Search results for: Unsteady natural convection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1815

Search results for: Unsteady natural convection

1725 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: Receiver tube, heat convection, heat conduction, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
1724 Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder

Authors: Avinash Chandra, R. P. Chhabra

Abstract:

Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number. The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number, . The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. The resulting flow and temperature fields are visualized in terms of the streamline and isotherm patterns in the proximity of the cylinder. The flow remains attached to the cylinder surface over the range of conditions spanned here except that for and ; at these conditions, a separated flow region is observed when the condition of the constant wall temperature is prescribed on the surface of the cylinder. The heat transfer characteristics are analyzed in terms of the local and average Nusselt numbers. The maximum value of the local Nusselt number always occurs at the corner points whereas it is found to be minimum at the rear stagnation point on the flat surface. Overall, the average Nusselt number increases with Grashof number and/ or Prandtl number in accordance with the scaling considerations. The numerical results are used to develop simple correlations as functions of Grashof and Prandtl number thereby enabling the interpolation of the present numerical results for the intermediate values of the Prandtl or Grashof numbers for both thermal boundary conditions.

Keywords: Constant heat flux, Constant surface temperature, Grashof number, natural convection, Prandtl number, Semi-circular cylinder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3358
1723 Sinusoidal Roughness Elements in a Square Cavity

Authors: M. Yousaf, S. Usman

Abstract:

Numerical studies were conducted using Lattice Boltzmann Method (LBM) to study the natural convection in a square cavity in the presence of roughness. An algorithm based on a single relaxation time Bhatnagar-Gross-Krook (BGK) model of Lattice Boltzmann Method (LBM) was developed. Roughness was introduced on both the hot and cold walls in the form of sinusoidal roughness elements. The study was conducted for a Newtonian fluid of Prandtl number (Pr) 1.0. The range of Ra number was explored from 10^3 to 10^6 in a laminar region. Thermal and hydrodynamic behavior of fluid was analyzed using a differentially heated square cavity with roughness elements present on both the hot and cold wall. Neumann boundary conditions were introduced on horizontal walls with vertical walls as isothermal. The roughness elements were at the same boundary condition as corresponding walls. Computational algorithm was validated against previous benchmark studies performed with different numerical methods, and a good agreement was found to exist. Results indicate that the maximum reduction in the average heat transfer was 16.66 percent at Ra number 10^5.

Keywords: Lattice Boltzmann Method Natural convection, Nusselt Number Rayleigh number, Roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
1722 Unsteady Flow between Two Concentric Rotating Spheres along with Uniform Transpiration

Authors: O. Mahian, A. B. Rahimi, A. Kianifar, A. Jabari Moghadam

Abstract:

In this study, the numerical solution of unsteady flow between two concentric rotating spheres with suction and blowing at their boundaries is presented. The spheres are rotating about a common axis of rotation while their angular velocities are constant. The Navier-Stokes equations are solved by employing the finite difference method and implicit scheme. The resulting flow patterns are presented for various values of the flow parameters including rotational Reynolds number Re , and a blowing/suction Reynolds number Rew . Viscous torques at the inner and the outer spheres are calculated, too. It is seen that increasing the amount of suction and blowing decrease the size of eddies generated in the annulus.

Keywords: Concentric spheres, numerical study, suction andblowing, unsteady flow, viscous torque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
1721 Interaction between Unsteady Supersonic Jet and Vortex Rings

Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya

Abstract:

The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.

Keywords: Computational fluid dynamics, shock wave, unsteady jet, vortex ring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
1720 The Effect of CPU Location in Total Immersion of Microelectronics

Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson

Abstract:

Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.

Keywords: CPU location, data centre cooling, heat sink in enclosures, Immersed microelectronics, turbulent natural convection in enclosures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
1719 Finite Volume Method for Flow Prediction Using Unstructured Meshes

Authors: Juhee Lee, Yongjun Lee

Abstract:

In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.

Keywords: Finite volume method, fluid flow, laminar flow, unstructured grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
1718 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model

Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi

Abstract:

Laminar mixed Convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh Numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviors of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.

Keywords: Buoyancy force, Laminar mixed convection, Mixture model, Nanofluid, Two-phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772
1717 Laminar Free Convection of Nanofluid Flow in Horizontal Porous Annulus

Authors: Manal H. Saleh

Abstract:

A numerical study has been carried out to investigate the heat transfer by natural convection of nanofluid taking Cu as nanoparticles and the water as based fluid in a three dimensional annulus enclosure filled with porous media (silica sand) between two horizontal concentric cylinders with 12 annular fins of 2.4mm thickness attached to the inner cylinder under steady state conditions. The governing equations which used are continuity, momentum and energy equations under an assumptions used Darcy law and Boussinesq-s approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7. The parameters affected on the system are modified Rayleigh number (10 ≤Ra*≤ 1000), fin length Hf (3, 7 and 11mm), radius ratio Rr (0.293, 0.365 and 0.435) and the volume fraction(0 ≤ ¤ò ≤ 0 .35). It was found that the average Nusselt number depends on (Ra*, Hf, Rr and φ). The results show that, increasing of fin length decreases the heat transfer rate and for low values of Ra*, decreasing Rr cause to decrease Nu while for Ra* greater than 100, decreasing Rr cause to increase Nu and adding Cu nanoparticles with 0.35 volume fraction cause 27.9% enhancement in heat transfer. A correlation for Nu in terms of Ra*, Hf and φ, has been developed for inner hot cylinder.

Keywords: Annular fins, laminar free convection, nanofluid, porous media, three dimensions horizontal annulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
1716 Thermosolutal MHD Mixed Marangoni Convective Boundary Layers in the Presence of Suction or Injection

Authors: Noraini Ahmad, Seripah Awang Kechil, Norma Mohd Basir

Abstract:

The steady coupled dissipative layers, called Marangoni mixed convection boundary layers, in the presence of a magnetic field and solute concentration that are formed along the surface of two immiscible fluids with uniform suction or injection effects is examined. The similarity boundary layer equations are solved numerically using the Runge-Kutta Fehlberg with shooting technique. The Marangoni, buoyancy and external pressure gradient effects that are generated in mixed convection boundary layer flow are assessed. The velocity, temperature and concentration boundary layers thickness decrease with the increase of the magnetic field strength and the injection to suction. For buoyancy-opposed flow, the Marangoni mixed convection parameter enhances the velocity boundary layer but decreases the temperature and concentration boundary layers. However, for the buoyancy-assisted flow, the Marangoni mixed convection parameter decelerates the velocity but increases the temperature and concentration boundary layers.

Keywords: Magnetic field, mixed Marangoni convection, similarity boundary layers, solute concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
1715 Nonlinear Stability of Convection in a Thermally Modulated Anisotropic Porous Medium

Authors: M. Meenasaranya, S. Saravanan

Abstract:

Conditions corresponding to the unconditional stability of convection in a mechanically anisotropic fluid saturated porous medium of infinite horizontal extent are determined. The medium is heated from below and its bounding surfaces are subjected to temperature modulation which consists of a steady part and a time periodic oscillating part. The Brinkman model is employed in the momentum equation with the Bousinessq approximation. The stability region is found for arbitrary values of modulational frequency and amplitude using the energy method. Higher order numerical computations are carried out to find critical boundaries and subcritical instability regions more accurately.

Keywords: Convection, porous medium, anisotropy, temperature modulation, nonlinear stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835
1714 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature

Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard

Abstract:

The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.

Keywords: Tau method, semi-infinite, nonlinear ODE, rational Chebyshev, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
1713 MHD Mixed Convection in a Vertical Porous Channel

Authors: B. Fersadou, H. Kahalerras

Abstract:

This work deals with the problem of MHD mixed convection in a completely porous and differentially heated vertical channel. The model of Darcy-Brinkman-Forchheimer with the Boussinesq approximation is adopted and the governing equations are solved by the finite volume method. The effects of magnetic field and buoyancy force intensities are given by the Hartmann and Richardson numbers respectively, as well as the Joule heating represented by Eckert number on the velocity and temperature fields, are examined. The main results show an augmentation of heat transfer rate with the decrease of Darcy number and the increase of Ri and Ha when Joule heating is neglected.

Keywords: Heat sources, magnetic field, mixed convection, porous channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
1712 Effect of Amplitude and Mean Angle of Attack on Wake of an Oscillating Airfoil

Authors: Sadeghi H., Mani M., Ardakani M. A.

Abstract:

The unsteady wake of an EPPLER 361 airfoil in pitching motion has been investigated in a subsonic wind tunnel by hot-wire anemometry. The airfoil was given the pitching motion about the one-quarter chord axis at reduced frequency of 0182. Streamwise mean velocity profiles (wake profiles) were investigated at several vertically aligned points behind the airfoil at one-quarter chord downstream distance from trailing edge. Oscillation amplitude and mean angle of attack were varied to determine the effects on wake profiles. When the maximum dynamic angle of attack was below the static stall angle of attack, weak effects on wake were found by increasing oscillation amplitude and mean angle of attack. But, for higher angles of attack strong unsteady effects were appeared on the wake.

Keywords: Unsteady wake, amplitude, mean angle, EPPLER 361 airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617
1711 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non-Uniform Heat Source/Sink

Authors: Bandaris Shankar, Yohannes Yirga

Abstract:

In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement.

Keywords: Manetohydrodynamics, nanofluid, non-uniform heat source/sink, unsteady.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167
1710 A New Time Discontinuous Expanded Mixed Element Method for Convection-dominated Diffusion Equation

Authors: Jinfeng Wang, Yuanhong Bi, Hong Li, Yang Liu, Meng Zhao

Abstract:

In this paper, a new time discontinuous expanded mixed finite element method is proposed and analyzed for two-order convection-dominated diffusion problem. The proofs of the stability of the proposed scheme and the uniqueness of the discrete solution are given. Moreover, the error estimates of the scalar unknown, its gradient and its flux in the L1( ¯ J,L2( )-norm are obtained.

Keywords: Convection-dominated diffusion equation, expanded mixed method, time discontinuous scheme, stability, error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267
1709 Magnetohydrodynamic Free Convection in a Square Cavity Heated from Below and Cooled from Other Walls

Authors: S. Jani, M. Mahmoodi, M. Amini

Abstract:

Magnetohydrodynamic free convection fluid flow and heat transfer in a square cavity filled with an electric conductive fluid with Prandtl number of 0.7 has been investigated numerically. The horizontal bottom wall of the cavity was kept at Th while the side and the top walls of the cavity were maintained at a constant temperature Tc with Th>Tc. The governing equations written in terms of the primitive variables were solved numerically using the finite volume method while the SIMPLER algorithm was used to couple the velocity and pressure fields. Using the developed code, a parametric study was performed, and the effects of the Rayleigh number and the Hartman number on the fluid flow and heat transfer inside the cavity were investigated. The obtained results showed that temperature distribution and flow pattern inside the cavity depended on both strength of the magnetic field and Rayleigh number. For all cases two counter rotating eddies were formed inside the cavity. The magnetic field decreased the intensity of free convection and flow velocity. Also it was found that for higher Rayleigh numbers a relatively stronger magnetic field was needed to decrease the heat transfer through free convection.

Keywords: Free Convection, Magnetic Field, Square Cavity, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
1708 CFD of Oscillating Airfoil Pitch Cycle by using PISO Algorithm

Authors: Muhammad Amjad Sohail, Rizwan Ullah

Abstract:

This research paper presents the CFD analysis of oscillating airfoil during pitch cycle. Unsteady subsonic flow is simulated for pitching airfoil at Mach number 0.283 and Reynolds number 3.45 millions. Turbulent effects are also considered for this study by using K-ω SST turbulent model. Two-dimensional unsteady compressible Navier-Stokes code including two-equation turbulence model and PISO pressure velocity coupling is used. Pressure based implicit solver with first order implicit unsteady formulation is used. The simulated pitch cycle results are compared with the available experimental data. The results have a good agreement with the experimental data. Aerodynamic characteristics during pitch cycles have been studied and validated.

Keywords: Angle of attack, Centre of pressure, subsonic flow, pitching moment coefficient, turbulence mode

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
1707 A Comparison of Recent Methods for Solving a Model 1D Convection Diffusion Equation

Authors: Ashvin Gopaul, Jayrani Cheeneebash, Kamleshsing Baurhoo

Abstract:

In this paper we study some numerical methods to solve a model one-dimensional convection–diffusion equation. The semi-discretisation of the space variable results into a system of ordinary differential equations and the solution of the latter involves the evaluation of a matrix exponent. Since the calculation of this term is computationally expensive, we study some methods based on Krylov subspace and on Restrictive Taylor series approximation respectively. We also consider the Chebyshev Pseudospectral collocation method to do the spatial discretisation and we present the numerical solution obtained by these methods.

Keywords: Chebyshev Pseudospectral collocation method, convection-diffusion equation, restrictive Taylor approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
1706 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet

Authors: A. Abdedou, K. Bouhadef

Abstract:

The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.

Keywords: Forced convection, oriented confined jet, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
1705 Delaunay Triangulations Efficiency for Conduction-Convection Problems

Authors: Bashar Albaalbaki, Roger E. Khayat

Abstract:

This work is a comparative study on the effect of Delaunay triangulation algorithms on discretization error for conduction-convection conservation problems. A structured triangulation and many unstructured Delaunay triangulations using three popular algorithms for node placement strategies are used. The numerical method employed is the vertex-centered finite volume method. It is found that when the computational domain can be meshed using a structured triangulation, the discretization error is lower for structured triangulations compared to unstructured ones for only low Peclet number values, i.e. when conduction is dominant. However, as the Peclet number is increased and convection becomes more significant, the unstructured triangulations reduce the discretization error. Also, no statistical correlation between triangulation angle extremums and the discretization error is found using 200 samples of randomly generated Delaunay and non-Delaunay triangulations. Thus, the angle extremums cannot be an indicator of the discretization error on their own and need to be combined with other triangulation quality measures, which is the subject of further studies.

Keywords: Conduction-convection problems, Delaunay triangulation, discretization error, finite volume method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83
1704 A Fast, Portable Computational Framework for Aerodynamic Simulations

Authors: Mehdi Ghommem, Daniel Garcia, Nathan Collier, Victor Calo

Abstract:

We develop a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM). The computational framework uses the Python programming language which has easy integration with the scripts requiring computationally-expensive operations written in Fortran. The mixed-language approach enables high performance in terms of solution time and high flexibility in terms of easiness of code adaptation to different system configurations and applications. This computational tool is intended to predict the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges...) subject to an incoming air. We simulate different aerodynamic problems to validate and illustrate the usefulness and effectiveness of the developed computational tool.

Keywords: Unsteady aerodynamics, numerical simulations, mixed-language approach, potential flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
1703 Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature

Authors: Ishak Hashim, Ammar Alsabery

Abstract:

The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating.

Keywords: Conjugate free convection, nanofluid, spatial temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
1702 Effect of Two Radial Fins on Heat Transfer and Flow Structure in a Horizontal Annulus

Authors: Anas El Amraoui, Abdelkhalek Cheddadi, Mohammed Touhami Ouazzani

Abstract:

Laminar natural convection in a cylindrical annular cavity filled with air and provided with two fins is studied numerically using the discretization of the governing equations with the Centered Finite Difference method based on the Alternating Direction Implicit (ADI) scheme. The fins are attached to the inner cylinder of radius ri (hot wall of temperature Ti). The outer cylinder of radius ro is maintained at a temperature To (To < Ti). Two values of the dimensionless thickness of the fins are considered: 0.015 and 0.203. We consider a low fin height equal to 0.078 and medium fin heights equal to 0.093 and 0.203. The position of the fin is 0.82π and the radius ratio is equal to 2. The effect of Rayleigh number, Ra, on the flow structure and heat transfer is analyzed for a range of Ra from 103 to 104. The results for established flow structures and heat transfer at low height indicate that the flow regime that occurs is unicellular for all Ra and fin thickness; in addition, the heat transfer rate increases with increasing Rayleigh number and is the same for both thicknesses. At median fin heights 0.093 and 0.203, the increase of Rayleigh number leads to transitions of flow structure which correspond to significant variations of the heat transfer. The critical Rayleigh numbers, Rac.app and Rac.disp corresponding to the appearance of the bicellular flow regime and its disappearance, are determined and their influence on the change of heat transfer rate is analyzed.

Keywords: Natural convection, fins, critical Rayleigh number, heat transfer, fluid flow regime, horizontal annulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
1701 Unsteady Aerodynamics of Multiple Airfoils in Configuration

Authors: Hossain Aziz, Rinku Mukherjee

Abstract:

A potential flow model is used to study the unsteady flow past two airfoils in configuration, each of which is suddenly set into motion. The airfoil bound vortices are modeled using lumped vortex elements and the wake behind the airfoil is modeled by discrete vortices. This consists of solving a steady state flow problem at each time-step where unsteadiness is incorporated through the “zero normal flow on a solid surface" boundary condition at every time instant. Additionally, along with the “zero normal flow on a solid surface" boundary condition Kelvin-s condition is used to compute the strength of the latest wake vortex shed from the trailing edge of the airfoil. Location of the wake vortices is updated at each time-step to get the wake shape at each time instant. Results are presented to show the effect of airfoil-airfoil interaction and airfoil-wake interaction on the aerodynamic characteristics of each airfoil.

Keywords: Aerodynamics, Airfoils, Configuration, Unsteady.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
1700 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid

Authors: P. G. Siddheshwar, T. N. Sakshath

Abstract:

In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.

Keywords: Nanoliquid, rigid-rigid, rotation, single-phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
1699 Aeroelasticity Analysis of Rotor Blades in the First Two Stages of Axial Compressor in the Case of a Bird Strike

Authors: R. Rzadkowski, V. Gnesin, M. Drewczyński, R. Szczepanik

Abstract:

A bird strike can cause damage to stationary and rotating aircraft engine parts, especially the engine fan. This paper presents a bird strike simulated by blocking four stator blade passages. It includes the numerical results of the unsteady lowfrequency aerodynamic forces and the aeroelastic behaviour caused by a non-symmetric upstream flow affecting the first two rotor blade stages in the axial-compressor of a jet engine. The obtained results show that disturbances in the engine inlet strongly influence the level of unsteady forces acting on the rotor blades. With a partially blocked inlet the whole spectrum of low-frequency harmonics is observed. Such harmonics can lead to rotor blade damage. The lowfrequency amplitudes are higher in the first stage rotor blades than in the second stage. In both rotor blades stages flutter appeared as a result of bird strike.

Keywords: Flutter, unsteady forces, rotor blades.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
1698 Effect of Gravity Modulation on Weakly Non-Linear Stability of Stationary Convection in a Dielectric Liquid

Authors: P. G. Siddheshwar, B. R. Revathi

Abstract:

The effect of time-periodic oscillations of the Rayleigh- Benard system on the heat transport in dielectric liquids is investigated by weakly nonlinear analysis. We focus on stationary convection using the slow time scale and arrive at the real Ginzburg- Landau equation. Classical fourth order Runge-kutta method is used to solve the Ginzburg-Landau equation which gives the amplitude of convection and this helps in quantifying the heat transfer in dielectric liquids in terms of the Nusselt number. The effect of electrical Rayleigh number and the amplitude of modulation on heat transport is studied.

Keywords: Dielectric liquid, Nusselt number, amplitude equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
1697 Natural Convection Boundary Layer Flow of a Viscoelastic Fluid on Solid Sphere with Newtonian Heating

Authors: A.R.M. Kasim, N.F. Mohammad, Aurangzaib, S. Sharidan

Abstract:

The present paper considers the steady free convection boundary layer flow of a viscoelastic fluid on solid sphere with Newtonian heating. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. Thus, the augmentation an extra boundary condition is needed to perform the numerical computational. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group and then solved by using an implicit finite difference scheme. The results are displayed graphically to illustrate the influence of viscoelastic K and Prandtl Number Pr parameters on skin friction, heat transfer, velocity profiles and temperature profiles. Present results are compared with the published papers and are found to concur very well.

Keywords: boundary layer flow, Newtonian heating, sphere, viscoelastic fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
1696 Marangoni Convection in a Fluid Saturated Porous Layer with a Deformable Free Surface

Authors: Nor Fadzillah Mohd Mokhtar, Norihan Md Arifin, Roslinda Nazar, Fudziah Ismail, MohamedSuleiman

Abstract:

The stability analysis of Marangoni convection in porous media with a deformable upper free surface is investigated. The linear stability theory and the normal mode analysis are applied and the resulting eigenvalue problem is solved exactly. The Darcy law and the Brinkman model are used to describe the flow in the porous medium heated from below. The effect of the Crispation number, Bond number and the Biot number are analyzed for the stability of the system. It is found that a decrease in the Crispation number and an increase in the Bond number delay the onset of convection in porous media. In addition, the system becomes more stable when the Biot number is increases and the Daeff number is decreases.

Keywords: Deformable, Marangoni, Porous, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142