfilled most of the determined quality specifications according to European biodiesel quality standard EN 14214. Minimum purity (96.5 wt%) was closely obtained when waste frying oil was used alone and when 0.2% of lard was incorporated in the raw material (96.3 wt%); however, it ranged from 93.9 to 96.3 (wt%) being always close to the limit. From the evaluation of the influence of mixture composition in biodiesel quality, it was possible to establish a model to be used for predicting some parameters of biodiesel resulting from mixtures of waste frying oil with lard when different lard contents are used.
Keywords: Biodiesel, mixtures, transesterification, waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546105 Experimental Investigations on the Influence of Properties of Jatropha Biodiesel on Performance, Combustion, and Emission Characteristics of a DI-CI Engine
Authors: P. V. Rao
Abstract:
The aim of the present research work is to investigate the influence of Jatropha biodiesel properties on various characteristics of a direct injection compression ignition engine. The experiments were performed at different engine operating regimes with the injection timing prescribed by the engine manufacturer for diesel fuel. The engine characteristics with Jatropha biodiesel were compared against those obtained using diesel fuel. From the results, it is observed that the biodiesel performance and emissions are lower than that of diesel fuel. However, the NOx emission of Jatropha biodiesel is more than that of diesel fuel. These high NOx emissions are due to the presence of unsaturated fatty acids and the advanced injection caused by the higher bulk modulus (or density) of Jatropha biodiesel Furthermore, the possibility for reduction of NOx emissions without expensive engine modifications (hardware) was investigated. Keeping this in mind, the Jatropha biodiesel was preheated. The experimental results show that the retarded injection timing is necessary when using Jatropha biodiesel in order to reduce NOx emission without worsening other engine characteristics. Results also indicate improved performance with the application of preheated biodiesel. The only penalty for using preheated biodiesel is the increase of smoke (soot).Keywords: chemical properties, combustion, exhaust emissions, Jatropha biodiesel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3335104 Production of Biodiesel from Different Edible Oils
Authors: Amir Shafeeq, Ayyaz Muhammad, Noman Hassan, Rofice Dickson
Abstract:
Different vegetable oil based biodiesel (FAMES) were prepared by alkaline transesterification using refined oils as well as waste frying oil (WFO). Methanol and sodium hydroxide are used as catalyst under similar reaction conditions. To ensure the quality of biodiesel produced, a series of different ASTM Standard tests were carried out. In this context, various testwere done including viscosity, carbon residue, specific gravity, corrosion test, flash point, cloud point and pour point. Results revealed that characteristics of biodiesel depend on the feedstock and it is far better than petroleum diesel.
Keywords: Biodiesel, Edible oils, Separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115103 Short Term Tests on Performance Evaluation of Water-washed and Dry-washed Biodiesel from Used Cooking Oil
Authors: Shumani Ramuhaheli, Christopher C. Enweremadu, Hilary L. Rutto
Abstract:
In this study, biodiesel from used cooking oil was produced as purified by washing with water (water wash) and amberlite (dry wash). The work presents the results of short term tests on performance characteristics of diesel engine using both biodiesel-fuel samples. In this investigation, the water wash biodiesel and dry wash biodiesel and diesel were compared for performance using a four-cylinder diesel engine. The torque, brake power, specific fuel consumption and brake thermal efficiency were analyzed. The tests showed that in all cases, dry wash biodiesel performed marginally poorer compared to water wash biodiesel. Except for brake thermal efficiency, diesel fuel had better engine performance characteristics compared to the biodiesel-fuel samples. According to these results, dry washing of biodiesel has a marginal effect on engine performance.
Keywords: Biodiesel, engine performance, used cooking oil, water wash, dry wash.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087102 Biodiesel Production from Waste Chicken Fatbased Sources
Authors: Kambiz Tahvildari A., Narges Davari B., Mohammadreza Allahgholi Ghasri C, MasoomehBehrourzinavid D
Abstract:
Chicken fat was employed as a feedstock for producing of biodiesel by trasesterification reaction with methanol and alkali catalyst (KOH). In this study chicken fat biodiesel with 1.4% free fatty acid, methanol and various amount of potassium hydroxide for 2 hour were studied. The progression of reaction and conversion of triglycerides to methyl ester were checked by IR spectrum method.Keywords: Alkali catalyst, biodiesel, chicken fat, transesterification reaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838101 Impacts of Biofuels on Air Quality: Northern Portugal Case Study
Authors: Ribeiro I., Tavares A.M., Sá E., Lopes M.
Abstract:
The increased use of biodiesel implies variations on both greenhouse gases and air pollutant emissions. Some studies point out that the use of biodiesel blends on diesel can help in controlling air pollution and promote a reduction of CO2 emissions. Reductions on PM, SO2, VOC and CO emissions are also expected, however NOx emissions may increase, which may potentiate O3 formation. This work aims to assess the impact of the biodiesel use on air quality, through a numerical modeling study, taking the Northern region of Portugal as a case study. The emission scenarios are focused on 2008 (baseline year) and 2020 (target year of Renewable Energy Directive-RED) and on three biodiesel blends (B0, B10 and B20). In a general way the use of biodiesel by 2020 will reduce the CO2 and air pollutants emissions in the Northern Portugal, improving air quality. However it will be in a very small extension.
Keywords: air quality, biodiesel, emission scenarios, RED.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790100 Studying Effects of Alternative Biodiesel Fuel in Performance and Pollutants of Diesel Engines
Authors: Shakila Motamedi, Seyed Azizollah Ghotb, Fatemeh Torfi, Najaf Hedayat
Abstract:
Since injection engines have a considerable portion, in consumption of energy and environmental pollution, using an alternative source of energy with lower pollutant effects in this regard is necessary. Biodiesel fuel is a suitable alternative for gasoline in diesel engines. In this research the property of biodiesel, the function and the pollution effects of diesel engine, when using 100% biodiesel, using 100% gasoline and mixing ratio of both fuels for comparing them, have been investigated. The researches have shown, using biodiesel fuel in prevalent diesel engine, will reduce the pollutants such as Co, half burned carbohydrate and suspended particles and a little increase in oxidation will achieve while power consumption, particularly fuel and thermal efficiency of diesel fuel has the same.Keywords: Biodiesel, Diesel Engine, Environment, Gasoline
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159099 Used Frying Oil for Biodiesel Production Over Kaolinite as Catalyst
Authors: Jorge Ramírez-Ortiz, Jorge Medina-Valtierra, Merced Martínez Rosales
Abstract:
Biodiesel production with used frying by transesterification reaction with methanol, using a commercial kaolinite thermally-activated solid acid catalyst was investigated. The surface area, the average pore diameter and pore volume of the kaolinite catalyst were 10 m2/g, 13.0 nm and 30 mm3/g, respectively. The optimal conditions for the transesterification reaction were determined to be oil/methanol, in a molar ratio 1:31, temperature 160 ºC and catalyst concentration of 3% (w/w). The yield of fatty acids methyl esters (FAME) was 92.4% after 2 h of reaction. This method of preparation of biodiesel can be a positive alternative for utilizing used frying corn oil for feedstock of biodiesel combined with the inexpensive catalyst.Keywords: Biodiesel, frying corn oil, kaolinite, transesterification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209298 Performance Evaluation of a Diesel Engine Fueled with Methyl Ester of shea Butter
Authors: Christopher C. Enweremadu, Hilary L. Rutto, Najeem Peleowo
Abstract:
Biodiesel as an alternative fuel for diesel engines has been developed for some three decades now. While it is gaining wide acceptance in Europe, USA and some parts of Asia, the same cannot be said of Africa. With more than 35 countries in the continent depending on imported crude oil, it is necessary to look for alternative fuels which can be produced from resources available locally within any country. Hence this study presents performance of single cylinder diesel engine using blends of shea butter biodiesel. Shea butter was transformed into biodiesel by transesterification process. Tests are conducted to compare the biodiesel with baseline diesel fuel in terms of engine performance and exhaust emission characteristics. The results obtained showed that the addition of biodiesel to diesel fuel decreases the brake thermal efficiency (BTE) and increases the brake specific fuel consumption (BSFC). These results are expected due to the lower energy content of biodiesel fuel. On the other hand while the NOx emissions increased with increase in biodiesel content in the fuel blends, the emissions of carbon monoxide (CO), un-burnt hydrocarbon (UHC) and smoke opacity decreased. The engine performance which indicates that the biodiesel has properties and characteristics similar to diesel fuel and the reductions in exhaust emissions make shea butter biodiesel a viable additive or substitute to diesel fuel.
Keywords: Biodiesel, diesel engine, engine performance and emission, shea butter, transesterification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 258997 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil
Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul
Abstract:
As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on abiotic depletion potential (ADP) and acidification potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on ecotaxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.
Keywords: Biodiesel, Ethanol, Life Cycle Assessment, Methanol, Soybean Oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 340096 Properties of Biodiesel Produced by Enzymatic Transesterification of Lipids Extracted from Microalgae in Supercritical Carbon Dioxide Medium
Authors: Hanifa Taher, Sulaiman Al-Zuhair, Ali H. Al-Marzouqi, Yousef Haik, Mohammed Farid
Abstract:
Biodiesel, as an alternative renewable fuel, has been receiving increasing attention due to the limited supply of fossil fuels and the increasing need for energy. Microalgae are promising source for lipids, which can be converted to biodiesel. The biodiesel production from microalgae lipids using lipase catalyzed reaction in supercritical CO2 medium has several advantages over conventional production processes. However, identifying the optimum microalgae lipid extraction and transesterification conditions is still a challenge. In this study, the quality of biodiesel produced from lipids extracted from Scenedesmus sp. and their enzymatic transesterification using supercritical carbon dioxide have been investigated. At the optimum conditions, the highest biodiesel production yield was found to be 82%. The fuel properties of the produced biodiesel, without any separation step, at optimum reaction condition, were determined and compared to ASTM standards. The properties were found to comply with the limits, and showed a low glycerol content, without any separation step.Keywords: Biodiesel, fuel standards, lipase, microalgae, Supercritical CO2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250595 Experimental Comparison of Combustion Characteristic and Pollutant Emission of Gas Oil and Biodiesel
Authors: S. Baghdar Hosseini, K. Bashirnezhad, A. R. Moghiman, Y. Khazraii, N. Nikoofal
Abstract:
The increasing industrialization and motorization of the world has led to a steep rise for the demand of petroleum-based fuels. Petroleum-based fuels are obtained from limited reserves. These finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these resources are facing energy/foreign exchange crisis, mainly due to the import of crude petroleum. Hence, it is necessary to look for alternative fuels which can be produced from resources available locally within the country such as alcohol, biodiesel, vegetable oils etc. Biodiesel is a renewable, domestically produced fuel that has been shown to reduce particulate, hydrocarbon, and carbon monoxide emissions from combustion. In the present study an experimental investigation on emission characteristic of a liquid burner system operating on several percentage of biodiesel and gas oil is carried out. Samples of exhaust gas are analysed with Testo 350 Xl. The results show that biodiesel can lower some pollutant such as CO, CO2 and particulate matter emissions while NOx emission would increase in comparison with gas oil. The results indicate there may be benefits to using biodiesel in industrial processes.
Keywords: Biodiesel, combustion, gas oil, pollutant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235594 Production of Biodiesel from Roasted Chicken Fat and Methanol: Free Catalyst
Authors: Jorge Ramírez-Ortiz, Merced Martínez Rosales, Horacio Flores Zúñiga
Abstract:
Transesterification reactions free of catalyst between roasted chicken fat with methanol were carried out in a batch reactor in order to produce biodiesel to temperatures from 120°C to 140°C. Parameters related to the transesterification reactions, including temperature, time and the molar ratio of chicken fat to methanol also investigated. The maximum yield of the reaction was of 98% under conditions of 140°C, 4 h of reaction time and a molar ratio of chicken fat to methanol of 1:31. The biodiesel thus obtained exhibited a viscosity of 6.3 mm2/s and a density of 895.9 kg/m3. The results showed this process can be right choice to produce biodiesel since this process does not use any catalyst. Therefore, the steps of neutralization and washing are avoided, indispensables in the case of the alkaline catalysis.
Keywords: Biodiesel, non-catalyst, roasted chicken fat, transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315693 Modelling of Heating and Evaporation of Biodiesel Fuel Droplets
Authors: Mansour Al Qubeissi, Sergei S. Sazhin, Cyril Crua, Morgan R. Heikal
Abstract:
This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius.
Keywords: Heat/Mass Transfer, Biodiesel, Multi-component Fuel, Droplet, Evaporation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 279792 Trade-off Between NOX, Soot and EGR Rates for an IDI Diesel Engine Fuelled with JB5
Authors: M. Gomaa, A. J. Alimin, K. A. Kamarudin
Abstract:
Nowadays, the focus on renewable energy and alternative fuels has increased due to increasing oil prices, environment pollution, and also concern on preserving the nature. Biodiesel has been known as an attractive alternative fuel although biodiesel produced from edible oil is very expensive than conventional diesel. Therefore, the uses of biodiesel produced from non-edible oils are much better option. Currently Jatropha biodiesel (JBD) is receiving attention as an alternative fuel for diesel engine. Biodiesel is non-toxic, biodegradable, high lubricant ability, highly renewable, and its use therefore produces real reduction in petroleum consumption and carbon dioxide (CO2) emissions. Although biodiesel has many advantages, but it still has several properties need to improve, such as lower calorific value, lower effective engine power, higher emission of nitrogen oxides (NOX) and greater sensitivity to low temperature. Exhaust gas recirculation (EGR) is effective technique to reduce NOX emission from diesel engines because it enables lower flame temperature and oxygen concentration in the combustion chamber. Some studies succeeded to reduce the NOX emission from biodiesel by EGR but they observed increasing soot emission. The aim of this study was to investigate the engine performance and soot emission by using blended Jatropha biodiesel with different EGR rates. A CI engine that is water-cooled, turbocharged, using indirect injection system was used for the investigation. Soot emission, NOX, CO2, carbon monoxide (CO) were recorded and various engine performance parameters were also evaluated.
Keywords: EGR, Jatropha biodiesel, NOX, Soot emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 329091 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst
Authors: D. Mowla, N. Rasti, P. Keshavarz
Abstract:
Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.Keywords: Biodiesel, renewable fuel, transesterification, waste cooking oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147990 Modeling the Vapor Pressure of Biodiesel Fuels
Authors: O. Castellanos Díaz, F. Schoeggl, H. W. Yarranton, M. A. Satyro, T. M. Lovestead, T. J. Bruno
Abstract:
The composition, vapour pressure, and heat capacity of nine biodiesel fuels from different sources were measured. The vapour pressure of the biodiesel fuels is modeled assuming an ideal liquid phase of the fatty acid methyl esters constituting the fuel. New methodologies to calculate the vapour pressure and ideal gas and liquid heat capacities of the biodiesel fuel constituents are proposed. Two alternative optimization scenarios are evaluated: 1) vapour pressure only; 2) vapour pressure constrained with liquid heat capacity. Without physical constraints, significant errors in liquid heat capacity predictions were found whereas the constrained correlation accurately fit both vapour pressure and liquid heat capacity.Keywords: Biodiesel fuels, Fatty acid methyl ester, Heat capacity, Modeling, Vapour pressure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600789 Biodiesel Production from Broiler Chicken Waste
Authors: John Abraham, Ramesh Saravana Kumar, Francis Xavier, Deepak Mathew
Abstract:
Broiler slaughter waste has become a major source of pollution throughout the world. Utilization of broiler slaughter waste by dry rendering process produced Rendered Chicken Oil (RCO), a cheap raw material for biodiesel production and Carcass Meal a feed ingredient for pets and fishes. Conversion of RCO into biodiesel may open new vistas for generating wealth from waste besides controlling the major havoc of environmental pollution. A two-step process to convert RCO to good quality Biodiesel was invented. Acid catalysed esterification of FFA followed by base catalysed transesterification of triglycerides was carried out after meticulously standardizing the methanol molar ratio, catalyst concentration, reaction temperature, and reaction time to obtain the maximum biodiesel yield of 97.62% and lowest glycerol yield of 6.96%. RCO biodiesel blend was tested in a CRDI diesel engine. The results revealed that the blending of commercial diesel with 20% RCO biodiesel (B20) lead to less engine wear, a quieter engine and better fuel economy. The better lubricating qualities of RCO B20 prevented over heating of engine, which prolongs the engine life. RCO B20 can reduce the import of crude oil and substantially reduce the engine emissions as proved by significantly lower smoke levels, thus mitigating climatic changes.Keywords: Biodiesel, Broiler Waste, Engine Testing, Rendered Chicken Oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550688 Utilization of Glycerol Derived from Jatropha-s Biodiesel Production as a Cement Grinding Aid
Authors: O. Farobie, S S. Achmadi, L K. Darusman
Abstract:
Biodiesel production results in glycerol production as the main by-product in biodiesel industry.One of the utilizations of glycerol obtained from biodiesel production is as a cement grinding aid (CGA). Results showed that crude glycerol content was 40.19% whereas pure glycerol content was 82.15%. BSS value of the cement with CGA supplementation was higher than that of nonsupplemented cement (blank) indicating that CGA-supplemented cement had higher fineness than the non-supplemented one. It was also found that pure glycerol 95% and TEA 5% at 80ºC was the optimum CGA used to result in finest cement with BSS value of 4.836 cm2/g. Residue test showed that the smallest percent residue value (0.11%) was obtained in cement with supplementation of pure glycerol 95% and TEA 5%. Results of residue test confirmed those of BSS test showing that cement with supplementation of pure glycerol 95% and TEA 5% had the finest particle size.Keywords: biodiesel, cement grinding aid, glycerol, Jatropha curcas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 347387 Production, Characterisation and Assessment of Biomixture Fuels for Compression Ignition Engine Application
Authors: K. Masera, A. K. Hossain
Abstract:
Hardly any neat biodiesel satisfies the European EN14214 standard for compression ignition engine application. To satisfy the EN14214 standard, various additives are doped into biodiesel; however, biodiesel additives might cause other problems such as increase in the particular emission and increased specific fuel consumption. In addition, the additives could be expensive. Considering the increasing level of greenhouse gas GHG emissions and fossil fuel depletion, it is forecasted that the use of biodiesel will be higher in the near future. Hence, the negative aspects of the biodiesel additives will likely to gain much more importance and need to be replaced with better solutions. This study aims to satisfy the European standard EN14214 by blending the biodiesels derived from sustainable feedstocks. Waste Cooking Oil (WCO) and Animal Fat Oil (AFO) are two sustainable feedstocks in the EU (including the UK) for producing biodiesels. In the first stage of the study, these oils were transesterified separately and neat biodiesels (W100 & A100) were produced. Secondly, the biodiesels were blended together in various ratios: 80% WCO biodiesel and 20% AFO biodiesel (W80A20), 60% WCO biodiesel and 40% AFO biodiesel (W60A40), 50% WCO biodiesel and 50% AFO biodiesel (W50A50), 30% WCO biodiesel and 70% AFO biodiesel (W30A70), 10% WCO biodiesel and 90% AFO biodiesel (W10A90). The prepared samples were analysed using Thermo Scientific Trace 1300 Gas Chromatograph and ISQ LT Mass Spectrometer (GC-MS). The GS-MS analysis gave Fatty Acid Methyl Ester (FAME) breakdowns of the fuel samples. It was found that total saturation degree of the samples was linearly increasing (from 15% for W100 to 54% for A100) as the percentage of the AFO biodiesel was increased. Furthermore, it was found that WCO biodiesel was mainly (82%) composed of polyunsaturated FAMEs. Cetane numbers, iodine numbers, calorific values, lower heating values and the densities (at 15 oC) of the samples were estimated by using the mass percentages data of the FAMEs. Besides, kinematic viscosities (at 40 °C and 20 °C), densities (at 15 °C), heating values and flash point temperatures of the biomixture samples were measured in the lab. It was found that estimated and measured characterisation results were comparable. The current study concluded that biomixture fuel samples W60A40 and W50A50 were perfectly satisfying the European EN 14214 norms without any need of additives. Investigation on engine performance, exhaust emission and combustion characteristics will be conducted to assess the full feasibility of the proposed biomixture fuels.
Keywords: Biodiesel, blending, characterisation, CI Engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80386 Thermal Cracking Approach Investigation to Improve Biodiesel Properties
Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli
Abstract:
Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number.
Keywords: Biodiesel, castor oil, fuel properties, thermal cracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 367185 Correlation and Prediction of Biodiesel Density
Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos
Abstract:
The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg⋅m- 3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg·m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.
Keywords: Biodiesel, Correlation, Density, Equation of state, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351084 Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts
Authors: Velid Demir, Mesut Akgün
Abstract:
The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al2O3 using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al2O3 was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La2O3/γ-Al2O3 at the same parameters. For this study, ZnO/γ-Al2O3 was the most suitable catalyst due to performance and cost considerations.
Keywords: Biodiesel, heterogeneous catalyst, Jatropha oil, supercritical methanol, transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155