Search results for: Multi-response Surfaces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 339

Search results for: Multi-response Surfaces

99 Effects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness

Authors: M. Hakak Khadem, M. Shams, S. Hossainpour

Abstract:

A two dimensional numerical simulation has been performed for incompressible and compressible fluid flow through microchannels in slip flow regime. The Navier-Stokes equations have been solved in conjunction with Maxwell slip conditions for modeling flow field associated with slip flow regime. The wall roughness is simulated with triangular microelements distributed on wall surfaces to study the effects of roughness on fluid flow. Various Mach and Knudsen numbers are used to investigate the effects of rarefaction as well as compressibility. It is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases. In addition, similar to incompressible models the increase in average fRe is more significant at low Knudsen number flows but the increase of Poiseuille number duo to relative roughness is sharper for compressible models. The numerical results have also validated with some available theoretical and experimental relations and good agreements have been seen.

Keywords: Relative roughness, slip flow, Poiseuille number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
98 Experimental Technique for Vibration Reduction of a Motor Pumpin Medical Device

Authors: Young Kuen Cho, Dae Won Lee, Young-Jin Jung, Sung Kuk Kim, Dong-Hyun Seo, Chang-Yong Ko, Han Sung Kim

Abstract:

Many medical devices are driven by motor pumps. Some researchers reported that the vibration mainly affected medical devices using a motor pump. The purpose of this study was to examine the effect of stiffness and damping coefficient in a 3-dimensional (3D) model of a motor pump and spring. In the present paper, experimental and mathematical tests for the moments of inertia of the 3D model and the material properties were investigated by an INSTRON machine. The response surfaces could be generated by using 3D multi-body analysis and the design of experiment method. It showed that differences in contours of the response surface were clearly found for the particular area. Displacement of the center of the motor pump was decreased at K≈2000 N/M, C≈12.5 N-sec/M. However, the frequency was increased at K≈2000 N/M, C≈15 N-sec/M. In this study, this study suggested experimental technique for vibration reduction for a motor pump in medical device. The combined method suggested in this study will greatly contribute to design of medical devices concerning vibration and noise intervention.

Keywords: Motor pump, Spring, Vibration reduction, Medicaldevices, Moment of Inertia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
97 Cessna Citation X Performances Improvement by an Adaptive Winglet during the Cruise Flight

Authors: Marine Segui, Simon Bezin, Ruxandra Mihaela Botez

Abstract:

As part of a ‘Morphing-Wing’ idea, this study consists of measuring how a winglet, which is able to change its shape during the flight, is efficient. Conventionally, winglets are fixed-vertical platforms at the wingtips, optimized for a cruise condition that the airplane should use most of the time. However, during a cruise, an airplane flies through a lot of cruise conditions corresponding to altitudes variations from 30,000 to 45,000 ft. The fixed winglets are not optimized for these variations, and consequently, they are supposed to generate some drag, and thus to deteriorate aircraft fuel consumption. This research assumes that it exists a winglet position that reduces the fuel consumption for each cruise condition. In this way, the methodology aims to find these optimal winglet positions, and to further simulate, and thus estimate the fuel consumption of an aircraft wearing this type of adaptive winglet during several cruise conditions. The adaptive winglet is assumed to have degrees of freedom given by the various changes of following surfaces: the tip chord, the sweep and the dihedral angles. Finally, results obtained during cruise simulations are presented in this paper. These results show that an adaptive winglet can reduce, thus improve up to 2.12% the fuel consumption of an aircraft during a cruise.

Keywords: Aerodynamics, Cessna Citation X, optimization, winglet, adaptive, morphing, wing, aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186
96 Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting

Authors: Abdulmajeed Dabwan, Saqib Anwar, Ali Al-Samhan

Abstract:

Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.

Keywords: Electron beam melting, additive manufacturing, Ti6Al4V, surface morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
95 Comparative Study in Dentinal Tubuli Occlusion Using Bioglass and Copper-Bromide Laser

Authors: Sun Woo Lee, Tae Bum Lee, Yoon Hwa Park, Yoo Jeong Kim

Abstract:

Cervical dentinal hypersensitivity (CDH) affects 8-30% of adults and nearly 85% of perio-treated patients. Various treatment schemes have been applied for treating CDH, among them being fluoride application, laser irradiation, and, recently, bioglass. The purpose of this study was to investigate the influence of bioglass, copper-bromide (Cu-Br) laser irradiation and their combination on dentinal tubule occlusion as a potential dentinal hypersensitivity treatment for CDH. 45 human dentin surfaces were organized into three equal groups: group A received Cu-Br laser only; group B received bioglass only; group C received bioglass followed by Cu-Br laser irradiation. Specimens were evaluated with regard to dentinal tubule occlusion under environmental scanning electron microscope. Treatment modality significantly affected dentinal tubule occlusion (p<0.001). Groups B and C scored higher dentinal tubule occlusion than group A. Binary logistic regression showed that bioglass application significantly (p<0.001) contributed to dentinal tubule occlusion, compared with other variables. Under the conditions used herein and within the limitations of this study, bioglass application, alone or combined with Cu-Br laser irradiation, is a superior method for producing dentinal tubule occlusion, and may lead to an effective treatment modality for CDH.

Keywords: Bioglass, Cu-Br laser, cervical dentinal hypersensitivity, dentinal tubule occlusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
94 Thermal Analysis of Circular Pin-fin with Rectangular Slot at the Center by Forced Convection

Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade, Ajay Kashikar, Shweta Matey, Mahesh Bhadane, Sunny Sarraf

Abstract:

Extended surfaces are commonly used in practice to enhance heat transfer. Most of the engineering problems require high performance heat transfer components with light weight, volumes, accommodating shapes, costs and reliability depending on industrial applications. This paper reports an experimental analysis to investigate heat transfer enhancement by forced convection using different sizes of pin-fin with rectangular slots at the center. The cross sectional area of the oblong duct was 200 mm x 80 mm. The info utilized in performance analysis was obtained experimentally for material, aluminum at 200 Watts heat input varying velocity 1 m/s to 5 m/s. Using the Taguchi experimental design method, optimum design parameters and their levels were analysed. Nusselt number and friction factor were considered as a performance characteristic parameter. An An L9 (33) orthogonal array was designated as an experimental proposal. Optimum results were found by experimenting. It is observed that pin-fins with different slots sizes have a better impact on Nusselt Number.

Keywords: Heat transfer coefficient, Nusselt Number, pin-fin, forced convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
93 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method

Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad

Abstract:

The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.

Keywords: Structure analysis, aluminum piston, MgZrO3, YTZ, mullite and alumina.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
92 Words of Peace in the Speeches of the Egyptian President, Abdulfattah El-Sisi: A Corpus-Based Study

Authors: Mohamed S. Negm, Waleed S. Mandour

Abstract:

The present study aims primarily at investigating words of peace (lexemes of peace) in the formal speeches of the Egyptian president Abdulfattah El-Sisi in a two-year span of time, from 2018 to 2019. This paper attempts to shed light not only on the contextual use of the antonyms, war and peace, but also it underpins quantitative analysis through the current methods of corpus linguistics. As such, the researchers have deployed a corpus-based approach in collecting, encoding, and processing 30 presidential speeches over the stated period (23,411 words and 25,541 tokens in total). Further, semantic fields and collocational networkzs are identified and compared statistically. Results have shown a significant propensity of adopting peace, including its relevant collocation network, textually and therefore, ideationally, at the expense of war concept which in most cases surfaces euphemistically through the noun conflict. The president has not justified the action of war with an honorable cause or a valid reason. Such results, so far, have indicated a positive sociopolitical mindset the Egyptian president possesses and moreover, reveal national and international fair dealing on arising issues.

Keywords: Corpus-assisted discourse studies, critical discourse analysis, collocation network, corpus linguistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
91 Wireless Sensor Network to Help Low Incomes Farmers to Face Drought Impacts

Authors: Fantazi Walid, Ezzedine Tahar, Bargaoui Zoubeida

Abstract:

This research presents the main ideas to implement an intelligent system composed by communicating wireless sensors measuring environmental data linked to drought indicators (such as air temperature, soil moisture , etc...). On the other hand, the setting up of a spatio temporal database communicating with a Web mapping application for a monitoring in real time in activity 24:00 /day, 7 days/week is proposed to allow the screening of the drought parameters time evolution and their extraction. Thus this system helps detecting surfaces touched by the phenomenon of drought. Spatio-temporal conceptual models seek to answer the users who need to manage soil water content for irrigating or fertilizing or other activities pursuing crop yield augmentation. Effectively, spatiotemporal conceptual models enable users to obtain a diagram of readable and easy data to apprehend. Based on socio-economic information, it helps identifying people impacted by the phenomena with the corresponding severity especially that this information is accessible by farmers and stakeholders themselves. The study will be applied in Siliana watershed Northern Tunisia.

Keywords: WSN, database spatio-temporal, GIS, web-mapping, indicator of drought.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
90 Acoustic Absorption of Hemp Walls with Ground Granulated Blast Slag

Authors: Oliver Kinnane, Aidan Reilly, John Grimes, Sara Pavia, Rosanne Walker

Abstract:

Unwanted sound reflection can create acoustic discomfort and lead to problems of speech comprehensibility. Contemporary building techniques enable highly finished internal walls resulting in sound reflective surfaces. In contrast, sustainable construction materials using natural and vegetal materials, are often more porous and absorptive. Hemp shiv is used as an aggregate and when mixed with lime binder creates a low-embodied-energy concrete. Cement replacements such as ground granulated blast slag (GGBS), a byproduct of other industrial processes, are viewed as more sustainable alternatives to high-embodied-energy cement. Hemp concretes exhibit good hygrothermal performance. This has focused much research attention on them as natural and sustainable low-energy alternatives to standard concretes. A less explored benefit is the acoustic absorption capability of hemp-based concretes. This work investigates hemp-lime-GGBS concrete specifically, and shows that it exhibits high levels of sound absorption.

Keywords: Hemp, hempcrete, acoustic absorption, GGBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
89 Double Diffusive Convection in a Partially Porous Cavity under Suction/Injection Effects

Authors: Y. Outaleb, K. Bouhadef, O. Rahli

Abstract:

Double-diffusive steady convection in a partially porous cavity with partially permeable walls and under the combined buoyancy effects of thermal and mass diffusion was analysed numerically using finite volume method. The top wall is well insulated and impermeable while the bottom surface is partially well insulated and impermeable and partially submitted to constant temperature T1 and concentration C1. Constant equal temperature T2 and concentration C2 are imposed along the vertical surfaces of the enclosure. Mass suction/injection and injection/suction are respectively considered at the bottom of the porous centred partition and at one of the vertical walls. Heat and mass transfer characteristics as streamlines and average Nusselt numbers and Sherwood numbers were discussed for different values of buoyancy ratio, Rayleigh number, and injection/suction coefficient. It is especially noted that increasing the injection factor disadvantages the exchanges in the case of the injection while the transfer is augmented in case of suction. On the other hand, a critical value of the buoyancy ratio was highlighted for which heat and mass transfers are minimized.

Keywords: Double diffusive convection, Injection/Extraction, Partially porous cavity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
88 Biomass Gasification and Microcogeneration Unit – EZOB Technology

Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála

Abstract:

This paper deals with the issue of biomass and sorted municipal waste gasification and cogeneration using hot-air turbo-set. It brings description of designed pilot plant with electrical output 80 kWe. The generated gas is burned in secondary combustion chamber located beyond the gas generator. Flue gas flows through the heat exchanger where the compressed air is heated and consequently brought to a micro turbine. Except description, this paper brings our basic experiences from operating of pilot plant (operating parameters, contributions, problems during operating, etc.). The principal advantage of the given cycle is the fact that there is no contact between the generated gas and the turbine. So there is no need for costly and complicated gas cleaning which is the main source of operating problems in direct use in combustion engines because the content of impurities in the gas causes operation problems to the units due to clogging and tarring of working surfaces of engines and turbines, which may lead as far as serious damage to the equipment under operation. Another merit is the compact container package making installation of the facility easier or making it relatively more mobile. We imagine, this solution of cogeneration from biomass or waste can be suitable for small industrial or communal applications, for low output cogeneration.

Keywords: Biomass, combustion, gasification, microcogeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
87 Variability of Metal Composition and Concentrations in Road Dust in the Urban Environment

Authors: Sandya Mummullage, Prasanna Egodawatta, Ashantha Goonetilleke, Godwin A. Ayoko

Abstract:

Urban road dust comprises of a range of potentially  toxic metal elements and plays a critical role in degrading urban  receiving water quality. Hence, assessing the metal composition and  concentration in urban road dust is a high priority. This study  investigated the variability of metal composition and concentrations  in road dust in 4 different urban land uses in Gold Coast, Australia.  Samples from 16 road sites were collected and tested for selected 12  metal species. The data set was analyzed using both univariate and  multivariate techniques. Outcomes of the data analysis revealed that  the metal concentrations inroad dust differs considerably within and  between different land uses. Iron, aluminum, magnesium and zinc are  the most abundant in urban land uses. It was also noted that metal  species such as titanium, nickel, copper and zinc have the highest  concentrations in industrial land use. The study outcomes revealed  that soil and traffic related sources as key sources of metals deposited  on road surfaces.

 

Keywords: Metals build-up, Pollutant accumulation, Stormwater quality, Urban road dust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
86 Study on Carbon Nanostructures Influence on Changes in Static Friction Forces

Authors: Rafał Urbaniak, Robert Kłosowiak, Michał Ciałkowski, Jarosław Bartoszewicz

Abstract:

The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics.

Keywords: Carbon nanotubes, static friction, dynamic friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
85 Development and Characterization of Bio-Tribological, Nano-Multilayer Coatings for Medical Tools Application

Authors: L. Major, J. M. Lackner, M. Dyner, B. Major

Abstract:

Development of new generation bio-tribological, multilayer coatings opens an avenue for fabrication of future hightech functional surfaces. In the presented work, nano-composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nanomultilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio-tribological properties of the coatings was studied. The bio-tests were used as a screening tool for the analyzed nanomultilayer coatings before they could be deposited on medical tools. Bio-medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-ondisc mechanical test. The micro hardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio-tribological point of view, the optimal properties had the C106_1 material.

Keywords: Bio-tribological coatings, cell-material interaction, hybrid PLD, tribology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
84 Rotor Concepts for the Counter Flow Heat Recovery Fan

Authors: Christoph Speer

Abstract:

Decentralized ventilation systems should combine a small and economical design with high aerodynamic and thermal efficiency. The Counter Flow Heat Recovery Fan (CHRF) provides the ability to meet these requirements by using only one cross flow fan with a large number of blades to generate both airflows and which simultaneously acts as a regenerative counter flow heat exchanger. The successful development of the first laboratory prototype has shown the potential of this ventilation system. Occurring condensate on the surfaces of the fan blades during the cold and dry season can be recovered through the characteristic mode of operation. Hence the CHRF provides the possibility to avoid the need for frost protection and condensate drain. Through the implementation of system-specific solutions for flow balancing and summer bypass the required functionality is assured. The scalability of the CHRF concept allows the use in renovation as well as in new buildings from single-room devices through to systems for office buildings. High aerodynamic and thermal efficiency and the lower number of required mechatronic components should enable a reduction in investment as well as operating costs. The rotor is the key component of the system, the requirements and possible implementation variants are presented.

Keywords: CHRF, counter flow heat recovery fan, decentralized ventilation system, renovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
83 Study on Construction of 3D Topography by UAV-Based Images

Authors: Yun-Yao Chi, Chieh-Kai Tsai, Dai-Ling Li

Abstract:

In this paper, a method of fast 3D topography modeling using the high-resolution camera images is studied based on the characteristics of Unmanned Aerial Vehicle (UAV) system for low altitude aerial photogrammetry and the need of three dimensional (3D) urban landscape modeling. Firstly, the existing high-resolution digital camera with special design of overlap images is designed by reconstructing and analyzing the auto-flying paths of UAVs, which improves the self-calibration function to achieve the high precision imaging by software, and further increased the resolution of the imaging system. Secondly, several-angle images including vertical images and oblique images gotten by the UAV system are used for the detail measure of urban land surfaces and the texture extraction. Finally, the aerial photography and 3D topography construction are both developed in campus of Chang-Jung University and in Guerin district area in Tainan, Taiwan, provide authentication model for construction of 3D topography based on combined UAV-based camera images from system. The results demonstrated that the UAV system for low altitude aerial photogrammetry can be used in the construction of 3D topography production, and the technology solution in this paper offers a new, fast, and technical plan for the 3D expression of the city landscape, fine modeling and visualization.

Keywords: 3D, topography, UAV, images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751
82 Beam and Diffuse Solar Energy in Zarqa City

Authors: Ali M. Jawarneh

Abstract:

Beam and diffuse radiation data are extracted analytically from previous measured data on a horizontal surface in Zarqa city. Moreover, radiation data on a tilted surfaces with different slopes have been derived and analyzed. These data are consisting of of beam contribution, diffuse contribution, and ground reflected contribution radiation. Hourly radiation data for horizontal surface possess the highest radiation values on June, and then the values decay as the slope increases and the sharp decreasing happened for vertical surface. The beam radiation on a horizontal surface owns the highest values comparing to diffuse radiation for all days of June. The total daily radiation on the tilted surface decreases with slopes. The beam radiation data also decays with slopes especially for vertical surface. Diffuse radiation slightly decreases with slopes with sharp decreases for vertical surface. The groundreflected radiation grows with slopes especially for vertical surface. It-s clear that in June the highest harvesting of solar energy occurred for horizontal surface, then the harvesting decreases as the slope increases.

Keywords: Beam and Diffuse Radiation, Zarqa City

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
81 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the Isection. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted in a high shear and almost zero moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: Strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
80 Restrictedly-Regular Map Representation of n-Dimensional Abstract Polytopes

Authors: Antonio Breda d’Azevedo

Abstract:

Regularity has often been present in the form of regular polyhedra or tessellations; classical examples are the nine regular polyhedra consisting of the five Platonic solids (regular convex polyhedra) and the four Kleper-Poinsot polyhedra. These polytopes can be seen as regular maps. Maps are cellular embeddings of graphs (with possibly multiple edges, loops or dangling edges) on compact connected (closed) surfaces with or without boundary. The n-dimensional abstract polytopes, particularly the regular ones, have gained popularity over recent years. The main focus of research has been their symmetries and regularity. Planification of polyhedra helps its spatial construction, yet it destroys its symmetries. To our knowledge there is no “planification” for n-dimensional polytopes. However we show that it is possible to make a “surfacification” of the n-dimensional polytope, that is, it is possible to construct a restrictedly-marked map representation of the abstract polytope on some surface that describes its combinatorial structures as well as all of its symmetries. We also show that there are infinitely many ways to do this; yet there is one that is more natural that describes reflections on the sides ((n−1)-faces) of n-simplices with reflections on the sides of n-polygons. We illustrate this construction with the 4-tetrahedron (a regular 4-polytope with automorphism group of size 120) and the 4-cube (a regular 4-polytope with automorphism group of size 384).

Keywords: Maps, representation, polytopes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
79 Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V

Authors: Salah Gariani, Islam Shyha, Fawad Inam, Dehong Huo

Abstract:

A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.

Keywords: Impinging supply system, micro-hardness, shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 971
78 Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy

Authors: Woei-Shyan Lee, Hao-Chien Kao

Abstract:

The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.

Keywords: Haynes 188 alloy, impact, strain rate and temperature effect, adiabatic shearing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
77 Burnishing of Aluminum-Magnesium-Graphite Composites

Authors: Mohammed T. Hayajneh, Adel Mahmood Hassan, Moath AL-Qudah

Abstract:

Burnishing is increasingly used as a finishing operation to improve surface roughness and surface hardness. This can be achieved by applying a hard ball or roller onto metallic surfaces under pressure, in order to achieve many advantages in the metallic surface. In the present work, the feed rate, speed and force have been considered as the basic burnishing parameters to study the surface roughness and surface hardness of metallic matrix composites. The considered metal matrix composites were made from Aluminum-Magnesium-Graphite with five different weight percentage of graphite. Both effects of burnishing parameters mentioned above and the graphite percentage on the surface hardness and surface roughness of the metallic matrix composites were studied. The results of this investigation showed that the surface hardness of the metallic composites increases with the increase of the burnishing force and decreases with the increase in the burnishing feed rate and burnishing speed. The surface roughness of the metallic composites decreases with the increasing of the burnishing force, feed rate, and speed to certain values, then it starts to increase. On the other hand, the increase in the weight percentage of the graphite in the considered composites causes a decrease in the surface hardness and an increase in the surface roughness.

Keywords: Burnishing process, Al-Mg-Graphite composites, Surface hardness, Surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442
76 Cold Spray Deposition of SS316L Powders on Al5052 Substrates and Their Potential Using for Biomedical Applications

Authors: B. Dikici, I. Ozdemir, M. Topuz

Abstract:

The corrosion behaviour of 316L stainless steel coatings obtained by cold spray method was investigated in this study. 316L powders were deposited onto Al5052 aluminum substrates. The coatings were produced using nitrogen (N2) process gas. In order to further improve the corrosion and mechanical properties of the coatings, heat treatment was applied at 250 and 750 °C. The corrosion performances of the coatings were compared using the potentiodynamic scanning (PDS) technique under in-vitro conditions (in Ringer’s solution at 37 °C). In addition, the hardness and porosity tests were carried out on the coatings. Microstructural characterization of the coatings was carried out by using scanning electron microscopy attached with energy dispersive spectrometer (SEM-EDS) and X-ray diffraction (XRD) technique. It was found that clean surfaces and a good adhesion were achieved for particle/substrate bonding. The heat treatment process provided both elimination of the anisotropy in the coating and resulting in healing-up of the incomplete interfaces between the deposited particles. It was found that the corrosion potential of the annealed coatings at 750 °C was higher than that of commercially 316 L stainless steel. Moreover, the microstructural investigations after the corrosion tests revealed that corrosion preferentially starts at inter-splat boundaries.

Keywords: 316L, biomaterials, cold spray, heat treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252
75 Growing Zeolite Y on FeCrAlloy Metal

Authors: Rana Th. A. Al-Rubaye, Burcin Atilgan, Richard J. Holmes, Arthur A. Garforth

Abstract:

Structured catalysts formed from the growth of zeolites on substrates is an area of increasing interest due to the increased efficiency of the catalytic process, and the ability to provide superior heat transfer and thermal conductivity for both exothermic and endothermic processes. However, the generation of structured catalysts represents a significant challenge when balancing the relationship variables between materials properties and catalytic performance, with the Na2O, H2O and Al2O3 gel composition paying a significant role in this dynamic, thereby affecting the both the type and range of application. The structured catalyst films generated as part of this investigation have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA), with the transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces being demonstrated using both SEM and XRD. The robustness of the coatings has been ascertained by subjecting these to thermal cycling (ambient to 550oC), with the results indicating that the synthesis time and gel compositions have a crucial effect on the quality of zeolite growth on the FeCrAlloy wires. Finally, the activity of the structured catalyst was verified by a series of comparison experiments with standard zeolite Y catalysts in powdered pelleted forms.

Keywords: FeCrAlloy, Structured catalyst, and Zeolite Y.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
74 Optimization of the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)

Authors: Behrouz Mosayebi Dehkordi

Abstract:

Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.

Keywords: Dehydration, Mushroom, Optimization, Osmotic, Response Surface Methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
73 Optimization the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)

Authors: Behrouz Mosayebi Dehkordi

Abstract:

Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.

Keywords: Dehydration, mushroom, optimization, osmotic, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
72 Hybrid of Hunting Search and Modified Simplex Methods for Grease Position Parameter Design Optimisation

Authors: P. Luangpaiboon, S. Boonhao

Abstract:

This study proposes a multi-response surface optimization problem (MRSOP) for determining the proper choices of a process parameter design (PPD) decision problem in a noisy environment of a grease position process in an electronic industry. The proposed models attempts to maximize dual process responses on the mean of parts between failure on left and right processes. The conventional modified simplex method and its hybridization of the stochastic operator from the hunting search algorithm are applied to determine the proper levels of controllable design parameters affecting the quality performances. A numerical example demonstrates the feasibility of applying the proposed model to the PPD problem via two iterative methods. Its advantages are also discussed. Numerical results demonstrate that the hybridization is superior to the use of the conventional method. In this study, the mean of parts between failure on left and right lines improve by 39.51%, approximately. All experimental data presented in this research have been normalized to disguise actual performance measures as raw data are considered to be confidential.

Keywords: Grease Position Process, Multi-response Surfaces, Modified Simplex Method, Hunting Search Method, Desirability Function Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
71 Magnetic Fluid Based Squeeze Film in Rough Rotating Curved Porous Annular Plates: Deformation Effect

Authors: M. E. Shimpi, G. M. Deheri

Abstract:

This article aims to investigate the performance of a magnetic fluid based squeeze film between rotating transversely rough curved porous annular plates incorporating the effect of elastic deformation. The associated stochastically averaged Reynolds type equation is solved to obtain the pressure distribution leading to the calculation of the load carrying capacity. The results suggest that the transverse roughness of the bearing surfaces affects the performance adversely although the bearing systems register a relatively improved performance due to the magnetization. The deformation causes reduced the load carrying capacity while the curvature parameters tend to nominally increase the load carrying capacity. Besides, the adverse effect of porosity, deformation and standard deviation can be minimized to some extent by the positive effect of the magnetization and the curvature parameters in the case of negatively skewed roughness by suitably choosing the rotational inertia and the aspect ratio, which becomes significant when negative variance occurs.

Keywords: Annular plates curved rough surface, deformation, load carrying capacity, rotational inertia, magnetic fluid, squeeze film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
70 Tool Wear Analysis in 3D Manufactured Ti6Al4V

Authors: David Downey

Abstract:

With the introduction of additive manufacturing (3D printing) to produce titanium (Ti6Al4V) components in the medical, aerospace and automotive industries, intricate geometries can be produced with virtually complete design freedom. However, the consideration of microstructural anisotropy resulting from the additive manufacturing process becomes necessary due to this design flexibility and the need to print a geometric shape that can consist of numerous angles, radii, and swept surfaces. A femoral knee implant serves as an example of a 3D-printed near-net-shaped product. The mechanical properties of the printed components, and consequently, their machinability, are affected by microstructural anisotropy. Currently, finish-machining operations performed on titanium printed parts using selective laser melting (SLM) utilize the same cutting tools employed for processing wrought titanium components. Cutting forces for components manufactured through SLM can be up to 70% higher than those for their wrought counterparts made of Ti6Al4V. Moreover, temperatures at the cutting interface of 3D printed material can surpass those of wrought titanium, leading to significant tool wear. Although the criteria for tool wear may be similar for both 3D printed and wrought materials, the rate of wear during the machining process may differ. The impact of these issues on the choice of cutting tool material and tool lifetimes will be discussed.

Keywords: Additive manufacturing, build orientation, microstructural anisotropy, printed titanium Ti6Al4V, tool wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51