Search results for: Optimal Reactive Power Flow.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6222

Search results for: Optimal Reactive Power Flow.

5922 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

Authors: Pakawhat Khumkhreung, Yottana Khunatorn

Abstract:

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

Keywords: Airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041
5921 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor

Authors: Piyangkun Kukutapan, Siridech Boonsang

Abstract:

The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.

Keywords: Maximum power point tracking, multilayer perceptron neural network, optimal duty cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
5920 Estimation of Real Power Transfer Allocation Using Intelligent Systems

Authors: H. Shareef, A. Mohamed, S. A. Khalid, Aziah Khamis

Abstract:

This paper presents application artificial intelligent (AI) techniques, namely artificial neural network (ANN), adaptive neuro fuzzy interface system (ANFIS), to estimate the real power transfer between generators and loads. Since these AI techniques adopt supervised learning, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of both AI methods compared to that of the MNE method. The mean squared error of the estimate of ANN and ANFIS power transfer allocation methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, when compared to MNE method, ANN and ANFIS methods computes generator contribution to loads within 20.99 and 39.37msec respectively whereas the MNE method took 360msec for the calculation of same real power transfer allocation. 

Keywords: Artificial intelligence, Power tracing, Artificial neural network, ANFIS, Power system deregulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
5919 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes

Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon

Abstract:

Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.

Keywords: All-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
5918 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator

Authors: J. Ritonja

Abstract:

Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.

Keywords: Adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080
5917 Blind Speech Separation Using SRP-PHAT Localization and Optimal Beamformer in Two-Speaker Environments

Authors: Hai Quang Hong Dam, Hai Ho, Minh Hoang Le Ngo

Abstract:

This paper investigates the problem of blind speech separation from the speech mixture of two speakers. A voice activity detector employing the Steered Response Power - Phase Transform (SRP-PHAT) is presented for detecting the activity information of speech sources and then the desired speech signals are extracted from the speech mixture by using an optimal beamformer. For evaluation, the algorithm effectiveness, a simulation using real speech recordings had been performed in a double-talk situation where two speakers are active all the time. Evaluations show that the proposed blind speech separation algorithm offers a good interference suppression level whilst maintaining a low distortion level of the desired signal.

Keywords: Blind speech separation, voice activity detector, SRP-PHAT, optimal beamformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
5916 Optimal Generation Expansion Planning Strategy with Carbon Trading

Authors: Tung-Sheng Zhan, Chih-Cheng Kao, Chin-Der Yang, Jong-Ian Tsai

Abstract:

Fossil fuel-firing power plants dominate electric power generation in Taiwan, which are also the major contributor to Green House gases (GHG). CO2 is the most important greenhouse gas that cause global warming. This paper penetrates the relationship between carbon trading for GHG reduction and power generation expansion planning (GEP) problem for the electrical utility. The Particle Swarm Optimization (PSO) Algorithm is presented to deal with the generation expansion planning strategy of the utility with independent power providers (IPPs). The utility has to take both the IPPs- participation and environment impact into account when a new generation unit is considering expanded from view of supply side.

Keywords: Carbon Trading, CO2 Emission, GenerationExpansion Planning (GEP), Green House gases (GHG), ParticleSwarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
5915 Tidal Flow Patterns Near A Coastal Headland

Authors: Fu E. Tang, Daoyi Chen

Abstract:

Experimental investigations were carried out in the Manchester Tidal flow Facility (MTF) to study the flow patterns in the region around and adjacent to a hypothetical headland in tidal (oscillatory) ambient flow. The Planar laser-induced fluorescence (PLIF) technique was used for visualization, with fluorescent dye released at specific points around the headland perimeter and in its adjacent recirculation zone. The flow patterns can be generalized into the acceleration, stable flow and deceleration stages for each halfcycle, with small variations according to location, which are more distinct for low Keulegan-Carpenter number (KC) cases. Flow patterns in the mixing region are unstable and complex, especially in the recirculation zone. The flow patterns are in agreement with previous visualizations, and support previous results in steady ambient flow. It is suggested that the headland lee could be a viable location for siting of pollutant outfalls.

Keywords: Planar laser-induced Fluorescence, recirculation zone, tidal flow, wake flows

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
5914 Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller

Authors: Yahya Naderi, Tohid Rahimi, Babak Yousefi, Seyed Hossein Hosseini

Abstract:

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Keywords: Power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3127
5913 Mathematical Modeling of Current Harmonics Caused by Personal Computers

Authors: Rana Abdul Jabbar Khan, Muhammad Akmal

Abstract:

Personal computers draw non-sinusoidal current with odd harmonics more significantly. Power Quality of distribution networks is severely affected due to the flow of these generated harmonics during the operation of electronic loads. In this paper, mathematical modeling of odd harmonics in current like 3rd, 5th, 7th and 9th influencing the power quality has been presented. Live signals have been captured with the help of power quality analyzer for analysis purpose. The interesting feature is that Total Harmonic Distortion (THD) in current decreases with the increase of nonlinear loads has been verified theoretically. The results obtained using mathematical expressions have been compared with the practical results and exciting results have been found.

Keywords: Harmonic Distortion, Mathematical Modeling, Power Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
5912 Analytical Investigation of the Effects of a Standing Ocean Wave in a Wave-Power Device OWC

Authors: E.G. Bautista, F. Méndez, O. Bautista, J.C. Arcos

Abstract:

In this work we study analytically and numerically the performance of the mean heave motion of an OWC coupled with the governing equation of the spreading ocean waves due to the wide variation in an open parabolic channel with constant depth. This paper considers that the ocean wave propagation is under the assumption of a shallow flow condition. In order to verify the effect of the waves in the OWC firstly we establish the analytical model in a non-dimensional form based on the energy equation. The proposed wave-power system has to aims: one is to perturb the ocean waves as a consequence of the channel shape in order to concentrate the maximum ocean wave amplitude in the neighborhood of the OWC and the second is to determine the pressure and volume oscillation of air inside the compression chamber.

Keywords: Oscillating water column, Shallow flow, Waveenergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
5911 Flow inside Micro-Channel Bounded by Superhydrophobic Surface with Eccentric Micro-Grooves

Authors: Yu Chen, Weiwei Ren, Xiaojing Mu, Feng Zhang, Yi Xu

Abstract:

The superhydrophobic surface is widely used to reduce friction for the flow inside micro-channel and can be used to control/manipulate fluid, cells and even proteins in lab-on-chip. Fabricating micro grooves on hydrophobic surfaces is a common method to obtain such superhydrophobic surface. This study utilized the numerical method to investigate the effect of eccentric micro-grooves on the friction of flow inside micro-channel. A detailed parametric study was conducted to reveal how the eccentricity of micro-grooves affects the micro-channel flow under different grooves sizes, channel heights, Reynolds number. The results showed that the superhydrophobic surface with eccentric micro-grooves induces less friction than the counter part with aligning micro-grooves, which means requiring less power for pumps.

Keywords: Superhydrophobic, transverse grooves, heat transfer, slip length, microfluidics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
5910 Spectral Analysis of Radiation-Induced Natural Convection in Littoral Waters

Authors: Yadan Mao, Chengwang Lei, John C. Patterson

Abstract:

The mixing of pollutions and sediments in near shore regions of natural water bodies depends heavily on the characteristics such as the strength and frequency of flow instability. In the present paper, the instability of natural convection induced by absorption of solar radiation in littoral regions is considered. Spectral analysis is conducted on the quasi-steady state flow to reveal the power and frequency modes of the instability at various positions. Results indicate that the power of instability, the number of frequency modes, the prominence of higher frequency modes, and the highest frequency mode increase with the offshore distance and/or Rayleigh number. Harmonic modes are present at relatively low Rayleigh numbers. For a given offshore distance, the position with the strongest power of instability is located adjacent to the sloping bottom while the frequency modes are the same over the local depth. As the Rayleigh number increases, the unstable region extends toward the shore.

Keywords: Instability, Littoral waters, natural convection, Spectral analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
5909 Evaluation of Exerting Force on the Heating Surface Due to Bubble Ebullition in Subcooled Flow Boiling

Authors: M. R. Nematollahi

Abstract:

Vibration characteristics of subcooled flow boiling on thin and long structures such as a heating rod were recently investigated by the author. The results show that the intensity of the subcooled boiling-induced vibration (SBIV) was influenced strongly by the conditions of the subcooling temperature, linear power density and flow velocity. Implosive bubble formation and collapse are the main nature of subcooled boiling, and their behaviors are the only sources to originate from SBIV. Therefore, in order to explain the phenomenon of SBIV, it is essential to obtain reliable information about bubble behavior in subcooled boiling conditions. This was investigated at different conditions of coolant subcooling temperatures of 25 to 75°C, coolant flow velocities of 0.16 to 0.53m/s, and linear power densities of 100 to 600 W/cm. High speed photography at 13,500 frames per second was performed at these conditions. The results show that even at the highest subcooling condition, the absolute majority of bubbles collapse very close to the surface after detaching from the heating surface. Based on these observations, a simple model of surface tension and momentum change is introduced to offer a rough quantitative estimate of the force exerted on the heating surface during the bubble ebullition. The formation of a typical bubble in subcooled boiling is predicted to exert an excitation force in the order of 10-4 N.

Keywords: Subcooled boiling, vibration mechanism, bubble behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
5908 Optimal Water Conservation in a Mechanical Cooling Tower Operations

Authors: M. Boumaza, Y. Bakhabkhi

Abstract:

Water recycling represents an important challenge for many countries, in particular in countries where this natural resource is rare. On the other hand, in many operations, water is used as a cooling medium, as a high proportion of water consumed in industry is used for cooling purposes. Generally this water is rejected directly to the nature. This reject will cause serious environment damages as well as an important waste of this precious element.. On way to solve these problems is to reuse and recycle this warm water, through the use of natural cooling medium, such as air in a heat exchanger unit, known as a cooling tower. A poor performance, design or reliability of cooling towers will result in lower flow rate of cooling water an increase in the evaporation of water, an hence losses of water and energy. This paper which presents an experimental investigate of thermal and hydraulic performances of a mechanical cooling tower, enables to show that the water evaporation rate, Mev, increases with an increase in the air and water flow rates, as well as inlet water temperature and for fixed air flow rates, the pressure drop (ΔPw/Z) increases with increasing , L, due to the hydrodynamic behavior of the air/water flow.

Keywords: water, recycle, performance, cooling tower

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2769
5907 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles

Authors: Masood Roohi, Amir Taghavipour

Abstract:

This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.

Keywords: Hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
5906 Hypersonic Flow of CO2-N2 Mixture around a Spacecraft during the Atmospheric Reentry

Authors: Zineddine Bouyahiaoui, Rabah Haoui

Abstract:

The aim of this work is to analyze a flow around the axisymmetric blunt body taken into account the chemical and vibrational nonequilibrium flow. This work concerns the entry of spacecraft in the atmosphere of the planet Mars. Since the equations involved are non-linear partial derivatives, the volume method is the only way to solve this problem. The choice of the mesh and the CFL is a condition for the convergence to have the stationary solution.

Keywords: Hypersonic flow, nonequilibrium flow, shock wave, blunt body.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
5905 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration

Authors: C. Iraklis, G. Evmiridis, A. Iraklis

Abstract:

Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.

Keywords: Congestion, distribution networks, loss reduction, particle swarm optimization, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692
5904 Removal of a Reactive Dye by Adsorption Utilizing Waste Aluminium Hydroxide Sludge as an Adsorbent

Authors: R. Songur, E. Bayraktar, U. Mehmetoglu

Abstract:

Removal of a reactive dye (Reactive blue 4) by adsorption utilizing waste aluminium hydroxide sludge as an adsorbent was investigated. The removal of the dye was optimized using response surface methodology (RSM). In the RSM experiments; initial dye concentration, adsorbent concentration and contact time were critical parameters. RSM experiments were performed at the range of initial dye concentration 31.82-368.18 mg/L, adsorbent concentration 3.18-36.82 g/L, contact time 15.82- 56.18 h. Optimum initial dye concentration, adsorbent concentration and contact time were obtained as 108.83 mg/L, 29.36 g/L and 33.57 h respectively. At these conditions, maximum removal of the dye was obtained as 95%. The experiments were performed at the optimum conditions to verify these results and the same results were obtained.

Keywords: Adsorption, Reactive blue 4, Response surface methodology (RSM), Waste aluminium hydroxide sludge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
5903 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nanofluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in single channel of carbon graphite plate to mimic the mini channels in PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol. % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol. % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: Heat transfer, mini channel, nanofluid, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
5902 Technique for Voltage Control in Distribution System

Authors: S. Thongkeaw, M. Boonthienthong

Abstract:

This paper presents the techniques for voltage control in distribution system. It is integrated in the distribution management system. Voltage is an important parameter for the control of electrical power systems. The distribution network operators have the responsibility to regulate the voltage supplied to consumer within statutory limits. Traditionally, the On-Load Tap Changer (OLTC) transformer equipped with automatic voltage control (AVC) relays is the most popular and effective voltage control device. A static synchronous compensator (STATCOM) may be equipped with several controllers to perform multiple control functions. Static Var Compensation (SVC) is regulation slopes and available margins for var dispatch. The voltage control in distribution networks is established as a centralized analytical function in this paper. 

Keywords: Voltage Control, Reactive Power, Distribution System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9465
5901 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection

Authors: Vikas Kumar

Abstract:

The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. The results thus obtained are presented numerically and graphically in the paper.

Keywords: Axi-symmetric, ferrofluid, magnetic field, porous rotating disk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
5900 Power System Damping Using Hierarchical Fuzzy Multi- Input PSS and Communication Lines Active Power Deviations Input and SVC

Authors: Mohammad Hasan Raouf, Ahmad Rouhani, Mohammad Abedini, Ebrahim Rasooli Anarmarzi

Abstract:

In this paper the application of a hierarchical fuzzy system (HFS) based on MPSS and SVC in multi-machine environment is studied. Also the effect of communication lines active power variance signal between two ΔPTie-line regions, as one of the inputs of hierarchical fuzzy multi-input PSS and SVC (HFMPSS & SVC), on the increase of low frequency oscillation damping is examined. In the MPSS, to have better efficiency an auxiliary signal of reactive power deviation (ΔQ) is added with ΔP+ Δω input type PSS. The number of rules grows exponentially with the number of variables in a classic fuzzy system. To reduce the number of rules the HFS consists of a number of low-dimensional fuzzy systems in a hierarchical structure. Phasor model of SVC is described and used in this paper. The performances of MPSS and ΔPTie-line based HFMPSS and also the proposed method in damping inter-area mode of oscillation are examined in response to disturbances. The efficiency of the proposed model is examined by simulating a four-machine power system. Results show that the proposed method is performing satisfactorily within the whole range of disturbances and reduces the cost of system.

Keywords: Communication lines active power variance signal, Hierarchical fuzzy system (HFS), Multi-input power system stabilizer (MPSS), Static VAR compensator (SVC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
5899 A Developed Power and Free Conveyor for Light Loads in Intra-Logistics

Authors: Batin Latif Aylak, Bernd Noche

Abstract:

Nowadays there are lots of applications of power and free conveyors in logistics. They are the most frequently used conveyor systems worldwide. Overhead conveyor technologies like power and free systems are used in the most intra-logistics applications in trade and industry. The automotive, food, beverage and textile industry as well as aeronautic catering or engineering are among the applications. Power and free systems employ different manufacturing intervals in manufacturing as well as in production as temporary store and buffer. Depending on the application area, power and free conveyors are equipped with target controls enabling complex distribution-and sorting tasks. This article introduces a new power and free conveyor design in intra-logistics and explains its components. According to the explanation of the components, a model is created by means of their technical characteristics. Through the CAD software, the model is visualized. After that, the static analysis is evaluated. This analysis helps the calculation of the mandatory state of structures under force action. This powerful model helps companies achieve lower development costs as well as quicker market maturity.

Keywords: Intra-logistics, material flow, power and free conveyor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
5898 ROSA/LSTF Separate Effect Test on Natural Circulation under High Core Power Condition of Pressurized Water Reactor

Authors: Takeshi Takeda

Abstract:

A separate effect test (SET) simulated natural circulation (NC) under high core power condition of a pressurized water reactor (PWR) utilizing the ROSA/LSTF (rig of safety assessment/large-scale test facility). The LSTF test results clarified the relationship between the primary loop mass inventory and the primary loop mass flow rate being dependent on the NC mode at a constant core power of 8% of the volumetric-scaled PWR nominal power. When the core power was 9% or more during reflux condensation, large-amplitude level oscillation in a form of slow fill and dump occurred in steam generator (SG) U-tubes. At 11% core power during reflux condensation, intermittent rise took place in the cladding surface temperature of simulated fuel rods. The RELAP5/MOD3.3 code indicated the insufficient prediction of the SG U-tube liquid level behavior during reflux condensation.

Keywords: LSTF, natural circulation, core power, RELAP5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
5897 Power System Stability Improvement by Simultaneous Tuning of PSS and SVC Based Damping Controllers Employing Differential Evolution Algorithm

Authors: Sangram Keshori Mohapatra, Sidhartha Panda, Prasant Kumar Satpathy

Abstract:

Power-system stability improvement by simultaneous tuning of power system stabilizer (PSS) and a Static Var Compensator (SVC) based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. The proposed stabilizers are tested on a weakly connected power system subjected to different disturbances. Nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance conditions.

Keywords: Differential Evolution Algorithm, Power System Stability, Power System Stabilizer, Static Var Compensator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
5896 Assessment of ATC with Shunt FACTS Devices

Authors: Ashwani Kumar, Jitender Kumar

Abstract:

In this paper, an optimal power flow based approach has been applied for multi-transactions deregulated environment for ATC determination with SVC and STATCOM. The main contribution of the paper is (i) OPF based approach for evaluation of ATC with multi-transactions, (ii) ATC enhancement with FACTS devices viz. SVC and STATCOM for intact and line contingency cases, (iii) Impact of ZIP load on ATC determination and comparison of ATC obtained with SVC and STATCOM. The results have been determined for intact and line contingency cases taking simultaneous as well as single transaction cases for IEEE 24 bus RTS.

Keywords: Available transfer capability, FACTS devices, line contingency, multi-transactions, ZIP load model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
5895 Benchmarking Cleaner Production Performance of Coal-fired Power Plants Using Two-stage Super-efficiency Data Envelopment Analysis

Authors: Shao-lun Zeng, Yu-long Ren

Abstract:

Benchmarking cleaner production performance is an effective way of pollution control and emission reduction in coal-fired power industry. A benchmarking method using two-stage super-efficiency data envelopment analysis for coal-fired power plants is proposed – firstly, to improve the cleaner production performance of DEA-inefficient or weakly DEA-efficient plants, then to select the benchmark from performance-improved power plants. An empirical study is carried out with the survey data of 24 coal-fired power plants. The result shows that in the first stage the performance of 16 plants is DEA-efficient and that of 8 plants is relatively inefficient. The target values for improving DEA-inefficient plants are acquired by projection analysis. The efficient performance of 24 power plants and the benchmarking plant is achieved in the second stage. The two-stage benchmarking method is practical to select the optimal benchmark in the cleaner production of coal-fired power industry and will continuously improve plants- cleaner production performance.

Keywords: benchmarking, cleaner production performance, coal-fired power plant, super-efficiency data envelopment analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
5894 Minimization of Power Loss in Distribution Networks by Different Techniques

Authors: L.Ramesh, S.P.Chowdhury, S.Chowdhury, A.A.Natarajan, C.T.Gaunt

Abstract:

Accurate loss minimization is the critical component for efficient electrical distribution power flow .The contribution of this work presents loss minimization in power distribution system through feeder restructuring, incorporating DG and placement of capacitor. The study of this work was conducted on IEEE distribution network and India Electricity Board benchmark distribution system. The executed experimental result of Indian system is recommended to board and implement practically for regulated stable output.

Keywords: Distribution system, Distributed Generation LossMinimization, Network Restructuring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6191
5893 An Insurer’s Investment Model with Reinsurance Strategy under the Modified Constant Elasticity of Variance Process

Authors: K. N. C. Njoku, Chinwendu Best Eleje, Christian Chukwuemeka Nwandu

Abstract:

One of the problems facing most insurance companies is how best the burden of paying claims to its policy holders can be managed whenever need arises. Hence there is need for the insurer to buy a reinsurance contract in order to reduce risk which will enable the insurer to share the financial burden with the reinsurer. In this paper, the insurer’s and reinsurer’s strategy is investigated under the modified constant elasticity of variance (M-CEV) process and proportional administrative charges. The insurer considered investment in one risky asset and one risk free asset where the risky asset is modeled based on the M-CEV process which is an extension of constant elasticity of variance (CEV) process. Next, a nonlinear partial differential equation in the form of Hamilton Jacobi Bellman equation is obtained by dynamic programming approach. Using power transformation technique and variable change, the explicit solutions of the optimal investment strategy and optimal reinsurance strategy are obtained. Finally, some numerical simulations of some sensitive parameters were obtained and discussed in details where we observed that the modification factor only affects the optimal investment strategy and not the reinsurance strategy for an insurer with exponential utility function.

Keywords: Reinsurance strategy, Hamilton Jacobi Bellman equation, power transformation, M-CEV process, exponential utility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 265