Wireless Sensor Network to Help Low Incomes Farmers to Face Drought Impacts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Wireless Sensor Network to Help Low Incomes Farmers to Face Drought Impacts

Authors: Fantazi Walid, Ezzedine Tahar, Bargaoui Zoubeida

Abstract:

This research presents the main ideas to implement an intelligent system composed by communicating wireless sensors measuring environmental data linked to drought indicators (such as air temperature, soil moisture , etc...). On the other hand, the setting up of a spatio temporal database communicating with a Web mapping application for a monitoring in real time in activity 24:00 /day, 7 days/week is proposed to allow the screening of the drought parameters time evolution and their extraction. Thus this system helps detecting surfaces touched by the phenomenon of drought. Spatio-temporal conceptual models seek to answer the users who need to manage soil water content for irrigating or fertilizing or other activities pursuing crop yield augmentation. Effectively, spatiotemporal conceptual models enable users to obtain a diagram of readable and easy data to apprehend. Based on socio-economic information, it helps identifying people impacted by the phenomena with the corresponding severity especially that this information is accessible by farmers and stakeholders themselves. The study will be applied in Siliana watershed Northern Tunisia.

Keywords: WSN, database spatio-temporal, GIS, web-mapping, indicator of drought.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1108386

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2405

References:


[1] Rengers, N., Soeters, R. and Westen, C.J. Van (1992) Remote sensing and GIS applied to mountain hazard mapping. Episodes, Vol.15, No.1, March 1992, pp.36-45.
[2] Johnston C. A, Groffman P, Breshears DD, et al. 2004. Carbon Cycling in Soil. Front Ecol Environ 2: 522–28.
[3] Díaz S. E., Pérez J. C., Mateos A. C., Marinescu M.C., B. B., Guerra, 2011. A Novel Methodology for the Monitoring of the Agricultural Production Process Based on Wireless Sensor Networks. Computers and Electronics in Agriculture, vol. 76, no. 2, pages 252–265, 2011.
[4] Garcia-Sanchez A. J., Garcia-Sanchez F., J. Garcia-Haro, 2011. Wireless Sensor Network Deployment for Integrating Video Surveillance and Data-Monitoring in Precision Agriculture over Distributed Crops. Computers and Electronics in Agriculture, vol. 75, no. 2, pages 288 – 303, 2011.
[5] López Riquelme J.A., F. Soto, J. Suardíaz, P. Sánchez, A. Iborra and J.A. Vera, 2009. Wireless Sensor Networks for Precision Horticulture in Southern Spain. Computers and Electronics in Agriculture, vol. 68, no. 1, pages 25 – 35, 2009.
[6] Wark T., P. Corke, P. Sikka, L. Klingbeil, Ying Guo, C. Crossman, P. Valencia, D. Swain and G. Bishop-Hurley, 2007. Transforming Agriculture through Pervasive Wireless Sensor Networks. Pervasive Computing, IEEE, vol. 6, no. 2, pages 50–57, 2007.
[7] Eagleson, P.S. (1994) the Evolution of Modern Hydrology (from Watershed to Continent in 30 years), Advances in Water Resources 17 (1994), 3-18.
[8] Parent C., Spaccapietra S., Zimányi E., Donni P., Plazanet C., Vangenot C., Rognon N., Rausaz P. MADS, Modèle Conceptuel Spatio-Temporel. Revue Internationale de Géomatique, 1997, Vol. 7, n°3-4, pp. 317-351.
[9] Bédard Y., 1999. Visual Modelling of Spatial Databases: Towards Spatial PVL and UML, Géomatica, 53(2), pp.169-186.
[10] Spaccapietra S., Parent C., Zimányi E., 1998. Modeling Time from a Conceptual Perspective, In: Int. Conf. on Information and Knowledge Management (CIKM 1998).
[11] Parent C., Spaccapietra S., Zimányi E., 1999. Spatio-Temporal Conceptual Models: Data Structures + Space + Time, Proceedings of the 7th ACM international symposium on Advances in geographic information systems. GIS’99.Kansas City, Missouri, USA.
[12] Laplanche F., 2002, Conception de Projet Sig Avec UML. Bulletin de La Société Géographique de Liège, 42, pp.19-25.
[13] Brodeur J., Bédard Y. et Proulx M.-J., 2000. Modelling Geospatial Application Databases Using UML Based Repositories Aligned with International Standards in Geomatics, ACMGIS 2000, November 10-11, Washington DC, USA.
[14] Gutiérrez C., Servigne S., Laurini R., 2007. Towards Real-time Metadata for Network-Based Geographic Databases, In: ISSDQ 2007 – 5th International Symposium, Spatial Data Quality 2007. p. 8. ITC, Enschede, the Netherlands, pp.13-15.
[15] Fantazi W., Ezzedine T, 2012. International Conference on Information Processing and Wireless Systems March 16-18, 2012 Sousse, Tunisia. IP-WIS « Architecture of Real-Time Spatio-Temporal Metadata for Wireless Sensor ».
[16] Fantazi W., Ezzedine T., Z. Bargaoui, 2014. Implementing a Sensor Network for Monitoring of Drought Indicators. In International Scientific Symposium of Water Management and Desertification 26- 28th November 2014 Istanbul/ Turkey.
[17] Pankaj Sharma. 2013, Socio-Economic Implications of Wireless Sensor Networks with Special Reference to its Application in Agriculture, in African Journal of Computing & ICT, Vol 6. No. 2, June 2013, pp.31- 40.