Search results for: ISE Parameter Optimization.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2828

Search results for: ISE Parameter Optimization.

218 LOD Exploitation and Fast Silhouette Detection for Shadow Volumes

Authors: Mustafa S. Fawad, Wang Wencheng, Wu Enhua

Abstract:

Shadows add great amount of realism to a scene and many algorithms exists to generate shadows. Recently, Shadow volumes (SVs) have made great achievements to place a valuable position in the gaming industries. Looking at this, we concentrate on simple but valuable initial partial steps for further optimization in SV generation, i.e.; model simplification and silhouette edge detection and tracking. Shadow volumes (SVs) usually takes time in generating boundary silhouettes of the object and if the object is complex then the generation of edges become much harder and slower in process. The challenge gets stiffer when real time shadow generation and rendering is demanded. We investigated a way to use the real time silhouette edge detection method, which takes the advantage of spatial and temporal coherence, and exploit the level-of-details (LOD) technique for reducing silhouette edges of the model to use the simplified version of the model for shadow generation speeding up the running time. These steps highly reduce the execution time of shadow volume generations in real-time and are easily flexible to any of the recently proposed SV techniques. Our main focus is to exploit the LOD and silhouette edge detection technique, adopting them to further enhance the shadow volume generations for real time rendering.

Keywords: LOD, perception, Shadow Volumes, SilhouetteEdge, Spatial and Temporal coherence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
217 Pollution and Water Quality of the Beshar River

Authors: Fardin Boustani , Mohammah Hosein Hojati

Abstract:

The Beshar River is one aquatic ecosystem,which is affected by pollutants. This study was conducted to evaluate the effects of human activities on the water quality of the Beshar river. This river is approximately 190 km in length and situated at the geographical positions of 51° 20' to 51° 48' E and 30° 18' to 30° 52' N it is one of the most important aquatic ecosystems of Kohkiloye and Boyerahmad province next to the city of Yasuj in southern Iran. The Beshar river has been contaminated by industrial, agricultural and other activities in this region such as factories, hospitals, agricultural farms, urban surface runoff and effluent of wastewater treatment plants. In order to evaluate the effects of these pollutants on the quality of the Beshar river, five monitoring stations were selected along its course. The first station is located upstream of Yasuj near the Dehnow village; stations 2 to 4 are located east, south and west of city; and the 5th station is located downstream of Yasuj. Several water quality parameters were sampled. These include pH, dissolved oxygen, biological oxygen demand (BOD), temperature, conductivity, turbidity, total dissolved solids and discharge or flow measurements. Water samples from the five stations were collected and analysed to determine the following physicochemical parameters: EC, pH, T.D.S, T.H, No2, DO, BOD5, COD during 2008 to 2009. The study shows that the BOD5 value of station 1 is at a minimum (1.5 ppm) and increases downstream from stations 2 to 4 to a maximum (7.2 ppm), and then decreases at station 5. The DO values of station 1 is a maximum (9.55 ppm), decreases downstream to stations 2 - 4 which are at a minimum (3.4 ppm), before increasing at station 5. The amount of BOD and TDS are highest at the 4th station and the amount of DO is lowest at this station, marking the 4th station as more highly polluted than the other stations. The physicochemical parameters improve at the 5th station due to pollutant degradation and dilution. Finally the point and nonpoint pollutant sources of Beshar river were determined and compared to the monitoring results.

Keywords: Beshar river, physicochemical parameter, waterpollution, Yasuj

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
216 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication

Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti

Abstract:

In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.  

Keywords: Grinding, MQL, precision grinding, Taguchi optimization, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
215 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
214 Analysis of Surface Hardness, Surface Roughness, and Near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the surface hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor hobson talysurf tester, micro vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer. 

Keywords: Surface hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
213 An Educational Data Mining System for Advising Higher Education Students

Authors: Heba Mohammed Nagy, Walid Mohamed Aly, Osama Fathy Hegazy

Abstract:

Educational  data mining  is  a  specific  data   mining field applied to data originating from educational environments, it relies on different  approaches to discover hidden knowledge  from  the  available   data. Among these approaches are   machine   learning techniques which are used to build a system that acquires learning from previous data. Machine learning can be applied to solve different regression, classification, clustering and optimization problems.

In  our  research, we propose  a “Student  Advisory  Framework” that  utilizes  classification  and  clustering  to  build  an  intelligent system. This system can be used to provide pieces of consultations to a first year  university  student to  pursue a  certain   education   track   where  he/she  will  likely  succeed  in, aiming  to  decrease   the  high  rate   of  academic  failure   among these  students.  A real case study  in Cairo  Higher  Institute  for Engineering, Computer  Science  and  Management  is  presented using  real  dataset   collected  from  2000−2012.The dataset has two main components: pre-higher education dataset and first year courses results dataset. Results have proved the efficiency of the suggested framework.

Keywords: Classification, Clustering, Educational Data Mining (EDM), Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5169
212 A New Fast Intra Prediction Mode Decision Algorithm for H.264/AVC Encoders

Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf

Abstract:

The H.264/AVC video coding standard contains a number of advanced features. Ones of the new features introduced in this standard is the multiple intramode prediction. Its function exploits directional spatial correlation with adjacent block for intra prediction. With this new features, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standard, but computational complexity is increased significantly when brut force rate distortion optimization (RDO) algorithm is used. In this paper, we propose a new fast intra prediction mode decision method for the complexity reduction of H.264 video coding. for luma intra prediction, the proposed method consists of two step: in the first step, we make the RDO for four mode of intra 4x4 block, based the distribution of RDO cost of those modes and the idea that the fort correlation with adjacent mode, we select the best mode of intra 4x4 block. In the second step, we based the fact that the dominating direction of a smaller block is similar to that of bigger block, the candidate modes of 8x8 blocks and 16x16 macroblocks are determined. So, in case of chroma intra prediction, the variance of the chroma pixel values is much smaller than that of luma ones, since our proposed uses only the mode DC. Experimental results show that the new fast intra mode decision algorithm increases the speed of intra coding significantly with negligible loss of PSNR.

Keywords: Intra prediction, H264/AVC, video coding, encodercomplexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
211 Numerical Simulation on Deformation Behaviour of Additively Manufactured AlSi10Mg Alloy

Authors: Racholsan Raj Nirmal, B. S. V. Patnaik, R. Jayaganthan

Abstract:

The deformation behaviour of additively manufactured AlSi10Mg alloy under low strains, high strain rates and elevated temperature conditions is essential to analyse and predict its response against dynamic loading such as impact and thermomechanical fatigue. The constitutive relation of Johnson-Cook is used to capture the strain rate sensitivity and thermal softening effect in AlSi10Mg alloy. Johnson-Cook failure model is widely used for exploring damage mechanics and predicting the fracture in many materials. In this present work, Johnson-Cook material and damage model parameters for additively manufactured AlSi10Mg alloy have been determined numerically from four types of uniaxial tensile test. Three different uniaxial tensile tests with dynamic strain rates (0.1, 1, 10, 50, and 100 s-1) and elevated temperature tensile test with three different temperature conditions (450 K, 500 K and 550 K) were performed on 3D printed AlSi10Mg alloy in ABAQUS/Explicit. Hexahedral elements are used to discretize tensile specimens and fracture energy value of 43.6 kN/m was used for damage initiation. Levenberg Marquardt optimization method was used for the evaluation of Johnson-Cook model parameters. It was observed that additively manufactured AlSi10Mg alloy has shown relatively higher strain rate sensitivity and lower thermal stability as compared to the other Al alloys.

Keywords: ABAQUS, additive manufacturing, AlSi10Mg, Johnson-Cook model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
210 A Combined Conventional and Differential Evolution Method for Model Order Reduction

Authors: J. S. Yadav, N. P. Patidar, J. Singhai, S. Panda, C. Ardil

Abstract:

In this paper a mixed method by combining an evolutionary and a conventional technique is proposed for reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM). In the conventional technique, the mixed advantages of Mihailov stability criterion and continued Fraction Expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. Then, retaining the numerator polynomial, the denominator polynomial is recalculated by an evolutionary technique. In the evolutionary method, the recently proposed Differential Evolution (DE) optimization technique is employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. The proposed method is illustrated through a numerical example and compared with ROM where both numerator and denominator polynomials are obtained by conventional method to show its superiority.

Keywords: Reduced Order Modeling, Stability, Mihailov Stability Criterion, Continued Fraction Expansions, Differential Evolution, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
209 A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates

Authors: Ali Sarosh, Dong Yun-Feng, Muhammad Umer

Abstract:

Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.

Keywords: TIPSO-SVM expert system, TIPSO algorithm, two-step SVM method, aerothermodynamics, mass-modeling, TSTO vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
208 Application of Statistical Approach for Optimizing CMCase Production by Bacillus tequilensis S28 Strain via Submerged Fermentation Using Wheat Bran as Carbon Source

Authors: A. Sharma, R. Tewari, S. K. Soni

Abstract:

Biofuels production has come forth as a future technology to combat the problem of depleting fossil fuels. Bio-based ethanol production from enzymatic lignocellulosic biomass degradation serves an efficient method and catching the eye of scientific community. High cost of the enzyme is the major obstacle in preventing the commercialization of this process. Thus main objective of the present study was to optimize composition of medium components for enhancing cellulase production by newly isolated strain of Bacillus tequilensis. Nineteen factors were taken into account using statistical Plackett-Burman Design. The significant variables influencing the cellulose production were further employed in statistical Response Surface Methodology using Central Composite Design for maximizing cellulase production. The optimum medium composition for cellulase production was: peptone (4.94 g/L), ammonium chloride (4.99 g/L), yeast extract (2.00 g/L), Tween-20 (0.53 g/L), calcium chloride (0.20 g/L) and cobalt chloride (0.60 g/L) with pH 7, agitation speed 150 rpm and 72 h incubation at 37oC. Analysis of variance (ANOVA) revealed high coefficient of determination (R2) of 0.99. Maximum cellulase productivity of 11.5 IU/ml was observed against the model predicted value of 13 IU/ml. This was found to be optimally active at 60oC and pH 5.5.

Keywords: Bacillus tequilensis, CMCase, Submerged Fermentation, Optimization, Plackett-Burman Design, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3018
207 Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion

Authors: Chiharu Okuma, Jun Murakami, Naoki Yamamoto

Abstract:

In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.

Keywords: Singular value decomposition (SVD), higher-order SVD (HOSVD), higher-order tensor, outer product expansion, power method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
206 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
205 Chose the Right Mutation Rate for Better Evolve Combinational Logic Circuits

Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert

Abstract:

Evolvable hardware (EHW) is a developing field that applies evolutionary algorithm (EA) to automatically design circuits, antennas, robot controllers etc. A lot of research has been done in this area and several different EAs have been introduced to tackle numerous problems, as scalability, evolvability etc. However every time a specific EA is chosen for solving a particular task, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade the selection of the right parameters for the EA-s components for solving different “test-problems" has been investigated. In this paper the behaviour of mutation rate for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies the number of inputs of each logic gates, the functionality (for example from AND to NOR) and the connectivity between logic gates. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates for the evolved circuits. The experimental results found provide the behaviour of the mutation rate during evolution for the design and optimization of simple logic circuits. The experimental results propose the best mutation rate to be used for designing combinational logic circuits. The research presented is particular important for those who would like to implement a dynamic mutation rate inside the evolutionary algorithm for evolving digital circuits. The researches on the mutation rate during the last 40 years are also summarized.

Keywords: Design of logic circuit, evolutionary computation, evolvable hardware, mutation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
204 Validation on 3D Surface Roughness Algorithm for Measuring Roughness of Psoriasis Lesion

Authors: M.H. Ahmad Fadzil, Esa Prakasa, Hurriyatul Fitriyah, Hermawan Nugroho, Azura Mohd Affandi, S.H. Hussein

Abstract:

Psoriasis is a widespread skin disease affecting up to 2% population with plaque psoriasis accounting to about 80%. It can be identified as a red lesion and for the higher severity the lesion is usually covered with rough scale. Psoriasis Area Severity Index (PASI) scoring is the gold standard method for measuring psoriasis severity. Scaliness is one of PASI parameter that needs to be quantified in PASI scoring. Surface roughness of lesion can be used as a scaliness feature, since existing scale on lesion surface makes the lesion rougher. The dermatologist usually assesses the severity through their tactile sense, therefore direct contact between doctor and patient is required. The problem is the doctor may not assess the lesion objectively. In this paper, a digital image analysis technique is developed to objectively determine the scaliness of the psoriasis lesion and provide the PASI scaliness score. Psoriasis lesion is modelled by a rough surface. The rough surface is created by superimposing a smooth average (curve) surface with a triangular waveform. For roughness determination, a polynomial surface fitting is used to estimate average surface followed by a subtraction between rough and average surface to give elevation surface (surface deviations). Roughness index is calculated by using average roughness equation to the height map matrix. The roughness algorithm has been tested to 444 lesion models. From roughness validation result, only 6 models can not be accepted (percentage error is greater than 10%). These errors occur due the scanned image quality. Roughness algorithm is validated for roughness measurement on abrasive papers at flat surface. The Pearson-s correlation coefficient of grade value (G) of abrasive paper and Ra is -0.9488, its shows there is a strong relation between G and Ra. The algorithm needs to be improved by surface filtering, especially to overcome a problem with noisy data.

Keywords: psoriasis, roughness algorithm, polynomial surfacefitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
203 An Optimal Load Shedding Approach for Distribution Networks with DGs considering Capacity Deficiency Modelling of Bulked Power Supply

Authors: A. R. Malekpour, A.R. Seifi

Abstract:

This paper discusses a genetic algorithm (GA) based optimal load shedding that can apply for electrical distribution networks with and without dispersed generators (DG). Also, the proposed method has the ability for considering constant and variable capacity deficiency caused by unscheduled outages in the bulked generation and transmission system of bulked power supply. The genetic algorithm (GA) is employed to search for the optimal load shedding strategy in distribution networks considering DGs in two cases of constant and variable modelling of bulked power supply of distribution networks. Electrical power distribution systems have a radial network and unidirectional power flows. With the advent of dispersed generations, the electrical distribution system has a locally looped network and bidirectional power flows. Therefore, installed DG in the electrical distribution systems can cause operational problems and impact on existing operational schemes. Introduction of DGs in electrical distribution systems has introduced many new issues in operational and planning level. Load shedding as one of operational issue has no exempt. The objective is to minimize the sum of curtailed load and also system losses within the frame-work of system operational and security constraints. The proposed method is tested on a radial distribution system with 33 load points for more practical applications.

Keywords: DG, Load shedding, Optimization, Capacity Deficiency Modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
202 Vehicle Routing Problem with Mixed Fleet of Conventional and Heterogenous Electric Vehicles and Time Dependent Charging Costs

Authors: Ons Sassi, Wahiba Ramdane Cherif-Khettaf, Ammar Oulamara

Abstract:

In this paper, we consider the vehicle routing problem with mixed fleet of conventional and heterogenous electric vehicles and time dependent charging costs, denoted VRP-HFCC, in which a set of geographically scattered customers have to be served by a mixed fleet of vehicles composed of a heterogenous fleet of Electric Vehicles (EVs), having different battery capacities and operating costs, and Conventional Vehicles (CVs). We include the possibility of charging EVs in the available charging stations during the routes in order to serve all customers. Each charging station offers charging service with a known technology of chargers and time dependent charging costs. Charging stations are also subject to operating time windows constraints. EVs are not necessarily compatible with all available charging technologies and a partial charging is allowed. Intermittent charging at the depot is also allowed provided that constraints related to the electricity grid are satisfied. The objective is to minimize the number of employed vehicles and then minimize the total travel and charging costs. In this study, we present a Mixed Integer Programming Model and develop a Charging Routing Heuristic and a Local Search Heuristic based on the Inject-Eject routine with different insertion methods. All heuristics are tested on real data instances.

Keywords: charging problem, electric vehicle, heuristics, local search, optimization, routing problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2626
201 A CFD Study of Sensitive Parameters Effect on the Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun

Authors: S. Hossainpour, A. R. Binesh

Abstract:

High-velocity oxygen fuel (HVOF) thermal spraying uses a combustion process to heat the gas flow and coating material. A computational fluid dynamics (CFD) model has been developed to predict gas dynamic behavior in a HVOF thermal spray gun in which premixed oxygen and propane are burnt in a combustion chamber linked to a parallel-sided nozzle. The CFD analysis is applied to investigate axisymmetric, steady-state, turbulent, compressible, chemically reacting, subsonic and supersonic flow inside and outside the gun. The gas velocity, temperature, pressure and Mach number distributions are presented for various locations inside and outside the gun. The calculated results show that the most sensitive parameters affecting the process are fuel-to-oxygen gas ratio and total gas flow rate. Gas dynamic behavior along the centerline of the gun depends on both total gas flow rate and fuel-to-oxygen gas ratio. The numerical simulations show that the axial gas velocity and Mach number distribution depend on both flow rate and ratio; the highest velocity is achieved at the higher flow rate and most fuel-rich ratio. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the HVOF system design, optimization and performance analysis.

Keywords: HVOF, CFD, gas dynamics, thermal spray, combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
200 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
199 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
198 Increasing the Resilience of Cyber Physical Systems in Smart Grid Environments using Dynamic Cells

Authors: Andrea Tundis, Carlos García Cordero, Rolf Egert, Alfredo Garro, Max Mühlhäuser

Abstract:

Resilience is an important system property that relies on the ability of a system to automatically recover from a degraded state so as to continue providing its services. Resilient systems have the means of detecting faults and failures with the added capability of automatically restoring their normal operations. Mastering resilience in the domain of Cyber-Physical Systems is challenging due to the interdependence of hybrid hardware and software components, along with physical limitations, laws, regulations and standards, among others. In order to overcome these challenges, this paper presents a modeling approach, based on the concept of Dynamic Cells, tailored to the management of Smart Grids. Additionally, a heuristic algorithm that works on top of the proposed modeling approach, to find resilient configurations, has been defined and implemented. More specifically, the model supports a flexible representation of Smart Grids and the algorithm is able to manage, at different abstraction levels, the resource consumption of individual grid elements on the presence of failures and faults. Finally, the proposal is evaluated in a test scenario where the effectiveness of such approach, when dealing with complex scenarios where adequate solutions are difficult to find, is shown.

Keywords: Cyber-physical systems, energy management, optimization, smart grids, self-healing, resilience, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
197 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: Active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
196 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car

Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga

Abstract:

Starting in 2020, an EU-wide CO2-limitation of 95 g/km is scheduled for the average of an OEMs passenger car fleet. Taking that into consideration additional improvement measures of the Diesel cycle are necessary in order to reduce fuel consumption and emissions while boosting, or at the least, keeping performance values at the same time. The present article deals with the possibilities of an optimized air/water charge air cooler, also called iCAC (indirect Charge Air Cooler) for a Diesel passenger car amongst extreme-boundary conditions. In this context, the precise objective was to show the impact of improved intercooling with reference to the engine working process (fuel consumption and NOx-emissions). Several extremeboundaries - e.g. varying ambient temperatures or mountainous routes - that will become very important in the near future regarding RDE (Real Driving emissions) were subject of the investigation. With the introduction of RDE in 2017 (EU6c measure), the controversial NEDC (New European Driving Cycle) will belong to the past and the OEMs will have to avoid harmful emissions in any conceivable real life situation. This is certainly going to lead to optimization-measurements at the powertrain, which again is going to make the implementation of iCACs, presently solely used for the premium class, more and more attractive for compact class cars. The investigations showed a benefit in FC between 1 and 3% for the iCAC in real world conditions.

Keywords: Air/Water-Charge Air Cooler, Co-Simulation, Diesel Working Process, EURO VI Fuel Consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864
195 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: Artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873
194 Three Dimensional Modeling of Mixture Formation and Combustion in a Direct Injection Heavy-Duty Diesel Engine

Authors: A. R. Binesh, S. Hossainpour

Abstract:

Due to the stringent legislation for emission of diesel engines and also increasing demand on fuel consumption, the importance of detailed 3D simulation of fuel injection, mixing and combustion have been increased in the recent years. In the present work, FIRE code has been used to study the detailed modeling of spray and mixture formation in a Caterpillar heavy-duty diesel engine. The paper provides an overview of the submodels implemented, which account for liquid spray atomization, droplet secondary break-up, droplet collision, impingement, turbulent dispersion and evaporation. The simulation was performed from intake valve closing (IVC) to exhaust valve opening (EVO). The predicted in-cylinder pressure is validated by comparing with existing experimental data. A good agreement between the predicted and experimental values ensures the accuracy of the numerical predictions collected with the present work. Predictions of engine emissions were also performed and a good quantitative agreement between measured and predicted NOx and soot emission data were obtained with the use of the present Zeldowich mechanism and Hiroyasu model. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the internal combustion engine design, optimization and performance analysis.

Keywords: Diesel engine, Combustion, Pollution, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
193 Optimal Sliding Mode Controller for Knee Flexion During Walking

Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem

Abstract:

This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.

Keywords: Optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95
192 Design of Low Power and High Speed Digital IIR Filter in 45nm with Optimized CSA for Digital Signal Processing Applications

Authors: G. Ramana Murthy, C. Senthilpari, P. Velrajkumar, Lim Tien Sze

Abstract:

In this paper, a design methodology to implement low-power and high-speed 2nd order recursive digital Infinite Impulse Response (IIR) filter has been proposed. Since IIR filters suffer from a large number of constant multiplications, the proposed method replaces the constant multiplications by using addition/subtraction and shift operations. The proposed new 6T adder cell is used as the Carry-Save Adder (CSA) to implement addition/subtraction operations in the design of recursive section IIR filter to reduce the propagation delay. Furthermore, high-level algorithms designed for the optimization of the number of CSA blocks are used to reduce the complexity of the IIR filter. The DSCH3 tool is used to generate the schematic of the proposed 6T CSA based shift-adds architecture design and it is analyzed by using Microwind CAD tool to synthesize low-complexity and high-speed IIR filters. The proposed design outperforms in terms of power, propagation delay, area and throughput when compared with MUX-12T, MCIT-7T based CSA adder filter design. It is observed from the experimental results that the proposed 6T based design method can find better IIR filter designs in terms of power and delay than those obtained by using efficient general multipliers.

Keywords: CSA Full Adder, Delay unit, IIR filter, Low-Power, PDP, Parametric Analysis, Propagation Delay, Throughput, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3766
191 Profit Optimization for Solar Plant Electricity Production

Authors: Fl. Loury, P. Sablonière

Abstract:

In this paper a stochastic scenario-based model predictive control applied to molten salt storage systems in concentrated solar tower power plant is presented. The main goal of this study is to build up a tool to analyze current and expected future resources for evaluating the weekly power to be advertised on electricity secondary market. This tool will allow plant operator to maximize profits while hedging the impact on the system of stochastic variables such as resources or sunlight shortage.

Solving the problem first requires a mixed logic dynamic modeling of the plant. The two stochastic variables, respectively the sunlight incoming energy and electricity demands from secondary market, are modeled by least square regression. Robustness is achieved by drawing a certain number of random variables realizations and applying the most restrictive one to the system. This scenario approach control technique provides the plant operator a confidence interval containing a given percentage of possible stochastic variable realizations in such a way that robust control is always achieved within its bounds. The results obtained from many trajectory simulations show the existence of a ‘’reliable’’ interval, which experimentally confirms the algorithm robustness.

Keywords: Molten Salt Storage System, Concentrated Solar Tower Power Plant, Robust Stochastic Model Predictive Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
190 Bone Mineral Density and Quality, Body Composition of Women in the Postmenopausal Period

Authors: Vladyslav Povoroznyuk, Oksana Ivanyk, Nataliia Dzerovych

Abstract:

In the diagnostics of osteoporosis, the gold standard is considered to be bone mineral density; however, X-ray densitometry is not an accurate indicator of osteoporotic fracture risk under all circumstances. In this regard, the search for new methods that could determine the indicators not only of the mineral density, but of the bone tissue quality, is a logical step for diagnostic optimization. One of these methods is the evaluation of trabecular bone quality. The aim of this study was to examine the quality and mineral density of spine bone tissue, femoral neck, and body composition of women depending on the duration of the postmenopausal period, to determine the correlation of body fat with indicators of bone mineral density and quality. The study examined 179 women in premenopausal and postmenopausal periods. The patients were divided into the following groups: Women in the premenopausal period and women in the postmenopausal period at various stages (early, middle, late postmenopause). A general examination and study of the above parameters were conducted with General Electric X-ray densitometer. The results show that bone quality and mineral density probably deteriorate with advancing of postmenopausal period. Total fat and lean mass ratio is not likely to change with age. In the middle and late postmenopausal periods, the bone tissue mineral density of the spine and femoral neck increases along with total fat mass.

Keywords: Osteoporosis, bone tissue mineral density, bone quality, fat mass, lean mass, postmenopausal osteoporosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887
189 BeamGA Median: A Hybrid Heuristic Search Approach

Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte

Abstract:

The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.

Keywords: Median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939