Search results for: Landweber iterations.
78 Recovering the Boundary Data in the Two Dimensional Inverse Heat Conduction Problem Using the Ritz-Galerkin Method
Authors: Saeed Sarabadan, Kamal Rashedi
Abstract:
This article presents a numerical method to find the heat flux in an inhomogeneous inverse heat conduction problem with linear boundary conditions and an extra specification at the terminal. The method is based upon applying the satisfier function along with the Ritz-Galerkin technique to reduce the approximate solution of the inverse problem to the solution of a system of algebraic equations. The instability of the problem is resolved by taking advantage of the Landweber’s iterations as an admissible regularization strategy. In computations, we find the stable and low-cost results which demonstrate the efficiency of the technique.Keywords: Inverse problem, parabolic equations, heat equation, Ritz-Galerkin method, Landweber iterations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119377 On Diffusion Approximation of Discrete Markov Dynamical Systems
Authors: Jevgenijs Carkovs
Abstract:
The paper is devoted to stochastic analysis of finite dimensional difference equation with dependent on ergodic Markov chain increments, which are proportional to small parameter ". A point-form solution of this difference equation may be represented as vertexes of a time-dependent continuous broken line given on the segment [0,1] with "-dependent scaling of intervals between vertexes. Tending " to zero one may apply stochastic averaging and diffusion approximation procedures and construct continuous approximation of the initial stochastic iterations as an ordinary or stochastic Ito differential equation. The paper proves that for sufficiently small " these equations may be successfully applied not only to approximate finite number of iterations but also for asymptotic analysis of iterations, when number of iterations tends to infinity.Keywords: Markov dynamical system, diffusion approximation, equilibrium stochastic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157776 Enhancing the Error-Correcting Performance of LDPC Codes through an Efficient Use of Decoding Iterations
Authors: Insah Bhurtah, P. Clarel Catherine, K. M. Sunjiv Soyjaudah
Abstract:
The decoding of Low-Density Parity-Check (LDPC) codes is operated over a redundant structure known as the bipartite graph, meaning that the full set of bit nodes is not absolutely necessary for decoder convergence. In 2008, Soyjaudah and Catherine designed a recovery algorithm for LDPC codes based on this assumption and showed that the error-correcting performance of their codes outperformed conventional LDPC Codes. In this work, the use of the recovery algorithm is further explored to test the performance of LDPC codes while the number of iterations is progressively increased. For experiments conducted with small blocklengths of up to 800 bits and number of iterations of up to 2000, the results interestingly demonstrate that contrary to conventional wisdom, the error-correcting performance keeps increasing with increasing number of iterations.
Keywords: Error-correcting codes, information theory, low-density parity-check codes, sum-product algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170775 Iterative Methods for Computing the Weighted Minkowski Inverses of Matrices in Minkowski Space
Authors: Xiaoji Liu, Yonghui Qin
Abstract:
In this note, we consider a family of iterative formula for computing the weighted Minskowski inverses AM,N in Minskowski space, and give two kinds of iterations and the necessary and sufficient conditions of the convergence of iterations.
Keywords: iterative method, the Minskowski inverse, A
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141974 A New Vision of Fractal Geometry with Triangulati on Algorithm
Authors: Yasser M. Abd El-Latif, Fatma S.Abousaleh, Daoud S. S.
Abstract:
L-system is a tool commonly used for modeling and simulating the growth of fractal plants. The aim of this paper is to join some problems of the computational geometry with the fractal geometry by using the L-system technique to generate fractal plant in 3D. L-system constructs the fractal structure by applying rewriting rules sequentially and this technique depends on recursion process with large number of iterations to get different shapes of 3D fractal plants. Instead, it was reiterated a specific number of iterations up to three iterations. The vertices generated from the last stage of the Lsystem rewriting process are used as input to the triangulation algorithm to construct the triangulation shape of these vertices. The resulting shapes can be used as covers for the architectural objects and in different computer graphics fields. The paper presents a gallery of triangulation forms which application in architecture creates an alternative for domes and other traditional types of roofs.
Keywords: Computational geometry, fractal geometry, L-system, triangulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191973 Improved Multi-Objective Particle Swarm Optimization Applied to Design Problem
Authors: Kapse Swapnil, K. Shankar
Abstract:
Aiming at optimizing the weight and deflection of cantilever beam subjected to maximum stress and maximum deflection, Multi-objective Particle Swarm Optimization (MOPSO) with Utopia Point based local search is implemented. Utopia point is used to govern the search towards the Pareto Optimal set. The elite candidates obtained during the iterations are stored in an archive according to non-dominated sorting and also the archive is truncated based on least crowding distance. Local search is also performed on elite candidates and the most diverse particle is selected as the global best. This method is implemented on standard test functions and it is observed that the improved algorithm gives better convergence and diversity as compared to NSGA-II in fewer iterations. Implementation on practical structural problem shows that in 5 to 6 iterations, the improved algorithm converges with better diversity as evident by the improvement of cantilever beam on an average of 0.78% and 9.28% in the weight and deflection respectively compared to NSGA-II.Keywords: Utopia point, multi-objective particle swarm optimization, local search, cantilever beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98472 New Iterative Algorithm for Improving Depth Resolution in Ionic Analysis: Effect of Iterations Number
Authors: N. Dahraoui, M. Boulakroune, D. Benatia
Abstract:
In this paper, the improvement by deconvolution of the depth resolution in Secondary Ion Mass Spectrometry (SIMS) analysis is considered. Indeed, we have developed a new Tikhonov- Miller deconvolution algorithm where a priori model of the solution is included. This is a denoisy and pre-deconvoluted signal obtained from: firstly, by the application of wavelet shrinkage algorithm, secondly by the introduction of the obtained denoisy signal in an iterative deconvolution algorithm. In particular, we have focused the light on the effect of the iterations number on the evolution of the deconvoluted signals. The SIMS profiles are multilayers of Boron in Silicon matrix.
Keywords: DRF, in-depth resolution, multiresolution deconvolution, SIMS, wavelet shrinkage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222071 A New Iterative Method for Solving Nonlinear Equations
Authors: Ibrahim Abu-Alshaikh
Abstract:
In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.
Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169270 Near Perfect Reconstruction Quadrature Mirror Filter
Authors: A. Kumar, G. K. Singh, R. S. Anand
Abstract:
In this paper, various algorithms for designing quadrature mirror filter are reviewed and a new algorithm is presented for the design of near perfect reconstruction quadrature mirror filter bank. In the proposed algorithm, objective function is formulated using the perfect reconstruction condition or magnitude response condition of prototype filter at frequency (ω = 0.5π) in ideal condition. The cutoff frequency is iteratively changed to adjust the filters coefficients using optimization algorithm. The performances of the proposed algorithm are evaluated in term of computation time, reconstruction error and number of iterations. The design examples illustrate that the proposed algorithm is superior in term of peak reconstruction error, computation time, and number of iterations. The proposed algorithm is simple, easy to implement, and linear in nature.
Keywords: Aliasing cancellations filter bank, Filter banks, quadrature mirror filter (QMF), subband coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253069 Simplified Mobile AR Platform Design for Augmented Tourism
Authors: Eric Hawkinson, Edgaras Artemciukas
Abstract:
This study outlines iterations of designing mobile augmented reality (MAR) applications for tourism specific contexts. Using a design based research model, several cycles of development to implementation were analyzed and refined upon with the goal of building a MAR platform that would facilitate the creation of augmented tours and environments by non-technical users. The project took on several stages, and through the process, a simple framework was begun to be established that can inform the design and use of MAR applications for tourism contexts. As a result of these iterations of development, a platform was developed that can allow novice computer users to create augmented tourism environments. This system was able to connect existing tools in widespread use such as Google Forms and connect them to computer vision algorithms needed for more advanced augmented tourism environments. The study concludes with a discussion of this MAR platform and reveals design elements that have implications for tourism contexts. The study also points to future case uses and design approaches for augmented tourism.Keywords: Augmented tourism, augmented reality, user experience, mobile design, etourism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115368 Computational Fluid Dynamics Expert System using Artificial Neural Networks
Authors: Gonzalo Rubio, Eusebio Valero, Sven Lanzan
Abstract:
The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.Keywords: Artificial Neural Network, Computational Fluid Dynamics, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295767 Effects of Introducing Similarity Measures into Artificial Bee Colony Approach for Optimization of Vehicle Routing Problem
Authors: P. Shunmugapriya, S. Kanmani, P. Jude Fredieric, U. Vignesh, J. Reman Justin, K. Vivek
Abstract:
Vehicle Routing Problem (VRP) is a complex combinatorial optimization problem and it is quite difficult to find an optimal solution consisting of a set of routes for vehicles whose total cost is minimum. Evolutionary and swarm intelligent (SI) algorithms play a vital role in solving optimization problems. While the SI algorithms perform search, the diversity between the solutions they exploit is very important. This is because of the need to avoid early convergence and to get an appropriate balance between the exploration and exploitation. Therefore, it is important to check how far the solutions are diverse. In this paper, we measure the similarity between solutions, which ABC exploits while optimizing VRP. The similar solutions found are discarded at the end of the iteration and only unique solutions are passed on to the next iteration. The bees of discarded solutions become scouts and they start searching for new solutions. This process is continued and results show that the solution is optimized at lesser number of iterations but with the overhead of computing similarity in all the iterations. The problem instance from Solomon benchmarked dataset has been used for evaluating the presented methodology.
Keywords: ABC algorithm, vehicle routing problem, optimization, Jaccard’s similarity measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84566 Two Area Power Systems Economic Dispatch Problem Solving Considering Transmission Capacity Constraints
Authors: M. Zarei, A. Roozegar, R. Kazemzadeh, J.M. Kauffmann
Abstract:
This paper describes an efficient and practical method for economic dispatch problem in one and two area electrical power systems with considering the constraint of the tie transmission line capacity constraint. Direct search method (DSM) is used with some equality and inequality constraints of the production units with any kind of fuel cost function. By this method, it is possible to use several inequality constraints without having difficulty for complex cost functions or in the case of unavailability of the cost function derivative. To minimize the number of total iterations in searching, process multi-level convergence is incorporated in the DSM. Enhanced direct search method (EDSM) for two area power system will be investigated. The initial calculation step size that causes less iterations and then less calculation time is presented. Effect of the transmission tie line capacity, between areas, on economic dispatch problem and on total generation cost will be studied; line compensation and active power with reactive power dispatch are proposed to overcome the high generation costs for this multi-area system.Keywords: Economic dispatch, Power System Operation, Direct Search Method, Transmission Capacity Constraint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248465 Effect of Size of the Step in the Response Surface Methodology using Nonlinear Test Functions
Authors: Jesús Everardo Olguín Tiznado, Rafael García Martínez, Claudia Camargo Wilson, Juan Andrés López Barreras, Everardo Inzunza González, Javier Ordorica Villalvazo
Abstract:
The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful in the modeling and analysis of problems in which the dependent variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a production process. The RSM estimated a regression model of first order, and sets the search direction using the method of maximum / minimum slope up / down MMS U/D. However, this method selects the step size intuitively, which can affect the efficiency of the RSM. This paper assesses how the step size affects the efficiency of this methodology. The numerical examples are carried out through Monte Carlo experiments, evaluating three response variables: efficiency gain function, the optimum distance and the number of iterations. The results in the simulation experiments showed that in response variables efficiency and gain function at the optimum distance were not affected by the step size, while the number of iterations is found that the efficiency if it is affected by the size of the step and function type of test used.Keywords: RSM, dependent variable, independent variables, efficiency, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198964 Managing Iterations in Product Design and Development
Authors: K. Aravindhan, Trishit Bandyopadhyay, Mahesh Mehendale, Supriya Kumar De
Abstract:
The inherent iterative nature of product design and development poses significant challenge to reduce the product design and development time (PD). In order to shorten the time to market, organizations have adopted concurrent development where multiple specialized tasks and design activities are carried out in parallel. Iterative nature of work coupled with the overlap of activities can result in unpredictable time to completion and significant rework. Many of the products have missed the time to market window due to unanticipated or rather unplanned iteration and rework. The iterative and often overlapped processes introduce greater amounts of ambiguity in design and development, where the traditional methods and tools of project management provide less value. In this context, identifying critical metrics to understand the iteration probability is an open research area where significant contribution can be made given that iteration has been the key driver of cost and schedule risk in PD projects. Two important questions that the proposed study attempts to address are: Can we predict and identify the number of iterations in a product development flow? Can we provide managerial insights for a better control over iteration? The proposal introduces the concept of decision points and using this concept intends to develop metrics that can provide managerial insights into iteration predictability. By characterizing the product development flow as a network of decision points, the proposed research intends to delve further into iteration probability and attempts to provide more clarity.
Keywords: Decision Points, Iteration, Product Design, Rework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219263 The Algorithm to Solve the Extend General Malfatti’s Problem in a Convex Circular Triangle
Authors: Ching-Shoei Chiang
Abstract:
The Malfatti’s problem solves the problem of fitting three circles into a right triangle such that these three circles are tangent to each other, and each circle is also tangent to a pair of the triangle’s sides. This problem has been extended to any triangle (called general Malfatti’s problem). Furthermore, the problem has been extended to have 1 + 2 + … + n circles inside the triangle with special tangency properties among circles and triangle sides; it is called the extended general Malfatti’s problem. In the extended general Malfatti’s problem, call it Tri(Tn), where Tn is the triangle number, there are closed-form solutions for the Tri(T₁) (inscribed circle) problem and Tri(T₂) (3 Malfatti’s circles) problem. These problems become more complex when n is greater than 2. In solving the Tri(Tn) problem, n > 2, algorithms have been proposed to solve these problems numerically. With a similar idea, this paper proposed an algorithm to find the radii of circles with the same tangency properties. Instead of the boundary of the triangle being a straight line, we use a convex circular arc as the boundary and try to find Tn circles inside this convex circular triangle with the same tangency properties among circles and boundary as in Tri(Tn) problems. We call these problems the Carc(Tn) problems. The algorithm is a mO(Tn) algorithm, where m is the number of iterations in the loop. It takes less than 1000 iterations and less than 1 second for the Carc(T16) problem, which finds 136 circles inside a convex circular triangle with specified tangency properties. This algorithm gives a solution for circle packing problem inside convex circular triangle with arbitrarily-sized circles. Many applications concerning circle packing may come from the result of the algorithm, such as logo design, architecture design, etc.
Keywords: Circle packing, computer-aided geometric design, geometric constraint solver, Malfatti’s problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14362 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem
Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães
Abstract:
This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.Keywords: Path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89861 Convergence Analysis of the Generalized Alternating Two-Stage Method
Authors: Guangbin Wang, Liangliang Li, Fuping Tan
Abstract:
In this paper, we give the generalized alternating twostage method in which the inner iterations are accomplished by a generalized alternating method. And we present convergence results of the method for solving nonsingular linear systems when the coefficient matrix of the linear system is a monotone matrix or an H-matrix.
Keywords: Generalized alternating two-stage method, linear system, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125860 Performance Analysis of HSDPA Systems using Low-Density Parity-Check (LDPC)Coding as Compared to Turbo Coding
Authors: K. Anitha Sheela, J. Tarun Kumar
Abstract:
HSDPA is a new feature which is introduced in Release-5 specifications of the 3GPP WCDMA/UTRA standard to realize higher speed data rate together with lower round-trip times. Moreover, the HSDPA concept offers outstanding improvement of packet throughput and also significantly reduces the packet call transfer delay as compared to Release -99 DSCH. Till now the HSDPA system uses turbo coding which is the best coding technique to achieve the Shannon limit. However, the main drawbacks of turbo coding are high decoding complexity and high latency which makes it unsuitable for some applications like satellite communications, since the transmission distance itself introduces latency due to limited speed of light. Hence in this paper it is proposed to use LDPC coding in place of Turbo coding for HSDPA system which decreases the latency and decoding complexity. But LDPC coding increases the Encoding complexity. Though the complexity of transmitter increases at NodeB, the End user is at an advantage in terms of receiver complexity and Bit- error rate. In this paper LDPC Encoder is implemented using “sparse parity check matrix" H to generate a codeword at Encoder and “Belief Propagation algorithm "for LDPC decoding .Simulation results shows that in LDPC coding the BER suddenly drops as the number of iterations increase with a small increase in Eb/No. Which is not possible in Turbo coding. Also same BER was achieved using less number of iterations and hence the latency and receiver complexity has decreased for LDPC coding. HSDPA increases the downlink data rate within a cell to a theoretical maximum of 14Mbps, with 2Mbps on the uplink. The changes that HSDPA enables includes better quality, more reliable and more robust data services. In other words, while realistic data rates are only a few Mbps, the actual quality and number of users achieved will improve significantly.Keywords: AMC, HSDPA, LDPC, WCDMA, 3GPP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204759 The Variable Step-Size Gauss-Seidel Pseudo Affine Projection Algorithm
Authors: F. Albu, C. Paleologu
Abstract:
In this paper, a new pseudo affine projection (AP) algorithm based on Gauss-Seidel (GS) iterations is proposed for acoustic echo cancellation (AEC). It is shown that the algorithm is robust against near-end signal variations (including double-talk).Keywords: pseudo affine projection algorithm, acoustic echo cancellation, double-talk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142558 Cross-Search Technique and its Visualization of Peer-to-Peer Distributed Clinical Documents
Authors: Yong Jun Choi, Juman Byun, Simon Berkovich
Abstract:
One of the ubiquitous routines in medical practice is searching through voluminous piles of clinical documents. In this paper we introduce a distributed system to search and exchange clinical documents. Clinical documents are distributed peer-to-peer. Relevant information is found in multiple iterations of cross-searches between the clinical text and its domain encyclopedia.
Keywords: Clinical documents, cross-search, document exchange, information retrieval, peer-to-peer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130157 Some Third Order Methods for Solving Systems of Nonlinear Equations
Authors: Janak Raj Sharma, Rajni Sharma
Abstract:
Based on Traub-s methods for solving nonlinear equation f(x) = 0, we develop two families of third-order methods for solving system of nonlinear equations F(x) = 0. The families include well-known existing methods as special cases. The stability is corroborated by numerical results. Comparison with well-known methods shows that the present methods are robust. These higher order methods may be very useful in the numerical applications requiring high precision in their computations because these methods yield a clear reduction in number of iterations.Keywords: Nonlinear equations and systems, Newton's method, fixed point iteration, order of convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220656 Two Fourth-order Iterative Methods Based on Continued Fraction for Root-finding Problems
Authors: Shengfeng Li, Rujing Wang
Abstract:
In this paper, we present two new one-step iterative methods based on Thiele-s continued fraction for solving nonlinear equations. By applying the truncated Thiele-s continued fraction twice, the iterative methods are obtained respectively. Analysis of convergence shows that the new methods are fourth-order convergent. Numerical tests verifying the theory are given and based on the methods, two new one-step iterations are developed.Keywords: Iterative method, Fixed-point iteration, Thiele's continued fraction, Order of convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188255 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations
Authors: Shishen Xie
Abstract:
In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations
Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212554 Modified Montgomery for RSA Cryptosystem
Authors: Rupali Verma, Maitreyee Dutta, Renu Vig
Abstract:
Encryption and decryption in RSA are done by modular exponentiation which is achieved by repeated modular multiplication. Hence efficiency of modular multiplication directly determines the efficiency of RSA cryptosystem. This paper designs a Modified Montgomery Modular Multiplication in which addition of operands is computed by 4:2 compressor. The basic logic operations in addition are partitioned over two iterations such that parallel computations are performed. This reduces the critical path delay of proposed Montgomery design. The proposed design and RSA are implemented on Virtex 2 and Virtex 5 FPGAs. The two factors partitioning and parallelism have improved the frequency and throughput of proposed design.
Keywords: RSA, Montgomery modular multiplication, 4:2 compressor, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260853 A Comparative Study into Observer based Fault Detection and Diagnosis in DC Motors: Part-I
Authors: Padmakumar S., Vivek Agarwal, Kallol Roy
Abstract:
A model based fault detection and diagnosis technique for DC motor is proposed in this paper. Fault detection using Kalman filter and its different variants are compared. Only incipient faults are considered for the study. The Kalman Filter iterations and all the related computations required for fault detection and fault confirmation are presented. A second order linear state space model of DC motor is used for this work. A comparative assessment of the estimates computed from four different observers and their relative performance is evaluated.Keywords: DC motor model, Fault detection and diagnosis Kalman Filter, Unscented Kalman Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249452 Fixed Point of Lipschitz Quasi Nonexpansive Mappings
Authors: M. Moosavi, H. Khatibzadeh
Abstract:
In this article, we study demiclosed and strongly quasi-nonexpansive of a sequence generated by the proximal point algorithm for a finite family of quasi-nonexpansive mappings in Hadamard spaces. Δ-convergence of iterations for the sequence of strongly quasi-nonexpansive mappings as well as the strong convergence of the Halpern type regularization of them to a common fixed point of sequence are also established. Our results generalize and improve several previously known results of the existing literature.
Keywords: Fixed point, Hadamard space, proximal point algorithm, quasi-nonexpansive sequence of mappings, resolvent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19251 Particle Swarm Optimization and Quantum Particle Swarm Optimization to Multidimensional Function Approximation
Authors: Diogo Silva, Fadul Rodor, Carlos Moraes
Abstract:
This work compares the results of multidimensional function approximation using two algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum Particle Swarm Optimization (QPSO). These algorithms were both tested on three functions - The Rosenbrock, the Rastrigin, and the sphere functions - with different characteristics by increasing their number of dimensions. As a result, this study shows that the higher the function space, i.e. the larger the function dimension, the more evident the advantages of using the QPSO method compared to the PSO method in terms of performance and number of necessary iterations to reach the stop criterion.Keywords: PSO, QPSO, function approximation, AI, optimization, multidimensional functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97750 Service Identification Approach to SOA Development
Authors: Nafise Fareghzadeh
Abstract:
Service identification is one of the main activities in the modeling of a service-oriented solution, and therefore errors made during identification can flow down through detailed design and implementation activities that may necessitate multiple iterations, especially in building composite applications. Different strategies exist for how to identify candidate services that each of them has its own benefits and trade offs. The approach presented in this paper proposes a selective identification of services approach, based on in depth business process analysis coupled with use cases and existing assets analysis and goal service modeling. This article clearly emphasizes the key activities need for the analysis and service identification to build a optimized service oriented architecture. In contrast to other approaches this article mentions some best practices and steps, wherever appropriate, to point out the vagueness involved in service identification.Keywords: SOA, service identification, service taxonomy, service layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 308849 A Hybrid Approach Using Particle Swarm Optimization and Simulated Annealing for N-queen Problem
Authors: Vahid Mohammadi Saffarzadeh, Pourya Jafarzadeh, Masoud Mazloom
Abstract:
This paper presents a hybrid approach for solving nqueen problem by combination of PSO and SA. PSO is a population based heuristic method that sometimes traps in local maximum. To solve this problem we can use SA. Although SA suffer from many iterations and long time convergence for solving some problems, By good adjusting initial parameters such as temperature and the length of temperature stages SA guarantees convergence. In this article we use discrete PSO (due to nature of n-queen problem) to achieve a good local maximum. Then we use SA to escape from local maximum. The experimental results show that our hybrid method in comparison of SA method converges to result faster, especially for high dimensions n-queen problems.
Keywords: PSO, SA, N-queen, CSP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683