Search results for: Source Localization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1573

Search results for: Source Localization

1543 On-line Speech Enhancement by Time-Frequency Masking under Prior Knowledge of Source Location

Authors: Min Ah Kang, Sangbae Jeong, Minsoo Hahn

Abstract:

This paper presents the source extraction system which can extract only target signals with constraints on source localization in on-line systems. The proposed system is a kind of methods for enhancing a target signal and suppressing other interference signals. But, the performance of proposed system is superior to any other methods and the extraction of target source is comparatively complete. The method has a beamforming concept and uses an improved time-frequency (TF) mask-based BSS algorithm to separate a target signal from multiple noise sources. The target sources are assumed to be in front and test data was recorded in a reverberant room. The experimental results of the proposed method was evaluated by the PESQ score of real-recording sentences and showed a noticeable speech enhancement.

Keywords: Beam forming, Non-stationary noise reduction, Source separation, TF mask.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
1542 Spatial Query Localization Method in Limited Reference Point Environment

Authors: Victor Krebss

Abstract:

Task of object localization is one of the major challenges in creating intelligent transportation. Unfortunately, in densely built-up urban areas, localization based on GPS only produces a large error, or simply becomes impossible. New opportunities arise for the localization due to the rapidly emerging concept of a wireless ad-hoc network. Such network, allows estimating potential distance between these objects measuring received signal level and construct a graph of distances in which nodes are the localization objects, and edges - estimates of the distances between pairs of nodes. Due to the known coordinates of individual nodes (anchors), it is possible to determine the location of all (or part) of the remaining nodes of the graph. Moreover, road map, available in digital format can provide localization routines with valuable additional information to narrow node location search. However, despite abundance of well-known algorithms for solving the problem of localization and significant research efforts, there are still many issues that currently are addressed only partially. In this paper, we propose localization approach based on the graph mapped distances on the digital road map data basis. In fact, problem is reduced to distance graph embedding into the graph representing area geo location data. It makes possible to localize objects, in some cases even if only one reference point is available. We propose simple embedding algorithm and sample implementation as spatial queries over sensor network data stored in spatial database, allowing employing effectively spatial indexing, optimized spatial search routines and geometry functions.

Keywords: Intelligent Transportation System, Sensor Network, Localization, Spatial Query, GIS, Graph Embedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
1541 Indoor Localization Algorithm and Appropriate Implementation Using Wireless Sensor Networks

Authors: Adeniran Ademuwagun, Alastair Allen

Abstract:

The relationship dependence between RSS and distance in an enclosed environment is an important consideration because it is a factor that can influence the reliability of any localization algorithm founded on RSS. Several algorithms effectively reduce the variance of RSS to improve localization or accuracy performance. Our proposed algorithm essentially avoids this pitfall and consequently, its high adaptability in the face of erratic radio signal. Using 3 anchors in close proximity of each other, we are able to establish that RSS can be used as reliable indicator for localization with an acceptable degree of accuracy. Inherent in this concept, is the ability for each prospective anchor to validate (guarantee) the position or the proximity of the other 2 anchors involved in the localization and vice versa. This procedure ensures that the uncertainties of radio signals due to multipath effects in enclosed environments are minimized. A major driver of this idea is the implicit topological relationship among sensors due to raw radio signal strength. The algorithm is an area based algorithm; however, it does not trade accuracy for precision (i.e the size of the returned area).

Keywords: Anchor nodes, centroid algorithm, communication graph, received signal strength (RSS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
1540 Implementation of Generalized Plasticity in Load-Deformation Behavior of Foundation with Emphasis on Localization Problem

Authors: A. H. Akhaveissy

Abstract:

Nonlinear finite element method with eight noded isoparametric quadrilateral element is used for prediction of loaddeformation behavior including bearing capacity of foundations. Modified generalized plasticity model with non-associated flow rule is applied for analysis of soil-footing system. Also Von Mises and Tresca criterions are used for simulation of soil behavior. Modified generalized plasticity model is able to simulate load-deformation including softening behavior. Localization phenomena are considered by different meshes. Localization phenomena have not been seen in the examples. Predictions by modified generalized plasticity model show good agreement with laboratory data and theoretical prediction in comparison the other models.

Keywords: Localization phenomena, Generalized plasticity, Non-associated Flow Rule

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
1539 Array Signal Processing: DOA Estimation for Missing Sensors

Authors: Lalita Gupta, R. P. Singh

Abstract:

Array signal processing involves signal enumeration and source localization. Array signal processing is centered on the ability to fuse temporal and spatial information captured via sampling signals emitted from a number of sources at the sensors of an array in order to carry out a specific estimation task: source characteristics (mainly localization of the sources) and/or array characteristics (mainly array geometry) estimation. Array signal processing is a part of signal processing that uses sensors organized in patterns or arrays, to detect signals and to determine information about them. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal. Using Beamforming we can direct the majority of signal energy we receive from a group of array. Multiple signal classification (MUSIC) is a highly popular eigenstructure-based estimation method of direction of arrival (DOA) with high resolution. This Paper enumerates the effect of missing sensors in DOA estimation. The accuracy of the MUSIC-based DOA estimation is degraded significantly both by the effects of the missing sensors among the receiving array elements and the unequal channel gain and phase errors of the receiver.

Keywords: Array Signal Processing, Beamforming, ULA, Direction of Arrival, MUSIC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2969
1538 Localization of Mobile Robots with Omnidirectional Cameras

Authors: Tatsuya Kato, Masanobu Nagata, Hidetoshi Nakashima, Kazunori Matsuo

Abstract:

Localization of mobile robots are important tasks for developing autonomous mobile robots. This paper proposes a method to estimate positions of a mobile robot using a omnidirectional camera on the robot. Landmarks for points of references are set up on a field where the robot works. The omnidirectional camera which can obtain 360 [deg] around images takes photographs of these landmarks. The positions of the robots are estimated from directions of these landmarks that are extracted from the images by image processing. This method can obtain the robot positions without accumulative position errors. Accuracy of the estimated robot positions by the proposed method are evaluated through some experiments. The results show that it can obtain the positions with small standard deviations. Therefore the method has possibilities of more accurate localization by tuning of appropriate offset parameters.

Keywords: Mobile robots, Localization, Omnidirectional camera.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
1537 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks

Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy

Abstract:

With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.

Keywords: Localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
1536 Enhancement of a 3D Sound Using Psychoacoustics

Authors: Kyosik Koo, Hyungtai Cha

Abstract:

Generally, in order to create 3D sound using binaural systems, we use head related transfer functions (HRTF) including the information of sounds which is arrived to our ears. But it can decline some three-dimensional effects in the area of a cone of confusion between front and back directions, because of the characteristics of HRTF. In this paper, we propose a new method to use psychoacoustics theory that reduces the confusion of sound image localization. In the method, HRTF spectrum characteristic is enhanced by using the energy ratio of the bark band. Informal listening tests show that the proposed method improves the front-back sound localization characteristics much better than the conventional methods

Keywords: HRTF, 3D sound, Psychoacoustics, Localization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
1535 Method for Determining the Probing Points for Efficient Measurement of Freeform Surface

Authors: Yi Xu, Zexiang Li

Abstract:

In inspection and workpiece localization, sampling point data is an important issue. Since the devices for sampling only sample discrete points, not the completely surface, sampling size and location of the points will be taken into consideration. In this paper a method is presented for determining the sampled points size and location for achieving efficient sampling. Firstly, uncertainty analysis of the localization parameters is investigated. A localization uncertainty model is developed to predict the uncertainty of the localization process. Using this model the minimum size of the sampled points is predicted. Secondly, based on the algebra theory an eigenvalue-optimal optimization is proposed. Then a freeform surface is used in the simulation. The proposed optimization is implemented. The simulation result shows its effectivity.

Keywords: eigenvalue-optimal optimization, freeform surface inspection, sampling size and location, sampled points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
1534 Localization by DKF Multi Sensor Fusion in the Uncertain Environments for Mobile Robot

Authors: Omid Sojodishijani, Saeed Ebrahimijam, Vahid Rostami

Abstract:

This paper presents an optimized algorithm for robot localization which increases the correctness and accuracy of the estimating position of mobile robot to more than 150% of the past methods [1] in the uncertain and noisy environment. In this method the odometry and vision sensors are combined by an adapted well-known discrete kalman filter [2]. This technique also decreased the computation process of the algorithm by DKF simple implementation. The experimental trial of the algorithm is performed on the robocup middle size soccer robot; the system can be used in more general environments.

Keywords: Discrete Kalman filter, odometry sensor, omnidirectional vision sensor, Robot Localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
1533 Three Tier Indoor Localization System for Digital Forensics

Authors: Dennis L. Owuor, Okuthe P. Kogeda, Johnson I. Agbinya

Abstract:

Mobile localization has attracted a great deal of attention recently due to the introduction of wireless networks. Although several localization algorithms and systems have been implemented and discussed in the literature, very few researchers have exploited the gap that exists between indoor localization, tracking, external storage of location information and outdoor localization for the purpose of digital forensics during and after a disaster. The contribution of this paper lies in the implementation of a robust system that is capable of locating, tracking mobile device users and store location information for both indoor and partially outdoor the cloud. The system can be used during disaster to track and locate mobile phone users. The developed system is a mobile application built based on Android, Hypertext Preprocessor (PHP), Cascading Style Sheets (CSS), JavaScript and MATLAB for the Android mobile users. Using Waterfall model of software development, we have implemented a three level system that is able to track, locate and store mobile device information in secure database (cloud) on almost a real time basis. The outcome of the study showed that the developed system is efficient with regard to the tracking and locating mobile devices. The system is also flexible, i.e. can be used in any building with fewer adjustments. Finally, the system is accurate for both indoor and outdoor in terms of locating and tracking mobile devices.

Keywords: Indoor localization, waterfall, digital forensics, tracking and cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901
1532 Player Number Localization and Recognition in Soccer Video using HSV Color Space and Internal Contours

Authors: Matko Šaric, Hrvoje Dujmic, Vladan Papic, Nikola Rožic

Abstract:

Detection of player identity is challenging task in sport video content analysis. In case of soccer video player number recognition is effective and precise solution. Jersey numbers can be considered as scene text and difficulties in localization and recognition appear due to variations in orientation, size, illumination, motion etc. This paper proposed new method for player number localization and recognition. By observing hue, saturation and value for 50 different jersey examples we noticed that most often combination of low and high saturated pixels is used to separate number and jersey region. Image segmentation method based on this observation is introduced. Then, novel method for player number localization based on internal contours is proposed. False number candidates are filtered using area and aspect ratio. Before OCR processing extracted numbers are enhanced using image smoothing and rotation normalization.

Keywords: player number, soccer video, HSV color space

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
1531 Denoising by Spatial Domain Averaging for Wireless Local Area Network Terminal Localization

Authors: Diego Felix, Eugene Hyun, Michael McGuire, Mihai Sima

Abstract:

Terminal localization for indoor Wireless Local Area Networks (WLANs) is critical for the deployment of location-aware computing inside of buildings. A major challenge is obtaining high localization accuracy in presence of fluctuations of the received signal strength (RSS) measurements caused by multipath fading. This paper focuses on reducing the effect of the distance-varying noise by spatial filtering of the measured RSS. Two different survey point geometries are tested with the noise reduction technique: survey points arranged in sets of clusters and survey points uniformly distributed over the network area. The results show that the location accuracy improves by 16% when the filter is used and by 18% when the filter is applied to a clustered survey set as opposed to a straight-line survey set. The estimated locations are within 2 m of the true location, which indicates that clustering the survey points provides better localization accuracy due to superior noise removal.

Keywords: Position measurement, Wireless LAN, Radio navigation, Filtering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
1530 Fault Localization and Alarm Correlation in Optical WDM Networks

Authors: G. Ramesh, S. Sundara Vadivelu

Abstract:

For several high speed networks, providing resilience against failures is an essential requirement. The main feature for designing next generation optical networks is protecting and restoring high capacity WDM networks from the failures. Quick detection, identification and restoration make networks more strong and consistent even though the failures cannot be avoided. Hence, it is necessary to develop fast, efficient and dependable fault localization or detection mechanisms. In this paper we propose a new fault localization algorithm for WDM networks which can identify the location of a failure on a failed lightpath. Our algorithm detects the failed connection and then attempts to reroute data stream through an alternate path. In addition to this, we develop an algorithm to analyze the information of the alarms generated by the components of an optical network, in the presence of a fault. It uses the alarm correlation in order to reduce the list of suspected components shown to the network operators. By our simulation results, we show that our proposed algorithms achieve less blocking probability and delay while getting higher throughput.

Keywords: Alarm correlation, blocking probability, delay, fault localization, WDM networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
1529 Tape-Shaped Multiscale Fiducial Marker: A Design Prototype for Indoor Localization

Authors: Marcell S. A. Martins, Benedito S. R. Neto, Gerson L. Serejo, Carlos G. R. Santos

Abstract:

Indoor positioning systems use sensors such as Bluetooth, ZigBee, and Wi-Fi, as well as cameras for image capture, which can be fixed or mobile. These computer vision-based positioning approaches are low-cost to implement, mainly when it uses a mobile camera. The present study aims to create a design of a fiducial marker for a low-cost indoor localization system. The marker is tape-shaped to perform a continuous reading employing two detection algorithms, one for greater distances and another for smaller distances. Therefore, the location service is always operational, even with variations in capture distance. A minimal localization and reading algorithm was implemented for the proposed marker design, aiming to validate it. The accuracy tests consider readings varying the capture distance between [0.5, 10] meters, comparing the proposed marker with others. The tests showed that the proposed marker has a broader capture range than the ArUco and QRCode, maintaining the same size. Therefore, reducing the visual pollution and maximizing the tracking since the ambient can be covered entirely.

Keywords: Multiscale recognition, indoor localization, tape-shaped marker, Fiducial Marker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56
1528 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured Global Navigation Satellite System Denied Environments

Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis

Abstract:

In global navigation satellite system (GNSS) denied settings, such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.

Keywords: Autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
1527 Types of Epilepsies and Findings EEG- LORETA about Epilepsy

Authors: Leila Maleki, Ahmad Esmali Kooraneh, Hossein Taghi Derakhshi

Abstract:

Neural activity in the human brain starts from the early stages of prenatal development. This activity or signals generated by the brain are electrical in nature and represent not only the brain function but also the status of the whole body. At the present moment, three methods can record functional and physiological changes within the brain with high temporal resolution of neuronal interactions at the network level: the electroencephalogram (EEG), the magnet oencephalogram (MEG), and functional magnetic resonance imaging (fMRI); each of these has advantages and shortcomings. EEG recording with a large number of electrodes is now feasible in clinical practice. Multichannel EEG recorded from the scalp surface provides very valuable but indirect information about the source distribution. However, deep electrode measurements yield more reliable information about the source locations intracranial recordings and scalp EEG are used with the source imaging techniques to determine the locations and strengths of the epileptic activity. As a source localization method, Low Resolution Electro-Magnetic Tomography (LORETA) is solved for the realistic geometry based on both forward methods, the Boundary Element Method (BEM) and the Finite Difference Method (FDM). In this paper, we review the findings EEG- LORETA about epilepsy.

Keywords: Epilepsy, EEG, EEG- Loreta, loreta analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038
1526 Multi-Scale Gabor Feature Based Eye Localization

Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Dusik Oh, Jaemin Kim, Seongwon Cho

Abstract:

Eye localization is necessary for face recognition and related application areas. Most of eye localization algorithms reported so far still need to be improved about precision and computational time for successful applications. In this paper, we propose an eye location method based on multi-scale Gabor feature vectors, which is more robust with respect to initial points. The eye localization based on Gabor feature vectors first needs to constructs an Eye Model Bunch for each eye (left or right eye) which consists of n Gabor jets and average eye coordinates of each eyes obtained from n model face images, and then tries to localize eyes in an incoming face image by utilizing the fact that the true eye coordinates is most likely to be very close to the position where the Gabor jet will have the best Gabor jet similarity matching with a Gabor jet in the Eye Model Bunch. Similar ideas have been already proposed in such as EBGM (Elastic Bunch Graph Matching). However, the method used in EBGM is known to be not robust with respect to initial values and may need extensive search range for achieving the required performance, but extensive search ranges will cause much more computational burden. In this paper, we propose a multi-scale approach with a little increased computational burden where one first tries to localize eyes based on Gabor feature vectors in a coarse face image obtained from down sampling of the original face image, and then localize eyes based on Gabor feature vectors in the original resolution face image by using the eye coordinates localized in the coarse scaled image as initial points. Several experiments and comparisons with other eye localization methods reported in the other papers show the efficiency of our proposed method.

Keywords: Eye Localization, Gabor features, Multi-scale, Gabor wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
1525 Comparison of Anti-Shadoo Antibodies – Where is the Endogenous Shadoo protein?

Authors: Eszter Tóth, Ervin Welker

Abstract:

Shadoo protein (Sho) was described in 2003 as the newest member of Prion protein superfamily [1]. Sho has similar structural motifs like prion protein (PrP) that is known for its central role in transmissible spongiform enchephalopathies. Although a great number of functions have been proposed, the exact physiological function of PrP is not known yet. Investigation of the function and localization of Sho may help us to understand the function of the Prion protein superfamily. Analyzing the subcellular localization of YFP-tagged forms of Sho, we detected the protein in the plasma membrane and in the nucleus of various cell lines. To reveal the localization of the endogenous protein we generated antibodies against Shadoo as well as employed commercially available anti-Shadoo antibodies: i) EG62 anti-mouse Shadoo antibody generated by Eurogentec Ltd.; ii) S-12 anti-human Shadoo antibody by Santa Cruz Biotechnology Inc.; iii) R-12 anti-mouse Shadoo antibody by Santa Cruz Biotechnology Inc.; iv) SPRN antibody against human Shadoo by Abgent Inc. We carried out immunocytochemistry on non-transfected HeLa, Zpl 2-1, Zw 3-5, GT1-1, GT1-7 and SHSY5Y cells as well as on YFP-Sho, Sho-YFP, and YFP-GPI transfected HeLa cells. Their specificity (in antibody-peptide competition assay) and co-localization (with the YFP signal) were assessed.

Keywords: Shadoo, prion protein, immunocytochemistry, antibody-peptide competition assay, antibody.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
1524 Instant Location Detection of Objects Moving at High-Speedin C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

The practical efficient approach is suggested to estimate the high-speed objects instant bounds in C-OTDR monitoring systems. In case of super-dynamic objects (trains, cars) is difficult to obtain the adequate estimate of the instantaneous object localization because of estimation lag. In other words, reliable estimation coordinates of monitored object requires taking some time for data observation collection by means of C-OTDR system, and only if the required sample volume will be collected the final decision could be issued. But it is contrary to requirements of many real applications. For example, in rail traffic management systems we need to get data of the dynamic objects localization in real time. The way to solve this problem is to use the set of statistical independent parameters of C-OTDR signals for obtaining the most reliable solution in real time. The parameters of this type we can call as «signaling parameters» (SP). There are several the SP’s which carry information about dynamic objects instant localization for each of COTDR channels. The problem is that some of these parameters are very sensitive to dynamics of seismoacoustic emission sources, but are non-stable. On the other hand, in case the SP is very stable it becomes insensitive as rule. This report contains describing of the method for SP’s co-processing which is designed to get the most effective dynamic objects localization estimates in the C-OTDR monitoring system framework.

Keywords: C-OTDR-system, co-processing of signaling parameters, high-speed objects localization, multichannel monitoring systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
1523 Multi-Criteria Spatial Analysis for the Localization of Production Structures. Analytic Hierarchy Process and Geographical Information Systems in the Case of Expanding an Industrial Area

Authors: Gianluigi De Mare, Pierluigi Morano, Antonio Nesticò

Abstract:

Among the numerous economic evaluation techniques currently available, Multi-criteria Spatial Analysis lends itself to solving localization problems of property complexes and, in particular, production plants. The methodology involves the use of Geographical Information Systems (GIS) and the mapping overlay technique, which overlaps the different information layers of a territory in order to obtain an overview of the parameters that characterize it. This first phase is used to detect possible settlement surfaces of a new agglomeration, subsequently selected through Analytic Hierarchy Process (AHP), so as to choose the best alternative. The result ensures the synthesis of a multidimensional profile that expresses both the quantitative and qualitative effects. Each criterion can be given a different weight.

Keywords: Multi-criteria Spatial Analysis, Analytic Hierarchy Process, Geographical Information Systems, localization of industrial areas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
1522 A Fast Sign Localization System Using Discriminative Color Invariant Segmentation

Authors: G.P. Nguyen, H.J. Andersen

Abstract:

Building intelligent traffic guide systems has been an interesting subject recently. A good system should be able to observe all important visual information to be able to analyze the context of the scene. To do so, signs in general, and traffic signs in particular, are usually taken into account as they contain rich information to these systems. Therefore, many researchers have put an effort on sign recognition field. Sign localization or sign detection is the most important step in the sign recognition process. This step filters out non informative area in the scene, and locates candidates in later steps. In this paper, we apply a new approach in detecting sign locations using a new color invariant model. Experiments are carried out with different datasets introduced in other works where authors claimed the difficulty in detecting signs under unfavorable imaging conditions. Our method is simple, fast and most importantly it gives a high detection rate in locating signs.

Keywords: Sign localization, color-based segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
1521 A Robust Diverged Localization and Recognition of License Registration Characters

Authors: M. Sankari, R. Bremananth, C.Meena

Abstract:

Localization and Recognition of License registration characters from the moving vehicle is a computationally complex task in the field of machine vision and is of substantial interest because of its diverse applications such as cross border security, law enforcement and various other intelligent transportation applications. Previous research used the plate specific details such as aspect ratio, character style, color or dimensions of the plate in the complex task of plate localization. In this paper, license registration character is localized by Enhanced Weight based density map (EWBDM) method, which is independent of such constraints. In connection with our previous method, this paper proposes a method that relaxes constraints in lighting conditions, different fonts of character occurred in the plate and plates with hand-drawn characters in various aspect quotients. The robustness of this method is well suited for applications where the appearance of plates seems to be varied widely. Experimental results show that this approach is suited for recognizing license plates in different external environments. 

Keywords: Character segmentation, Connectivity checking, Edge detection, Image analysis, license plate localization, license number recognition, Quality frame selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
1520 Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis

Authors: Wipassorn Vinicchayakul, Pichaya Supanakoon, Sathaporn Promwong

Abstract:

A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others.

Keywords: Radar cross section (RCS), fingerprint-based localization, minimum root mean square (RMS) error matching algorithm, touchless keypad model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
1519 Received Signal Strength Indicator Based Localization of Bluetooth Devices Using Trilateration: An Improved Method for the Visually Impaired People

Authors: Muhammad Irfan Aziz, Thomas Owens, Uzair Khaleeq uz Zaman

Abstract:

The instantaneous and spatial localization for visually impaired people in dynamically changing environments with unexpected hazards and obstacles, is the most demanding and challenging issue faced by the navigation systems today. Since Bluetooth cannot utilize techniques like Time Difference of Arrival (TDOA) and Time of Arrival (TOA), it uses received signal strength indicator (RSSI) to measure Receive Signal Strength (RSS). The measurements using RSSI can be improved significantly by improving the existing methodologies related to RSSI. Therefore, the current paper focuses on proposing an improved method using trilateration for localization of Bluetooth devices for visually impaired people. To validate the method, class 2 Bluetooth devices were used along with the development of a software. Experiments were then conducted to obtain surface plots that showed the signal interferences and other environmental effects. Finally, the results obtained show the surface plots for all Bluetooth modules used along with the strong and weak points depicted as per the color codes in red, yellow and blue. It was concluded that the suggested improved method of measuring RSS using trilateration helped to not only measure signal strength affectively but also highlighted how the signal strength can be influenced by atmospheric conditions such as noise, reflections, etc.

Keywords: Bluetooth, indoor/outdoor localization, received signal strength indicator, visually impaired.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730
1518 An Efficient Pixel Based Cervical Disc Localization

Authors: J. Preetha, S. Selvarajan

Abstract:

When neck pain is associated with pain, numbness, or weakness in the arm, shoulder, or hand, further investigation is needed as these are symptoms indicating pressure on one or more nerve roots. Evaluation necessitates a neurologic examination and imaging using an MRI/CT scan. A degenerating disc loses some thickness and is less flexible, causing inter-vertebrae space to narrow. A radiologist diagnoses an Intervertebral Disc Degeneration (IDD) by localizing every inter-vertebral disc and identifying the pathology in a disc based on its geometry and appearance. Accurate localizing is necessary to diagnose IDD pathology. But, the underlying image signal is ambiguous: a disc’s intensity overlaps the spinal nerve fibres. Even the structure changes from case to case, with possible spinal column bending (scoliosis). The inter-vertebral disc pathology’s quantitative assessment needs accurate localization of the cervical region discs. In this work, the efficacy of multilevel set segmentation model, to segment cervical discs is investigated. The segmented images are annotated using a simple distance matrix.

Keywords: Intervertebral Disc Degeneration (IDD), Cervical Disc Localization, multilevel set segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
1517 GSM-Based Approach for Indoor Localization

Authors: M.Stella, M. Russo, D. Begušić

Abstract:

Ability of accurate and reliable location estimation in indoor environment is the key issue in developing great number of context aware applications and Location Based Services (LBS). Today, the most viable solution for localization is the Received Signal Strength (RSS) fingerprinting based approach using wireless local area network (WLAN). This paper presents two RSS fingerprinting based approaches – first we employ widely used WLAN based positioning as a reference system and then investigate the possibility of using GSM signals for positioning. To compare them, we developed a positioning system in real world environment, where realistic RSS measurements were collected. Multi-Layer Perceptron (MLP) neural network was used as the approximation function that maps RSS fingerprints and locations. Experimental results indicate advantage of WLAN based approach in the sense of lower localization error compared to GSM based approach, but GSM signal coverage by far outreaches WLAN coverage and for some LBS services requiring less precise accuracy our results indicate that GSM positioning can also be a viable solution.

Keywords: Indoor positioning, WLAN, GSM, RSS, location fingerprints, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2709
1516 Source Direction Detection based on Stationary Electronic Nose System

Authors: Jie Cai, David C. Levy

Abstract:

Electronic nose (array of chemical sensors) are widely used in food industry and pollution control. Also it could be used to locate or detect the direction of the source of emission odors. Usually this task is performed by electronic nose (ENose) cooperated with mobile vehicles, but when a source is instantaneous or surrounding is hard for vehicles to reach, problem occurs. Thus a method for stationary ENose to detect the direction of the source and locate the source will be required. A novel method which uses the ratio between the responses of different sensors as a discriminant to determine the direction of source in natural wind surroundings is presented in this paper. The result shows that the method is accurate and easily to be implemented. This method could be also used in movably, as an optimized algorithm for robot tracking source location.

Keywords: Electronic nose, Nature wind situation, Source direction detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
1515 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm

Authors: Wilayat Ali, Li Sheng, Waleed Ahmed

Abstract:

The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.

Keywords: SLAM, ROS, navigation, localization and mapping, Gazebo, Rviz, Turtlebot2, SLAM algorithms, 2d Indoor environment, Cartographer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145
1514 HaskellFL: A Tool for Detecting Logical Errors in Haskell

Authors: Vanessa Vasconcelos, Mariza A. S. Bigonha

Abstract:

Understanding and using the functional paradigm is a challenge for many programmers. Looking for logical errors in code may take a lot of a developer’s time when a program grows in size. In order to facilitate both processes, this paper presents HaskellFL, a tool that uses fault localization techniques to locate a logical error in Haskell code. The Haskell subset used in this work is sufficiently expressive for those studying Functional Programming to get immediate help debugging their code and to answer questions about key concepts associated with the functional paradigm. HaskellFL was tested against Functional Programming assignments submitted by students enrolled at the Functional Programming class at the Federal University of Minas Gerais and against exercises from the Exercism Haskell track that are publicly available in GitHub. This work also evaluated the effectiveness of two fault localization techniques, Tarantula and Ochiai, in the Haskell context. Furthermore, the EXAM score was chosen to evaluate the tool’s effectiveness, and results showed that HaskellFL reduced the effort needed to locate an error for all tested scenarios. The results also showed that the Ochiai method was more effective than Tarantula.

Keywords: Debug, fault localization, functional programming, Haskell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655