Search results for: Single valued neutrosophic hesitant set
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1713

Search results for: Single valued neutrosophic hesitant set

1713 Single Valued Neutrosophic Hesitant Fuzzy Rough Set and Its Application

Authors: K. M. Alsager, N. O. Alshehri

Abstract:

In this paper, we proposed the notion of single valued neutrosophic hesitant fuzzy rough set, by combining single valued neutrosophic hesitant fuzzy set and rough set. The combination of single valued neutrosophic hesitant fuzzy set and rough set is a powerful tool for dealing with uncertainty, granularity and incompleteness of knowledge in information systems. We presented both definition and some basic properties of the proposed model. Finally, we gave a general approach which is applied to a decision making problem in disease diagnoses, and demonstrated the effectiveness of the approach by a numerical example.

Keywords: Single valued neutrosophic hesitant set, single valued neutrosophic hesitant relation, single valued neutrosophic hesitant fuzzy rough set, decision making method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
1712 Fighter Aircraft Selection Using Neutrosophic Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

Fuzzy set and intuitionistic fuzzy set are dealing with the imprecision and uncertainty inherent in a complex decision problem. However, sometimes these theories are not sufficient to model indeterminate and inconsistent information encountered in real-life problems. To overcome this insufficiency, the neutrosophic set, which is useful in practical applications, is proposed, triangular neutrosophic numbers and trapezoidal neutrosophic numbers are examined, their definitions and applications are discussed. In this study, a decision making algorithm is developed using neutrosophic set processes and an application is given in fighter aircraft selection as an example of a decision making problem. The estimation of the fighter aircraft selection with the neutrosophic multiple criteria decision analysis method is examined.  

Keywords: neutrosophic set, multiple criteria decision making analysis, fighter aircraft selection, MCDMA, neutrosophic numbers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
1711 Entropy Measures on Neutrosophic Soft Sets and Its Application in Multi Attribute Decision Making

Authors: I. Arockiarani

Abstract:

The focus of the paper is to furnish the entropy measure for a neutrosophic set and neutrosophic soft set which is a measure of uncertainty and it permeates discourse and system. Various characterization of entropy measures are derived. Further we exemplify this concept by applying entropy in various real time decision making problems.

Keywords: Entropy measure, Hausdorff distance, neutrosophic set, soft set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
1710 Neutrosophic Multiple Criteria Decision Making Analysis Method for Selecting Stealth Fighter Aircraft

Authors: C. Ardil

Abstract:

In this paper, a neutrosophic multiple criteria decision analysis method is proposed to select stealth fighter aircraft. Neutrosophic multiple criteria decision analysis methods are used to analyze the neutrosophic environment and give results under uncertainty and incompleteness. Neutrosophic numbers are used to evaluate alternatives over a set of evaluation criteria in decision making problems. Finally, the proposed model is applied to a practical decision problem for selecting stealth fighter aircraft.

Keywords: neutrosophic sets, multiple criteria decision making analysis, stealth fighter aircraft, aircraft selection, MCDMA, SVNNs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591
1709 A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach

Authors: Hossein Gitinavard, Mohammad Hossein Fazel Zarandi

Abstract:

In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach.

Keywords: Green supplier selection, expert system, ranking approach, interval-valued hesitant fuzzy setting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1708 Dependent Weighted Aggregation Operators of Hesitant Fuzzy Numbers

Authors: Jing Liu

Abstract:

In this paper, motivated by the ideas of dependent weighted aggregation operators, we develop some new hesitant fuzzy dependent weighted aggregation operators to aggregate the input arguments taking the form of hesitant fuzzy numbers rather than exact numbers, or intervals. In fact, we propose three hesitant fuzzy dependent weighted averaging(HFDWA) operators, and three hesitant fuzzy dependent weighted geometric(HFDWG) operators based on different weight vectors, and the most prominent characteristic of these operators is that the associated weights only depend on the aggregated hesitant fuzzy numbers and can relieve the influence of unfair hesitant fuzzy numbers on the aggregated results by assigning low weights to those “false” and “biased” ones. Some examples are given to illustrated the efficiency of the proposed operators.

Keywords: Hesitant fuzzy numbers, hesitant fuzzy dependent weighted averaging(HFDWA) operators, hesitant fuzzy dependent weighted geometric(HFDWG) operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
1707 Multiple Criteria Decision Making for Turkish Air Force Stealth Fighter Aircraft Selection

Authors: C. Ardil

Abstract:

Neutrosophic logic decision analysis is proposed as a method of stealth fighter aircraft selection for Turkish Air Force. The opinion of experts is employed to rank the alternatives across a set of criteria. The analyst uses neutrosophic logic numbers to describe the experts' preferences. This approach can handle the situation in the case of unavailability of precise data, which is most commonly the case in stealth fighter aircraft selection. Neutrosophic logic numbers can consider the imprecision of the factors affecting decision making such as stealth analysis, survivability analysis, and performance analysis. Neutrosophic logic ranking is achieved using weighted arithmetic operator and weighted geometric operator and the alternatives are ranked from best to worst. An example is also presented to illustrate the applicability and effectiveness of the proposed method. 

Keywords: Neutrosophic set theory, stealth fighter aircraft selection, multiple criteria decision-making, neutrosophic logic decision making, Turkish Air Force, MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498
1706 Comparative Study of Intuitionistic and Generalized Neutrosophic Soft Sets

Authors: Debabrata Mandal

Abstract:

The aim of this paper is to define several operations such as Intersection, Union, OR, AND operations of intuitionistic (resp. generalized) neutrosophic soft sets in the sense of Maji and compare these with intuitionistic (resp. generalized) neutrosophic soft sets in the sense of Said et al via examples. At the end of the paper, a new concept - extension is introduced, which can be used to refine our choices in case of decision making.

Keywords: AND, OR, Union, Intersection, Extension, Decision making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
1705 Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty

Authors: Pawalai Kraipeerapun, Chun Che Fung, Kok Wai Wong

Abstract:

This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.

Keywords: Multiclass classification, feed-forward backpropagation neural network, interval neutrosophic sets, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1704 Some Results on Interval-Valued Fuzzy BG-Algebras

Authors: Arsham Borumand Saeid

Abstract:

In this note the notion of interval-valued fuzzy BG-algebras (briefly, i-v fuzzy BG-algebras), the level and strong level BG-subalgebra is introduced. Then we state and prove some theorems which determine the relationship between these notions and BG-subalgebras. The images and inverse images of i-v fuzzy BG-subalgebras are defined, and how the homomorphic images and inverse images of i-v fuzzy BG-subalgebra becomes i-v fuzzy BG-algebras are studied.

Keywords: BG-algebra, fuzzy BG-subalgebra, interval-valued fuzzy set, interval-valued fuzzy BG-subalgebra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
1703 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model

Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy

Abstract:

A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
1702 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes on the multi-criteria nature of the problem and on how decision makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of significant degree of ambiguity and indeterminacy observed in decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model stands out within the realm of related literature as one of the few studies to employ N-DM in the context of academic staff selection. As a case study, it was decided to use our method to a real problem of academic personnel selection, having as main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherit ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: Analytical Hierarchy Process, Delphi Method, Multi-criteria decision making methods, neutrosophic set theory, personnel recruitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40
1701 Fast Complex Valued Time Delay Neural Networks

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

Here, a new idea to speed up the operation of complex valued time delay neural networks is presented. The whole data are collected together in a long vector and then tested as a one input pattern. The proposed fast complex valued time delay neural networks uses cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically that the number of computation steps required for the presented fast complex valued time delay neural networks is less than that needed by classical time delay neural networks. Simulation results using MATLAB confirm the theoretical computations.

Keywords: Fast Complex Valued Time Delay Neural Networks, Cross Correlation, Frequency Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
1700 Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function

Authors: Anupama Pande, Vishik Goel

Abstract:

A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Keywords: Complex valued neural network, Radial BasisFunction, Image recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
1699 Particle Swarm Optimization with Interval-valued Genotypes and Its Application to Neuroevolution

Authors: Hidehiko Okada

Abstract:

The author proposes an extension of particle swarm optimization (PSO) for solving interval-valued optimization problems and applies the extended PSO to evolutionary training of neural networks (NNs) with interval weights. In the proposed PSO, values in the genotypes are not real numbers but intervals. Experimental results show that interval-valued NNs trained by the proposed method could well approximate hidden target functions despite the fact that no training data was explicitly provided.

Keywords: Evolutionary algorithms, swarm intelligence, particle swarm optimization, neural network, interval arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
1698 Performance Evaluation of Complex Valued Neural Networks Using Various Error Functions

Authors: Anita S. Gangal, P. K. Kalra, D. S. Chauhan

Abstract:

The backpropagation algorithm in general employs quadratic error function. In fact, most of the problems that involve minimization employ the Quadratic error function. With alternative error functions the performance of the optimization scheme can be improved. The new error functions help in suppressing the ill-effects of the outliers and have shown good performance to noise. In this paper we have tried to evaluate and compare the relative performance of complex valued neural network using different error functions. During first simulation for complex XOR gate it is observed that some error functions like Absolute error, Cauchy error function can replace Quadratic error function. In the second simulation it is observed that for some error functions the performance of the complex valued neural network depends on the architecture of the network whereas with few other error functions convergence speed of the network is independent of architecture of the neural network.

Keywords: Complex backpropagation algorithm, complex errorfunctions, complex valued neural network, split activation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
1697 Fixed Point Theorems for Set Valued Mappings in Partially Ordered Metric Spaces

Authors: Ismat Beg, Asma Rashid Butt

Abstract:

Let (X,) be a partially ordered set and d be a metric on X such that (X, d) is a complete metric space. Assume that X satisfies; if a non-decreasing sequence xn → x in X, then xn  x, for all n. Let F be a set valued mapping from X into X with nonempty closed bounded values satisfying; (i) there exists κ ∈ (0, 1) with D(F(x), F(y)) ≤ κd(x, y), for all x  y, (ii) if d(x, y) < ε < 1 for some y ∈ F(x) then x  y, (iii) there exists x0 ∈ X, and some x1 ∈ F(x0) with x0  x1 such that d(x0, x1) < 1. It is shown that F has a fixed point. Several consequences are also obtained.

Keywords: Fixed point, partially ordered set, metric space, set valued mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
1696 Improving Classification Accuracy with Discretization on Datasets Including Continuous Valued Features

Authors: Mehmet Hacibeyoglu, Ahmet Arslan, Sirzat Kahramanli

Abstract:

This study analyzes the effect of discretization on classification of datasets including continuous valued features. Six datasets from UCI which containing continuous valued features are discretized with entropy-based discretization method. The performance improvement between the dataset with original features and the dataset with discretized features is compared with k-nearest neighbors, Naive Bayes, C4.5 and CN2 data mining classification algorithms. As the result the classification accuracies of the six datasets are improved averagely by 1.71% to 12.31%.

Keywords: Data mining classification algorithms, entropy-baseddiscretization method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
1695 A Reversible CMOS AD / DA Converter Implemented with Pseudo Floating-Gate

Authors: Omid Mirmotahari, Yngvar Berg, Ahmad Habibizad Navin

Abstract:

Reversible logic is becoming more and more prominent as the technology sets higher demands on heat, power, scaling and stability. Reversible gates are able at any time to "undo" the current step or function. Multiple-valued logic has the advantage of transporting and evaluating higher bits each clock cycle than binary. Moreover, we demonstrate in this paper, combining these disciplines we can construct powerful multiple-valued reversible logic structures. In this paper a reversible block implemented by pseudo floatinggate can perform AD-function and a DA-function as its reverse application.

Keywords: Reversible logic, bi-directional, Pseudo floating-gate(PFG), multiple-valued logic (MVL).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1694 Comparison of Two Interval Models for Interval-Valued Differential Evolution

Authors: Hidehiko Okada

Abstract:

The author previously proposed an extension of differential evolution. The proposed method extends the processes of DE to handle interval numbers as genotype values so that DE can be applied to interval-valued optimization problems. The interval DE can employ either of two interval models, the lower and upper model or the center and width model, for specifying genotype values. Ability of the interval DE in searching for solutions may depend on the model. In this paper, the author compares the two models to investigate which model contributes better for the interval DE to find better solutions. Application of the interval DE is evolutionary training of interval-valued neural networks. A result of preliminary study indicates that the CW model is better than the LU model: the interval DE with the CW model could evolve better neural networks. 

Keywords: Evolutionary algorithms, differential evolution, neural network, neuroevolution, interval arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
1693 Complex-Valued Neural Networks for Blind Equalization of Time-Varying Channels

Authors: Rajoo Pandey

Abstract:

Most of the commonly used blind equalization algorithms are based on the minimization of a nonconvex and nonlinear cost function and a neural network gives smaller residual error as compared to a linear structure. The efficacy of complex valued feedforward neural networks for blind equalization of linear and nonlinear communication channels has been confirmed by many studies. In this paper we present two neural network models for blind equalization of time-varying channels, for M-ary QAM and PSK signals. The complex valued activation functions, suitable for these signal constellations in time-varying environment, are introduced and the learning algorithms based on the CMA cost function are derived. The improved performance of the proposed models is confirmed through computer simulations.

Keywords: Blind Equalization, Neural Networks, Constant Modulus Algorithm, Time-varying channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
1692 A Novel Multiple Valued Logic OHRNS Modulo rn Adder Circuit

Authors: Mehdi Hosseinzadeh, Somayyeh Jafarali Jassbi, Keivan Navi

Abstract:

Residue Number System (RNS) is a modular representation and is proved to be an instrumental tool in many digital signal processing (DSP) applications which require high-speed computations. RNS is an integer and non weighted number system; it can support parallel, carry-free, high-speed and low power arithmetic. A very interesting correspondence exists between the concepts of Multiple Valued Logic (MVL) and Residue Number Arithmetic. If the number of levels used to represent MVL signals is chosen to be consistent with the moduli which create the finite rings in the RNS, MVL becomes a very natural representation for the RNS. There are two concerns related to the application of this Number System: reaching the most possible speed and the largest dynamic range. There is a conflict when one wants to resolve both these problem. That is augmenting the dynamic range results in reducing the speed in the same time. For achieving the most performance a method is considere named “One-Hot Residue Number System" in this implementation the propagation is only equal to one transistor delay. The problem with this method is the huge increase in the number of transistors they are increased in order m2 . In real application this is practically impossible. In this paper combining the Multiple Valued Logic and One-Hot Residue Number System we represent a new method to resolve both of these two problems. In this paper we represent a novel design of an OHRNS-based adder circuit. This circuit is useable for Multiple Valued Logic moduli, in comparison to other RNS design; this circuit has considerably improved the number of transistors and power consumption.

Keywords: Computer Arithmetic, Residue Number System, Multiple Valued Logic, One-Hot, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
1691 A New Concept for Deriving the Expected Value of Fuzzy Random Variables

Authors: Liang-Hsuan Chen, Chia-Jung Chang

Abstract:

Fuzzy random variables have been introduced as an imprecise concept of numeric values for characterizing the imprecise knowledge. The descriptive parameters can be used to describe the primary features of a set of fuzzy random observations. In fuzzy environments, the expected values are usually represented as fuzzy-valued, interval-valued or numeric-valued descriptive parameters using various metrics. Instead of the concept of area metric that is usually adopted in the relevant studies, the numeric expected value is proposed by the concept of distance metric in this study based on two characters (fuzziness and randomness) of FRVs. Comparing with the existing measures, although the results show that the proposed numeric expected value is same with those using the different metric, if only triangular membership functions are used. However, the proposed approach has the advantages of intuitiveness and computational efficiency, when the membership functions are not triangular types. An example with three datasets is provided for verifying the proposed approach.

Keywords: Fuzzy random variables, Distance measure, Expected value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
1690 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: Complex-valued signal processing, synthetic aperture radar (SAR), 2-D radar imaging, compressive sensing, Sparse Bayesian learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
1689 A Family of Entropies on Interval-valued Intuitionistic Fuzzy Sets and Their Applications in Multiple Attribute Decision Making

Authors: Min Sun, Jing Liu

Abstract:

The entropy of intuitionistic fuzzy sets is used to indicate the degree of fuzziness of an interval-valued intuitionistic fuzzy set(IvIFS). In this paper, we deal with the entropies of IvIFS. Firstly, we propose a family of entropies on IvIFS with a parameter λ ∈ [0, 1], which generalize two entropy measures defined independently by Zhang and Wei, for IvIFS, and then we prove that the new entropy is an increasing function with respect to the parameter λ. Furthermore, a new multiple attribute decision making (MADM) method using entropy-based attribute weights is proposed to deal with the decision making situations where the alternatives on attributes are expressed by IvIFS and the attribute weights information is unknown. Finally, a numerical example is given to illustrate the applications of the proposed method.

Keywords: Interval-valued intuitionistic fuzzy sets, intervalvalued intuitionistic fuzzy entropy, multiple attribute decision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
1688 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies

Authors: Sambit Prasad Kar, P.Palanisamy

Abstract:

In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.

Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
1687 An Iterative Updating Method for Damped Gyroscopic Systems

Authors: Yongxin Yuan

Abstract:

The problem of updating damped gyroscopic systems using measured modal data can be mathematically formulated as following two problems. Problem I: Given Ma ∈ Rn×n, Λ = diag{λ1, ··· , λp} ∈ Cp×p, X = [x1, ··· , xp] ∈ Cn×p, where p<n and both Λ and X are closed under complex conjugation in the sense that λ2j = λ¯2j−1 ∈ C, x2j = ¯x2j−1 ∈ Cn for j = 1, ··· , l, and λk ∈ R, xk ∈ Rn for k = 2l + 1, ··· , p, find real-valued symmetric matrices D,K and a real-valued skew-symmetric matrix G (that is, GT = −G) such that MaXΛ2 + (D + G)XΛ + KX = 0. Problem II: Given real-valued symmetric matrices Da, Ka ∈ Rn×n and a real-valued skew-symmetric matrix Ga, find (D, ˆ G, ˆ Kˆ ) ∈ SE such that Dˆ −Da2+Gˆ−Ga2+Kˆ −Ka2 = min(D,G,K)∈SE (D− Da2 + G − Ga2 + K − Ka2), where SE is the solution set of Problem I and · is the Frobenius norm. This paper presents an iterative algorithm to solve Problem I and Problem II. By using the proposed iterative method, a solution of Problem I can be obtained within finite iteration steps in the absence of roundoff errors, and the minimum Frobenius norm solution of Problem I can be obtained by choosing a special kind of initial matrices. Moreover, the optimal approximation solution (D, ˆ G, ˆ Kˆ ) of Problem II can be obtained by finding the minimum Frobenius norm solution of a changed Problem I. A numerical example shows that the introduced iterative algorithm is quite efficient.

Keywords: Model updating, iterative algorithm, gyroscopic system, partially prescribed spectral data, optimal approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
1686 Matrix Valued Difference Equations with Spectral Singularities

Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov

Abstract:

In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

Keywords: Difference Equations, Jost Functions, Asymptotics, Eigenvalues, Continuous Spectrum, Spectral Singularities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
1685 Angles of Arrival Estimation with Unitary Partial Propagator

Authors: Youssef Khmou, Said Safi

Abstract:

In this paper, we investigated the effect of real valued transformation of the spectral matrix of the received data for Angles Of Arrival estimation problem.  Indeed, the unitary transformation of Partial Propagator (UPP) for narrowband sources is proposed and applied on Uniform Linear Array (ULA).

Monte Carlo simulations proved the performance of the UPP spectrum comparatively with Forward Backward Partial Propagator (FBPP) and Unitary Propagator (UP). The results demonstrates that when some of the sources are fully correlated and closer than the Rayleigh angular limit resolution of the broadside array, the UPP method outperforms the FBPP in both of spatial resolution and complexity.

Keywords: DOA, Uniform Linear Array, Narrowband, Propagator, Real valued transformation, Subspace, Unitary Operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
1684 Relation between Significance of Attribute Set and Single Attribute

Authors: Xiuqin Ma, Norrozila Binti Sulaiman, Hongwu Qin

Abstract:

In the research field of Rough Set, few papers concern the significance of attribute set. However, there is important relation between the significance of single attribute and that of attribute set, which should not be ignored. In this paper, we draw conclusions by case analysis that (1) the attribute set including single attributes with high significance is certainly significant, while, (2)the attribute set which consists of single attributes with low significance possibly has high significance. We validate the conclusions on discernibility matrix and the results demonstrate the contribution of our conclusions.

Keywords: relation, attribute set, single attribute, rough set, significance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741