Search results for: bending vibration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 644

Search results for: bending vibration

494 Numerical Analysis of Jet Grouting Strengthened Pile under Lateral Loading

Authors: Reza Ziaie Moayed, Naeem Gholampoor

Abstract:

Jet grouting strengthened pile (JPP) is one of composite piles used in soft ground improvement. It may improve the vertical and lateral bearing capacity effectively and it has been practically used in a considerable scale. In order to make a further research on load transfer mechanism of single JPP with and without cap under lateral loads, JPP is analyzed by means of FEM analysis. It is resulted that the JPP pile could improve lateral bearing capacity by compared with bored concrete pile which is higher for shorter pile and the biggest bending moment of JPP pile is located in the depth of around 48% of embedded length of the pile. Meanwhile, increase of JPP pile length causes to increase of peak mobilized bending moment. Also, by cap addition, JPP piles will have a much higher lateral bearing capacity and increasing in cohesion of soil layer resulted to increase of lateral bearing capacity of JPP pile. In addition, the numerical results basically coincide with the experimental results presented by other researchers.

Keywords: Bending moment, FEM analysis, JPP pile, lateral bearing capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
493 Effect of Vibration Amplitude and Welding Force on Weld Strength of Ultrasonic Metal Welding

Authors: Ziad. Sh. Al Sarraf

Abstract:

Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.

Keywords: Ultrasonic welding, vibration amplitude, welding force, weld strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
492 Flame Acceleration of Premixed Natural Gas/Air Explosion in Closed Pipe

Authors: H. Mat Kiah, Rafiziana M. Kasmani, Norazana Ibrahim, Roshafima R. Ali, Aziatul N.Sadikin

Abstract:

An experimental study has been done to investigate the flame acceleration in a closed pipe. A horizontal steel pipe, 2m long and 0.1m in diameter (L/D of 20), was used in this work. For tests with 90 degree bends, the bend had a radius of 0.1m and thus, the pipe was lengthened 1m (based on the centreline length of the segment). Ignition was affected at one end of the vessel while the other end was closed. Only stoichiometric concentration (Ф, = 1.0) of natural gas/air mixtures will be reported in this paper. It was demonstrated that bend pipe configuration gave three times higher in maximum overpressure (5.5 bars) compared to straight pipe (2.0 bars). From the results, the highest flame speed, of 63ms-1, was observed in a gas explosion with bent pipe; greater by a factor of ~3 as compared with straight pipe (23ms-1). This occurs because bending acts similar to an obstacle, in which this mechanism can induce more turbulence, initiating combustion in an unburned pocket at the corner region and causing a high mass burning rate, which increases the flame speed.

Keywords: Bending, gas explosion, bending, flame acceleration, overpressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
491 Experimental and Theoretical Investigation on Notched Specimens Life Under Bending Loading

Authors: Nasim Daemi, Gholam Hossein Majzoobi

Abstract:

In this work, bending fatigue life of notched specimens with various notch geometries and dimensions is investigated by experiment and Manson-Caffin theoretical method. In this theoretical method, fatigue life of notched specimens is calculated using the fatigue life obtained from the experiments for plain specimens (without notch). Three notch geometries including ∪-shape, ∨-shape and C -shape notches are considered in this investigation. The experiments are conducted on a rotary bending Moore machine. The specimens are made of a low carbon steel alloy, which has wide application in industry. The stress- life curves are captured for all notched specimen by experiment. The results indicate that Manson-Caffin analytical method cannot adequately predict the fatigue life of notched specimen. However, it seems that the difference between the experiments and Manson-Caffin predictions can be compensated by a proportional factor.

Keywords: fatigue life, Mason-Caffin method, notchedspecimen, stress-life curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
490 Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination

Authors: Sh. Mirhosseini, Y. Haghighatfar, M. Sedighi

Abstract:

Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis.

Keywords: Delamination, forced vibration, finite element modelling, natural frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
489 Fractional Order Controller Design for Vibration Attenuation in an Airplane Wing

Authors: Birs Isabela, Muresan Cristina, Folea Silviu, Prodan Ovidiu

Abstract:

The wing is one of the most important parts of an airplane because it ensures stability, sustenance and maneuverability of the airplane. Because of its shape, the airplane wing can be simplified to a smart beam. Active vibration suppression is realized using piezoelectric actuators that are mounted on the surface of the beam. This work presents a tuning procedure of fractional order controllers based on a graphical approach of the frequency domain representation. The efficacy of the method is proven by practically testing the controller on a laboratory scale experimental stand.

Keywords: Fractional order controller, piezoelectric actuators, smart beam, vibration suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185
488 A Dynamic Model for a Drill in the Drilling Process

Authors: Bo Wun Huang, Ah Der Lin, Yung Chuan Chen, Jao Hwa Kuang

Abstract:

The dynamic model of a drill in drilling process was proposed and investigated in this study. To assure a good drilling quality, the vibration variation on the drill tips during high speed drilling is needed to be investigated. A pre-twisted beam is used to simulate the drill. The moving Winkler-Type elastic foundation is used to characterize the tip boundary variation in drilling. Due to the variation of the drill depth, a time dependent dynamic model for the drill is proposed. Results simulated from this proposed model indicate that an abrupt natural frequencies drop are experienced as the drill tip tough the workpiece, and a severe vibration is induced. The effects of parameters, e.g. drilling speed, depth, drill size and thrust force on the drill tip responses studied.

Keywords: Drilling, vibration of drill, twisted beam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
487 Application of Vortex Induced Vibration Energy Generation Technologies to the Offshore Oil and Gas Platform: The Preliminary Study

Authors: M. A. Zahari, S. S. Dol

Abstract:

The global demand for continuous and eco-friendly renewable energy as alternative to fossils fuels is large and ever growing in nowadays. This paper will focus on capability of Vortex Induced Vibration (VIV) phenomenon in generating alternative energy for offshore platform application. In order to maximize the potential of energy generation, the effects of lock in phenomenon and different geometries of cylinder were studied in this project. VIV is the motion induced on bluff body which creates alternating lift forces perpendicular to fluid flow. Normally, VIV is unwanted in order to prevent mechanical failure of the vibrating structures. But in this project, instead of eliminating these vibrations, VIV will be exploited to transform these vibrations into a valuable resource of energy.

Keywords: Vortex Induced Vibration, Vortex Shedding, Renewable Energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3688
486 Causes of Rotor Distortions and Applicable Common Straightening Methods for Turbine Rotors and Shafts

Authors: Esmaeil Poursaeidi, Mostafa Kamalzadeh Yazdi

Abstract:

Different problems may causes distortion of the rotor, and hence vibration, which is the most severe damage of the turbine rotors. In many years different techniques have been developed for the straightening of bent rotors. The method for straightening can be selected according to initial information from preliminary inspections and tests such as nondestructive tests, chemical analysis, run out tests and also a knowledge of the shaft material. This article covers the various causes of excessive bends and then some applicable common straightening methods are reviewed. Finally, hot spotting is opted for a particular bent rotor. A 325 MW steam turbine rotor is modeled and finite element analyses are arranged to investigate this straightening process. Results of experimental data show that performing the exact hot spot straightening process reduced the bending of the rotor significantly.

Keywords: Distortion, FEM, Hot Spot Area, Rotor Straightening

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6465
485 Calculation of Voided Slabs Rigidities

Authors: Gee-Cheol Kim, Joo-Won Kang

Abstract:

A theoretical study of the rigidities of slabs with circular voids oriented in the longitudinal and in the transverse direction is discussed. Equations are presented for predicting the bending and torsional rigidities of the voided slabs. This paper summarizes the results of an extensive literature search and initial review of the current methods of analyzing voided slab. The various methods of calculating the equivalent plate parameters, which are necessary for two-dimensional analysis, are also reviewed. Static deflections on voided slabs are shown to be in good agreement with proposed equation.

Keywords: voided slab, bending rigidity, torsional rigidity, orthotropic plate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3803
484 Particle Swarm Optimization Approach on Flexible Structure at Wiper Blade System

Authors: A. Zolfagharian, M.Z. Md. Zain, A. R. AbuBakar, M. Hussein

Abstract:

Application of flexible structures has been significantly, increased in industry and aerospace missions due to their contributions and unique advantages over the rigid counterparts. In this paper, vibration analysis of a flexible structure i.e., automobile wiper blade is investigated and controlled. The wiper generates unwanted noise and vibration during the wiping the rain and other particles on windshield which may cause annoying noise in different ranges of frequency. A two dimensional analytical modeled wiper blade whose model accuracy is verified by numerical studies in literature is considered in this study. Particle swarm optimization (PSO) is employed in alliance with input shaping (IS) technique in order to control or to attenuate the amplitude level of unwanted noise/vibration of the wiper blade.

Keywords: Input shaping, noise reduction, particle swarmoptimization, wiper blade

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
483 Motor Gear Fault Diagnosis by Current, Noise and Vibration on AC Machine Considering Environment

Authors: Sun-Ki Hong, Ki-Seok Kim, Yong-Ho Cho

Abstract:

Lots of motors have been being used in industry. Therefore many researchers have studied about the failure diagnosis of motors. In this paper, the effect of measuring environment for diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. For bad and good environment, the diagnosis results are compared. From these, it is shown that the bad measuring environment may not be able to detect exactly the motor gear fault. Therefore it is emphasized that the measuring environment should be carefully prepared.

Keywords: Motor fault, Diagnosis, FFT, Vibration, Noise, q-axis current, measuring environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464
482 Analysis of the Coupled Stretching Bending Problem of Stiffened Plates by a BEM Formulation Based on Reissner's Hypothesis

Authors: Gabriela R. Fernandes, Danilo H. Konda, Luiz C. F. Sanches

Abstract:

In this work, the plate bending formulation of the boundary element method - BEM, based on the Reissner?s hypothesis, is extended to the analysis of plates reinforced by beams taking into account the membrane effects. The formulation is derived by assuming a zoned body where each sub-region defines a beam or a slab and all of them are represented by a chosen reference surface. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to reduce the number of degrees of freedom, the problem values defined on the interfaces are written in terms of their values on the beam axis. Initially are derived separated equations for the bending and stretching problems, but in the final system of equations the two problems are coupled and can not be treated separately. Finally are presented some numerical examples whose analytical results are known to show the accuracy of the proposed model.

Keywords: Boundary elements, Building floor structures, Platebending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
481 Comparative Analysis of Vibration between Laminated Composite Plates with and without Holes under Compressive Loads

Authors: Bahi-Eddine Lahouel, Mohamed Guenfoud

Abstract:

In this study, a vibration analysis was carried out of symmetric angle-ply laminated composite plates with and without square hole when subjected to compressive loads, numerically. A buckling analysis is also performed to determine the buckling load of laminated plates. For each fibre orientation, the compression load is taken equal to 50% of the corresponding buckling load. In the analysis, finite element method (FEM) was applied to perform parametric studies, the effects of degree of orthotropy and stacking sequence upon the fundamental frequencies and buckling loads are discussed. The results show that the presence of a constant compressive load tends to reduce uniformly the natural frequencies for materials which have a low degree of orthotropy. However, this reduction becomes non-uniform for materials with a higher degree of orthotropy.

Keywords: Vibration, Buckling, Cutout, Laminated composite, FEM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
480 An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances

Authors: Pakorn Uttayopas, Chawalit Kittichaikarn

Abstract:

This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.

Keywords: Downstream structures, energy harvesting, flow-induced vibration, piezoelectric material, wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
479 Simulation of Kinetic Friction in L-Bending of Sheet Metals

Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang

Abstract:

This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.

Keywords: Friction, L-bending, Springback, Stribeck curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
478 Vortex-Induced Vibration Characteristics of an Elastic Circular Cylinder

Authors: T. Li, J.Y. Zhang, W.H. Zhang, M.H. Zhu

Abstract:

A numerical simulation of vortex-induced vibration of a 2-dimensional elastic circular cylinder with two degree of freedom under the uniform flow is calculated when Reynolds is 200. 2-dimensional incompressible Navier-Stokes equations are solved with the space-time finite element method, the equation of the cylinder motion is solved with the new explicit integral method and the mesh renew is achieved by the spring moving mesh technology. Considering vortex-induced vibration with the low reduced damping parameter, the variety trends of the lift coefficient, the drag coefficient, the displacement of cylinder are analyzed under different oscillating frequencies of cylinder. The phenomena of locked-in, beat and phases-witch were captured successfully. The evolution of vortex shedding from the cylinder with time is discussed. There are very similar trends in characteristics between the results of the one degree of freedom cylinder model and that of the two degree of freedom cylinder model. The streamwise vibrations have a certain effect on the lateral vibrations and their characteristics.

Keywords: Fluid-structure interaction, Navier-Stokes equation, Space-time finite element method, vortex-induced vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2877
477 Failure Analysis and Fatigue Life Estimation of a Shaft of a Rotary Draw Bending Machine

Authors: B. Engel, Sara Salman Hassan Al-Maeeni

Abstract:

Human consumption of the Earth's resources increases the need for a sustainable development as an important ecological, social, and economic theme. Re-engineering of machine tools, in terms of design and failure analysis, is defined as steps performed on an obsolete machine to return it to a new machine with the warranty that matches the customer requirement. To understand the future fatigue behavior of the used machine components, it is important to investigate the possible causes of machine parts failure through design, surface, and material inspections. In this study, the failure modes of the shaft of the rotary draw bending machine are inspected. Furthermore, stress and deflection analysis of the shaft subjected to combined torsion and bending loads are carried out by an analytical method and compared with a finite element analysis method. The theoretical fatigue strength, correction factors, and fatigue life sustained by the shaft before damaged are estimated by creating a stress-cycle (S-N) diagram. In conclusion, it is seen that the shaft can work in the second life, but it needs some surface treatments to increase the reliability and fatigue life.

Keywords: Failure analysis, fatigue life, FEM analysis, shaft, stress analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4560
476 Quality Control of Automotive Gearbox Based On Vibration Signal Analysis

Authors: Nilson Barbieri, Bruno Matos Martins, Gabriel de Sant'Anna Vitor Barbieri

Abstract:

In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes.

Keywords: Automotive gearbox, mathematical morphology, wavelet, bispectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
475 Consideration of Criteria of Vibration Comfort of People in Diagnosis and Design of Buildings

Authors: Kawecki J., Kowalska-Koczwara A., Stypula K.

Abstract:

The increasing influence of traffic on building objects and people residing in them should be taken into account in diagnosis and design. Users of buildings expect that vibrations occurring in their environment, will not only lead to damage to the building or its accelerated wear, but neither would affect the required comfort in rooms designed to accommodate people. This article describes the methods and principles useful in designing and building diagnostics located near transportation routes, with particular emphasis on the impact of traffic vibration on people in buildings. It also describes the procedures used in obtaining information about the parameters of vibrations in different cases of diagnostics and design. A universal algorithm of procedure in diagnostics and design of buildings taking into account assurance of human vibration comfort of people residing in the these buildings was presented.

Keywords: diagnostics, influence of public transport, influence of vibrations on humans, transport vibrations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
474 The Stability Analysis and New Torque Control Strategy of Direct-Driven PMSG Wind Turbines

Authors: Jun Liu, Feihang Zhou, Gungyi Wang

Abstract:

This paper expounds on the direct-driven PMSG wind power system control strategy, and analyses the stability conditions of the system. The direct-driven PMSG wind power system may generate the intense mechanical vibration, when wind speed changes dramatically. This paper proposes a new type of torque control strategy, which increases the system damping effectively, mitigates mechanical vibration of the system, and enhances the stability conditions of the system. The simulation results verify the reliability of the new torque control strategy.

Keywords: Damping, direct-driven PMSG wind power system, mechanical vibration, torque control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
473 Study on Ultrasonic Vibration Effects on Grinding Process of Alumina Ceramic (Al2O3)

Authors: Javad Akbari, Hassan Borzoie, Mohammad Hossein Mamduhi

Abstract:

Nowadays, engineering ceramics have significant applications in different industries such as; automotive, aerospace, electrical, electronics and even martial industries due to their attractive physical and mechanical properties like very high hardness and strength at elevated temperatures, chemical stability, low friction and high wear resistance. However, these interesting properties plus low heat conductivity make their machining processes too hard, costly and time consuming. Many attempts have been made in order to make the grinding process of engineering ceramics easier and many scientists have tried to find proper techniques to economize ceramics' machining processes. This paper proposes a new diamond plunge grinding technique using ultrasonic vibration for grinding Alumina ceramic (Al2O3). For this purpose, a set of laboratory equipments have been designed and simulated using Finite Element Method (FEM) and constructed in order to be used in various measurements. The results obtained have been compared with the conventional plunge grinding process without ultrasonic vibration and indicated that the surface roughness and fracture strength improved and the grinding forces decreased.

Keywords: Engineering ceramic, Finite Element Method, Plunge grinding, Ultrasonic vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345
472 Robustness of Hybrid Learning Acceleration Feedback Control Scheme in Flexible Manipulators

Authors: M. Z Md Zain, M. O. Tokhi, M. S. Alam

Abstract:

This paper describes a practical approach to design and develop a hybrid learning with acceleration feedback control (HLC) scheme for input tracking and end-point vibration suppression of flexible manipulator systems. Initially, a collocated proportionalderivative (PD) control scheme using hub-angle and hub-velocity feedback is developed for control of rigid-body motion of the system. This is then extended to incorporate a further hybrid control scheme of the collocated PD control and iterative learning control with acceleration feedback using genetic algorithms (GAs) to optimize the learning parameters. Experimental results of the response of the manipulator with the control schemes are presented in the time and frequency domains. The performance of the HLC is assessed in terms of input tracking, level of vibration reduction at resonance modes and robustness with various payloads.

Keywords: Flexible manipulator, iterative learning control, vibration suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
471 Resolving a Piping Vibration Problem by Installing Viscous Damper Supports

Authors: Carlos Herrera Sierralta, Husain M. Muslim, Meshal T. Alsaiari, Daniel Fischer

Abstract:

The vast majority of piping vibration problems in the Oil & Gas industry are provoked by the process flow characteristics which are basically related to the fluid properties, the type of service and its different operational scenarios. In general, the corrective actions recommended for flow induced vibration in piping systems can be grouped in two major areas: those which affect the excitation mechanisms typically associated to process variables, and those which affect the response mechanism of the pipework per se. Where possible the first option is to try to solve the flow induced problem from the excitation mechanism perspective. However, in producing facilities the approach of changing process parameters might not always be convenient as it could lead to reduction of production rates or it may require the shutdown of the system. That impediment might lead to a second option, which is to modify the response of the piping system to excitation generated by the process flow. In principle, the action of shifting the natural frequency of the system well above the frequency inherent to the process always favours the elimination, or considerably reduces the level of vibration experienced by the piping system. Tightening up the clearances at the supports (ideally zero gap) and adding new static supports at the system, are typical ways of increasing the natural frequency of the piping system. However, only stiffening the piping system may not be sufficient to resolve the vibration problem, and in some cases, it might not be feasible to implement it at all, as the available piping layout could create limitations on adding supports due to thermal expansion/contraction requirements. In these cases, utilization of viscous damper supports could be recommended as these devices can allow relatively large quasi-static movement of piping while providing sufficient capabilities of dissipating the vibration. Therefore, when correctly selected and installed, viscous damper supports can provide a significant effect on the response of the piping system over a wide range of frequencies. Viscous dampers cannot be used to support sustained, static loads. This paper shows over a real case example, a methodology which allows to determine the selection of the viscous damper supports via a dynamic analysis model. By implementing this methodology, it is possible to resolve piping vibration problems by adding new viscous dampers supports to the system. The methodology applied on this paper can be used to resolve similar vibration issues.

Keywords: dynamic analysis, flow induced vibration, piping supports, turbulent flow, slug flow, viscous damper

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225
470 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay and signal noise were added to a simulation model of an active controlled vibration isolation and stabilization system to regulate the movement of the exercise platform. Two additional simulation tools used in this study were Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active controlled vibration isolation and stabilization system outperforms a passive controlled system even with the addition of feedback delay and signal noise to the active controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from squat exercise was calculated from motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active controlled system than the passive controlled system.

Keywords: Astronaut, counterweight, stabilization, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 390
469 Vehicle Gearbox Fault Diagnosis Based On Cepstrum Analysis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs.This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves asthe internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order Cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of Cepstrum analysis in detection and diagnosis of the gear condition.

Keywords: Cepstrum analysis, fault diagnosis, gearbox.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3271
468 Study the Behavior of Different Composite Short Columns (DST) with Prismatic Sections under Bending Load

Authors: V. Sadeghi Balkanlou, M. Reza Bagerzadeh Karimi, A. Hasanbakloo, B. Bagheri Azar

Abstract:

In this paper, the behavior of different types of DST columns has been studied under bending load. Briefly, composite columns consist of an internal carbon steel tube and an external stainless steel wall that the between the walls are filled with concrete. Composite columns are expected to combine the advantages of all three materials and have the advantage of high flexural stiffness of CFDST columns. In this research, ABAQUS software is used for finite element analysis then the results of ultimate strength of the composite sections are illustrated.

Keywords: DST, Stainless steel, carbon steel, ABAQUS, Straigh Columns, Tapered Columns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3480
467 Parametrization of Piezoelectric Vibration Energy Harvesters for Low Power Embedded Systems

Authors: Yannick Verbelen, Tim Dekegel, Ann Peeters, Klara Stinders, Niek Blondeel, Sam De Winne, An Braeken, Abdellah Touhafi

Abstract:

Matching an embedded electronic application with a cantilever vibration energy harvester remains a difficult endeavour due to the large number of factors influencing the output power. In the presented work, complementary balanced energy harvester parametrization is used as a methodology for simplification of harvester integration in electronic applications. This is achieved by a dual approach consisting of an adaptation of the general parametrization methodology in conjunction with a straight forward harvester benchmarking strategy. For this purpose, the design and implementation of a suitable user friendly cantilever energy harvester benchmarking platform is discussed. Its effectiveness is demonstrated by applying the methodology to a commercially available Mide V21BL vibration energy harvester, with excitation amplitude and frequency as variables.

Keywords: Energy harvesting, vibrations, piezoelectric transducers, embedded systems, harvester parametrization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
466 Instability of Ties in Compression

Authors: T. Cornelius

Abstract:

Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie-connectors in cavity walls was developed. The method takes into account constraint conditions limiting the free length of the wall tie, and the instability in case of pure compression which gives an optimal load bearing capacity. The model is illustrated with examples from praxis.

Keywords: Masonry, tie connectors, cavity wall, instability, differential movements, combined bending and compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
465 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping

Authors: Kamand Bagherian, Nariman Niknejad

Abstract:

A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.

Keywords: Vibration isolation, position control, discrete-time nonlinear controller, active damping, disturbance tracking algorithm, oscillation transmitting support, stability robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 546