Search results for: Genetic Evolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1267

Search results for: Genetic Evolution

157 A Family Cars- Life Cycle Cost (LCC)-Oriented Hybrid Modelling Approach Combining ANN and CBR

Authors: Xiaochuan Chen, Jianguo Yang, Beizhi Li

Abstract:

Design for cost (DFC) is a method that reduces life cycle cost (LCC) from the angle of designers. Multiple domain features mapping (MDFM) methodology was given in DFC. Using MDFM, we can use design features to estimate the LCC. From the angle of DFC, the design features of family cars were obtained, such as all dimensions, engine power and emission volume. At the conceptual design stage, cars- LCC were estimated using back propagation (BP) artificial neural networks (ANN) method and case-based reasoning (CBR). Hamming space was used to measure the similarity among cases in CBR method. Levenberg-Marquardt (LM) algorithm and genetic algorithm (GA) were used in ANN. The differences of LCC estimation model between CBR and artificial neural networks (ANN) were provided. ANN and CBR separately each method has its shortcomings. By combining ANN and CBR improved results accuracy was obtained. Firstly, using ANN selected some design features that affect LCC. Then using LCC estimation results of ANN could raise the accuracy of LCC estimation in CBR method. Thirdly, using ANN estimate LCC errors and correct errors in CBR-s estimation results if the accuracy is not enough accurate. Finally, economically family cars and sport utility vehicle (SUV) was given as LCC estimation cases using this hybrid approach combining ANN and CBR.

Keywords: case-based reasoning, life cycle cost (LCC), artificialneural networks (ANN), family cars

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
156 Learning Classifier Systems Approach for Automated Discovery of Crisp and Fuzzy Hierarchical Production Rules

Authors: Suraiya Jabin, Kamal K. Bharadwaj

Abstract:

This research presents a system for post processing of data that takes mined flat rules as input and discovers crisp as well as fuzzy hierarchical structures using Learning Classifier System approach. Learning Classifier System (LCS) is basically a machine learning technique that combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. Crisp description for a concept usually cannot represent human knowledge completely and practically. In the proposed Learning Classifier System initial population is constructed as a random collection of HPR–trees (related production rules) and crisp / fuzzy hierarchies are evolved. A fuzzy subsumption relation is suggested for the proposed system and based on Subsumption Matrix (SM), a suitable fitness function is proposed. Suitable genetic operators are proposed for the chosen chromosome representation method. For implementing reinforcement a suitable reward and punishment scheme is also proposed. Experimental results are presented to demonstrate the performance of the proposed system.

Keywords: Hierarchical Production Rule, Data Mining, Learning Classifier System, Fuzzy Subsumption Relation, Subsumption matrix, Reinforcement Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
155 Students- Perception of the Evaluation System in Architecture Studios

Authors: Badiossadat Hassanpour, Nangkula Utaberta, Azami Zaharim, Nurakmal Goh Abdullah

Abstract:

Architecture education was based on apprenticeship models and its nature has not changed much during long period but the Source of changes was its evaluation process and system. It is undeniable that art and architecture education is completely based on transmitting knowledge from instructor to students. In contrast to other majors this transmitting is by iteration and practice and studio masters try to control the design process and improving skills in the form of supervision and criticizing. Also the evaluation will end by giving marks to students- achievements. Therefore the importance of the evaluation and assessment role is obvious and it is not irrelevant to say that if we want to know about the architecture education system, we must first study its assessment procedures. The evolution of these changes in western countries has literate and documented well. However it seems that this procedure has unregarded in Malaysia and there is a severe lack of research and documentation in this area. Malaysia as an under developing and multicultural country which is involved different races and cultures is a proper origin for scrutinizing and understanding the evaluation systems and acceptability amount of current implemented models to keep the evaluation and assessment procedure abreast with needs of different generations, cultures and even genders. This paper attempts to answer the questions of how evaluation and assessments are performed and how students perceive this evaluation system in the context Malaysia. The main advantage of this work is that it contributes in international debate on evaluation model.

Keywords: Architecture, assessment, design studio, learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828
154 The Internet of Healthcare Things: A European Perspective and a Review of Ethical Concerns

Authors: M. Emmanouilidou

Abstract:

The Internet of Things (IoT) is a disruptive technological paradigm that is at the center of the digital evolution by integrating physical and virtual worlds leading to the creation of extended interconnected ecosystems that are characterized as smart environments. The concept of the IoT has a broad range of applications in different industries including the healthcare sector. The Internet of Healthcare Things (IoHT), a branch of the IoT, is expected to bring promising benefits to all involved stakeholders and accelerate the revolution of the healthcare sector through a transition towards preventive and personalized medicine. The socio-economic challenges that the healthcare sector is facing further emphasize the need for a radical transformation of healthcare systems in both developed and developing countries with the role of pervasive technological innovations, such as IoHT, recognized as key to counteract the relevant challenges. Besides the number of potential opportunities that IoHT presents, there are fundamental ethical concerns that need to be considered and addressed in relation to the application of IoHT. This paper contributes to the discussion of the emerging topic of IoHT by providing an overview of the role and potential of IoHT, highlighting the characteristics of the current and future healthcare landscape, reporting on the up-to-date status of IoHT in Europe and reflecting upon existing research in the ethics of IoHT by incorporating additional ethical dimensions that have been ignored which can provide pathways for future research in the field.

Keywords: Ethics, Europe, healthcare, internet of things.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
153 Chemical Composition, Petrology and P-T Conditions of Ti-Mg-Biotites within Syenitic Rocks from the Lar Igneous Suite, East of Iran

Authors: Sasan Ghafaribijar, Javad Hakimi, Mohsen Arvin, Peyman Tahernezhad

Abstract:

The Lar Igneous Suite (LIS), east of Iran, is part of post collisional alkaline magmatism related to Late Cretaceous- mid Eocene Sistan suture zone. The suite consists of a wide variety of igneous rocks, from volcanic to intrusive and hypabissal rocks such as tuffs, trachyte, monzonite, syenites and lamprophyres. Syenitic rocks which mainly occur in a giant ring dike and stocks, are shoshonitic to potassic-ultrapotassic (K2O/Na2O > 2 wt.%; MgO > 3 wt.%; K2O > 3 wt.%) in composition and are also associated with Cu-Mo mineralization. In this study, chemical composition of biotites within the Lar syenites (LS) is determined by electron microprobe analysis. The results show that LS biotites are Ti-Mg-biotites (phlogopite) which contain relatively high Ti and Mg, and low Fe concentrations. The Mg/(Fe2++ Mg) ratio in these biotites range between 0.56 and 0.73 that represent their transitionally chemical evolution. TiO2 content in these biotites is high and in the range of 3.0-5.4 wt.%. These chemical characteristics indicate that the LS biotites are primary and have been crystallized directly from magma. The investigations also demonstrate that the LS biotites have crystallized from a magma of orogenic nature. Temperature and pressure are the most significant factors controlling Mg and Ti content in the LS biotites, respectively. The results show that the LS biotites crystallized at temperatures (T) between 800 to 842 °C and pressures (P) between 0.99 to 1.44 kbar. These conditions are indicative of a crystallization depth of 3.26-4.74 km.

Keywords: Sistan suture zone, Lar Igneous Suite, Zahedan, syenite, biotite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652
152 Stability and Kinetic Analysis during Vermicomposting of Sewage Sludge

Authors: Ashish Kumar Nayak, Dhamodharan K., Ajay S. Kalamdhad

Abstract:

The present study is aimed at alteration of sewage sludge into stable compost product using vermicomposting of sewage sludge mixed with cattle manure and saw dust in five different proportions based on C/N ratios (C/N 15 (R1), 20 (R2), 25 (R3) and 30 (R4); and control (R5)) by employing an epigeic earthworm Eisenia fetida. Higher reductions in C/N ratio, CO2 evolution and OUR were observed in R4 demonstrated the compost stability. In addition, R4 proved to be best combination for the growth of the earthworms. In order to observe the optimal degradation, kinetics for degradation of organic matter in vermicomposting were quantitatively evaluated. An approach model was developed by assuming that composting process is carried out in a homogeneous way and the kinetics for decomposition reaction is represented by a Monod-type equation. The results exhibit comparable variations in the kinetic constants Km and K3 under varying parameters during vermicomposting process. Results suggested that higher R2 value in R4, enhanced suitability towards Lineweaver-Burke plot. R4 yields higher degradability coefficient (K) reveals that the occurrence of optimal nutrient balance, which not only enhanced the affinity of enzymes towards substrate but also improved its degradation process. Therefore, it can be proved that R4 provided to be the best feed combination for vermicomposting process as compared to other reactors.

Keywords: Vermicomposting, Eisenia fetida, Sewage sludge, C/N ratio, Stability, Enzyme kinetics concept.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
151 Application of GA Optimization in Analysis of Variable Stiffness Composites

Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani

Abstract:

Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.

Keywords: Beam structures, layerwise, optimization, variable angle tow, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573
150 Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm

Authors: B. Thiagarajan, R. Bremananth

Abstract:

Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.

Keywords: Conditional random field, Magnetic resonance, Markov random field, Modified artificial bee colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2900
149 Master in Maritime Logistics: An Industry-Driven Design

Authors: Marco Sernaglia, Augusto M. P. Carreira, Helena M. L. Carvalho, Pedro B. Água, Armindo Frias, Manuel Carrasqueira

Abstract:

The existence of mismatches between the qualification requirements of professionals in the maritime industry and existing higher education offers was verified within the scope of the European project MarLEM (Maritime Logistics Engineering and Management). Professionals in the maritime industry today and in the future face additional obstacles as a result of the sector's global nature as well as the sector's rapid technological and social evolution. As a result, they feel the need to update their skills and knowledge. A professional-oriented master's program was developed to fill this gap. The NOVA School of Science and Technology and the Portuguese Naval School co-developed this Master's program with the active participation of MarLEM project partners from academia and industry. In this work, the principles and approach used to design the master's program are presented. Its design and a concise synopsis of the courses' content are shown. In addition, other international courses covering the same topic are compared. As a result of this work, the teaching materials related to maritime logistics are improved and the assumptions and methodology that guided the creation of an international master's program in maritime logistics are disseminated.

Keywords: Education, maritime logistics, shipping, industrial engineering, management, soft skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 395
148 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
147 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: Active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
146 Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features

Authors: Rehab F. Abdel-Kader, Rabab M. Ramadan, Rawya Y. Rizk

Abstract:

The recognition of human faces, especially those with different orientations is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation invariant face recognition using Log-Polar Transform and Discrete Cosine Transform combined features. The rotation invariant feature extraction for a given face image involves applying the logpolar transform to eliminate the rotation effect and to produce a row shifted log-polar image. The discrete cosine transform is then applied to eliminate the row shift effect and to generate the low-dimensional feature vector. A PSO-based feature selection algorithm is utilized to search the feature vector space for the optimal feature subset. Evolution is driven by a fitness function defined in terms of maximizing the between-class separation (scatter index). Experimental results, based on the ORL face database using testing data sets for images with different orientations; show that the proposed system outperforms other face recognition methods. The overall recognition rate for the rotated test images being 97%, demonstrating that the extracted feature vector is an effective rotation invariant feature set with minimal set of selected features.

Keywords: Discrete Cosine Transform, Face Recognition, Feature Extraction, Log Polar Transform, Particle SwarmOptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
145 Assessment of Tourist and Community Perception with Regard to Tourism Sustainability Indicators: A Case Study of Sinharaja World Heritage Rainforest, Sri Lanka

Authors: L. P. K. Liyanage, N. R. P. Withana, A. L. Sandika

Abstract:

The purpose of this study was to determine tourist and community perception-based sustainable tourism indicators as well as Human Pressure Index (HPI) and Tourist Activity Index (TAI). Study was carried out in Sinharaja forest which is considered as one of the major eco-tourism destination in Sri Lanka. Data were gathered using a pre-tested semi-structured questionnaire as well as records from Forest department. Convenient sampling technique was applied. For the majority of issues, the responses were obtained on multi-point Likert-type scales. Visual portrayal was used for display analyzed data. The study revealed that the host community of the Kudawa gets many benefits from tourism. Also, tourism has caused negative impacts upon the environment and community. The study further revealed the need of proper waste management and involvement of local cultural events for the tourism business in the Kudawa conservation center. The TAI, which accounted to be 1.27 and monthly evolution of HPI revealed that congestion can be occurred in the Sinharaja rainforest during peak season. The results provide useful information to any party involved with tourism planning anywhere, since such attempts would be more effective once the people’s perceptions on these aspects are taken into account.

Keywords: Kudawa conservation center, Sinharaja world heritage rainforest, sustainability indicators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
144 An Anisotropic Model of Damage and Unilateral Effect for Brittle Materials

Authors: José Julio de C. Pituba

Abstract:

This work deals with the initial applications and formulation of an anisotropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.

Keywords: Damage model, plastic strain, unilateral effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
143 Design and Development of iLON Smart Server Based Remote Monitoring System for Induction Motors

Authors: G. S. Ayyappan, M. Raja Raghavan, R. Poonthalir, Kota Srinivas, B. Ramesh Babu

Abstract:

Electrical energy demand in the World and particularly in India, is increasing drastically more than its production over a period of time. In order to reduce the demand-supply gap, conserving energy becomes mandatory. Induction motors are the main driving force in the industries and contributes to about half of the total plant energy consumption. By effective monitoring and control of induction motors, huge electricity can be saved. This paper deals about the design and development of such a system, which employs iLON Smart Server and motor performance monitoring nodes. These nodes will monitor the performance of induction motors on-line, on-site and in-situ in the industries. The node monitors the performance of motors by simply measuring the electrical power input and motor shaft speed; coupled to genetic algorithm to estimate motor efficiency. The nodes are connected to the iLON Server through RS485 network. The web server collects the motor performance data from nodes, displays online, logs periodically, analyzes, alerts, and generates reports. The system could be effectively used to operate the motor around its Best Operating Point (BOP) as well as to perform the Life Cycle Assessment of Induction motors used in the industries in continuous operation.

Keywords: Best operating point, iLON smart server, motor asset management, LONWORKS, Modbus RTU, motor performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 648
142 Three-Dimensional Simulation of Free Electron Laser with Prebunching and Efficiency Enhancement

Authors: M. Chitsazi, B. Maraghechi, M. H. Rouhani

Abstract:

Three-dimensional simulation of harmonic up generation in free electron laser amplifier operating simultaneously with a cold and relativistic electron beam is presented in steady-state regime where the slippage of the electromagnetic wave with respect to the electron beam is ignored. By using slowly varying envelope approximation and applying the source-dependent expansion to wave equations, electromagnetic fields are represented in terms of the Hermit Gaussian modes which are well suited for the planar wiggler configuration. The electron dynamics is described by the fully threedimensional Lorentz force equation in presence of the realistic planar magnetostatic wiggler and electromagnetic fields. A set of coupled nonlinear first-order differential equations is derived and solved numerically. The fundamental and third harmonic radiation of the beam is considered. In addition to uniform beam, prebunched electron beam has also been studied. For this effect of sinusoidal distribution of entry times for the electron beam on the evolution of radiation is compared with uniform distribution. It is shown that prebunching reduces the saturation length substantially. For efficiency enhancement the wiggler is set to decrease linearly when the radiation of the third harmonic saturates. The optimum starting point of tapering and the slope of radiation in the amplitude of wiggler are found by successive run of the code.

Keywords: Free electron laser, Prebunching, Undulator, Wiggler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
141 Solving an Extended Resource Leveling Problem with Multiobjective Evolutionary Algorithms

Authors: Javier Roca, Etienne Pugnaghi, Gaëtan Libert

Abstract:

We introduce an extended resource leveling model that abstracts real life projects that consider specific work ranges for each resource. Contrary to traditional resource leveling problems this model considers scarce resources and multiple objectives: the minimization of the project makespan and the leveling of each resource usage over time. We formulate this model as a multiobjective optimization problem and we propose a multiobjective genetic algorithm-based solver to optimize it. This solver consists in a two-stage process: a main stage where we obtain non-dominated solutions for all the objectives, and a postprocessing stage where we seek to specifically improve the resource leveling of these solutions. We propose an intelligent encoding for the solver that allows including domain specific knowledge in the solving mechanism. The chosen encoding proves to be effective to solve leveling problems with scarce resources and multiple objectives. The outcome of the proposed solvers represent optimized trade-offs (alternatives) that can be later evaluated by a decision maker, this multi-solution approach represents an advantage over the traditional single solution approach. We compare the proposed solver with state-of-art resource leveling methods and we report competitive and performing results.

Keywords: Intelligent problem encoding, multiobjective decision making, evolutionary computing, RCPSP, resource leveling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4140
140 A Cross-Disciplinary Educational Model in Biomanufacturing to Sustain a Competitive Workforce Ecosystem

Authors: Rosa Buxeda, Lorenzo Saliceti-Piazza, Rodolfo J. Romañach, Luis Ríos, Sandra L. Maldonado-Ramírez

Abstract:

Biopharmaceuticals manufacturing is one of the major economic activities worldwide. Ninety-three percent of the workforce in a biomanufacturing environment concentrates in production-related areas. As a result, strategic collaborations between industry and academia are crucial to ensure the availability of knowledgeable workforce needed in an economic region to become competitive in biomanufacturing. In the past decade, our institution has been a key strategic partner with multinational biotechnology companies in supplying science and engineering graduates in the field of industrial biotechnology. Initiatives addressing all levels of the educational pipeline, from K-12 to college to continued education for company employees have been established along a ten-year span. The Amgen BioTalents Program was designed to provide undergraduate science and engineering students with training in biomanufacturing. The areas targeted by this educational program enhance their academic development, since these topics are not part of their traditional science and engineering curricula. The educational curriculum involved the process of producing a biomolecule from the genetic engineering of cells to the production of an especially targeted polypeptide, protein expression and purification, to quality control, and validation. This paper will report and describe the implementation details and outcomes of the first sessions of the program.

Keywords: Biomanufacturing curriculum, interdisciplinary learning, workforce development, industry-academia partnering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
139 Socio-Technical Systems: Transforming Theory into Practice

Authors: L. Ngowi, N. H. Mvungi

Abstract:

This paper critically examines the evolution of socio-technical systems theory, its practices, and challenges in system design and development. It examines concepts put forward by researchers focusing on the application of the theory in software engineering. There are various methods developed that use socio-technical concepts based on systems engineering without remarkable success. The main constraint is the large amount of data and inefficient techniques used in the application of the concepts in system engineering for developing time-bound systems and within a limited/controlled budget. This paper critically examines each of the methods, highlight bottlenecks and suggest the way forward. Since socio-technical systems theory only explains what to do, but not how doing it, hence engineers are not using the concept to save time, costs and reduce risks associated with new frameworks. Hence, a new framework, which can be considered as a practical approach is proposed that borrows concepts from soft systems method, agile systems development and object-oriented analysis and design to bridge the gap between theory and practice. The approach will enable the development of systems using socio-technical systems theory to attract/enable the system engineers/software developers to use socio-technical systems theory in building worthwhile information systems to avoid fragilities and hostilities in the work environment.

Keywords: Socio-technical systems, human centered design, software engineering, cognitive engineering, soft systems, systems engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2751
138 Modeling of Processes Running in Radical Clusters Formed by Ionizing Radiation with the Help of Continuous Petri Nets and Oxygen Effect

Authors: J. Barilla, M. Lokajíček, H. Pisaková, P. Simr

Abstract:

The final biological effect of ionizing particles may be influenced strongly by some chemical substances present in cells mainly in the case of low-LET radiation. The influence of oxygen may by particularly important because oxygen is always present in living cells. The corresponding processes are then running mainly in the chemical stage of radiobiological mechanism.

The radical clusters formed by densely ionizing ends of primary or secondary charged particles are mainly responsible for final biological effect. The damage effect depends then on radical concentration at a time when the cluster meets a DNA molecule. It may be strongly influenced by oxygen present in a cell as oxygen may act in different directions: at small concentration of it the interaction with hydrogen radicals prevails while at higher concentrations additional efficient oxygen radicals may be formed.

The basic radical concentration in individual clusters diminishes, which is influenced by two parallel processes: chemical reactions and diffusion of corresponding clusters. The given simultaneous evolution may be modeled and analyzed well with the help of Continuous Petri nets. The influence of other substances present in cells during irradiation may be studied, too. Some results concerning the impact of oxygen content will be presented.

Keywords: DSB formation, chemical stage, Petri nets, radiobiological mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
137 Thermodynamic Cycle Analysis for Overall Efficiency Improvement and Temperature Reduction in Gas Turbines

Authors: Jeni A. Popescu, Ionut Porumbel, Valeriu A. Vilag, Cleopatra F. Cuciumita

Abstract:

The paper presents a thermodynamic cycle analysis for three turboshaft engines. The first cycle is a Brayton cycle, describing the evolution of a classical turboshaft, based on the Klimov TV2 engine. The other four cycles aim at approaching an Ericsson cycle, by replacing the Brayton cycle adiabatic expansion in the turbine by quasi-isothermal expansion. The maximum quasi- Ericsson cycles temperature is set to a lower value than the maximum Brayton cycle temperature, equal to the Brayton cycle power turbine inlet temperature, in order to decrease the engine NOx emissions. Also, the power/expansion ratio distribution over the stages of the gas generator turbine is maintained the same. In two of the considered quasi-Ericsson cycles, the efficiencies of the gas generator turbine, as well as the power/expansion ratio distribution over the stages of the gas generator turbine are maintained the same as for the reference case, while for the other two cases, the efficiencies are increased in order to obtain the same shaft power as in the reference case. For the two cases respecting the first condition, both the shaft power and the thermodynamic efficiency of the engine decrease, while for the other two, the power and efficiency are maintained, as a result of assuming new, more efficient gas generator turbines.

Keywords: Combustion, Ericsson, thermodynamic analysis, turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
136 Swarm Intelligence based Optimal Linear Phase FIR High Pass Filter Design using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach

Authors: Sangeeta Mandal, Rajib Kar, Durbadal Mandal, Sakti Prasad Ghoshal

Abstract:

In this paper, an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach (PSO-CFIWA) has been presented. In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. The conventional gradient based optimization techniques are not efficient for digital filter design. Given the filter specifications to be realized, the PSO-CFIWA algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristic. In this paper, for the given problem, the designs of the optimal FIR high pass filters of different orders have been performed. The simulation results have been compared to those obtained by the well accepted algorithms such as Parks and McClellan algorithm (PM), genetic algorithm (GA). The results justify that the proposed optimal filter design approach using PSOCFIWA outperforms PM and GA, not only in the accuracy of the designed filter but also in the convergence speed and solution quality.

Keywords: FIR Filter; PSO-CFIWA; PSO; Parks and McClellanAlgorithm, Evolutionary Optimization Technique; MagnitudeResponse; Convergence; High Pass Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
135 Seamless Handover in Urban 5G-UAV Systems Using Entropy Weighted Method

Authors: Anirudh Sunil Warrier, Saba Al-Rubaye, Dimitrios Panagiotakopoulos, Gokhan Inalhan, Antonios Tsourdos

Abstract:

The demand for increased data transfer rate and network traffic capacity has given rise to the concept of heterogeneous networks. Heterogeneous networks are wireless networks, consisting of devices using different underlying radio access technologies (RAT). For Unmanned Aerial Vehicles (UAVs) this enhanced data rate and network capacity are even more critical especially in their applications of medicine, delivery missions and military. In an urban heterogeneous network environment, the UAVs must be able switch seamlessly from one base station (BS) to another for maintaining a reliable link. Therefore, seamless handover in such urban environments has become a major challenge. In this paper, a scheme to achieve seamless handover is developed, an algorithm based on Received Signal Strength (RSS) criterion for network selection is used and Entropy Weighted Method (EWM) is implemented for decision making. Seamless handover using EWM decision-making is demonstrated successfully for a UAV moving across fifth generation (5G) and long-term evolution (LTE) networks via a simulation level analysis. Thus, a solution for UAV-5G communication, specifically the mobility challenge in heterogeneous networks is solved and this work could act as step forward in making UAV-5G architecture integration a possibility.

Keywords: Air to ground, A2G, fifth generation, 5G, handover, mobility, unmanned aerial vehicle, UAV, urban environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346
134 Overview of Multi-Chip Alternatives for 2.5D and 3D Integrated Circuit Packagings

Authors: Ching-Feng Chen, Ching-Chih Tsai

Abstract:

With the size of the transistor gradually approaching the physical limit, it challenges the persistence of Moore’s Law due to such issues of the short channel effect and the development of the high numerical aperture (NA) lithography equipment. In the context of the ever-increasing technical requirements of portable devices and high-performance computing (HPC), relying on the law continuation to enhance the chip density will no longer support the prospects of the electronics industry. Weighing the chip’s power consumption-performance-area-cost-cycle time to market (PPACC) is an updated benchmark to drive the evolution of the advanced wafer nanometer (nm). The advent of two and half- and three-dimensional (2.5 and 3D)- Very-Large-Scale Integration (VLSI) packaging based on Through Silicon Via (TSV) technology has updated the traditional die assembly methods and provided the solution. This overview investigates the up-to-date and cutting-edge packaging technologies for 2.5D and 3D integrated circuits (IC) based on the updated transistor structure and technology nodes. We conclude that multi-chip solutions for 2.5D and 3D IC packaging can prolong Moore’s Law.

Keywords: Moore’s Law, High Numerical Aperture, Power Consumption-Performance-Area-Cost-Cycle Time to Market, PPACC, 2.5 and 3D-Very-Large-Scale Integration Packaging, Through Silicon Vi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156
133 Structure and Magnetic Properties of Nanocomposite Fe2O3/TiO2 Catalysts Fabricated by Heterogeneous Precipitation

Authors: Jana P. Vejpravova, Daniel Niznansky, Vaclav Vales, Barbara Bittova, Vaclav Tyrpekl, Stanislav Danis, Vaclav Holy, Stephen Doyle

Abstract:

The aim of our work is to study phase composition, particle size and magnetic response of Fe2O3/TiO2 nanocomposites with respect to the final annealing temperature. Those nanomaterials are considered as smart catalysts, separable from a liquid/gaseous phase by applied magnetic field. The starting product was obtained by an ecologically acceptable route, based on heterogeneous precipitation of the TiO2 on modified g-Fe2O3 nanocrystals dispersed in water. The precursor was subsequently annealed on air at temperatures ranging from 200 oC to 900 oC. The samples were investigated by synchrotron X-ray powder diffraction (S-PXRD), magnetic measurements and Mössbauer spectroscopy. As evidenced by S-PXRD and Mössbauer spectroscopy, increasing the annealing temperature causes evolution of the phase composition from anatase/maghemite to rutile/hematite, finally above 700 oC the pseudobrookite (Fe2TiO5) also forms. The apparent particle size of the various Fe2O3/TiO2 phases has been determined from the highquality S-PXRD data by using two different approaches: the Rietveld refinement and the Debye method. Magnetic response of the samples is discussed in considering the phase composition and the particle size.

Keywords: X-ray diffraction, profile analysis, Mössbauer spectroscopy, magnetic properties, TiO2, Fe2O3, Fe2TiO5

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
132 ‘Memory Mate’ as Boundary Object in Cancer Treatment for Patients with Dementia

Authors: Rachel Hurdley, Jane Hopkinson

Abstract:

This article is based on observation of a cross-disciplinary, cross-institutional team that worked on an intervention called ‘Memory Mate’ for use in a UK Cancer Centre. This aimed to improve treatment outcomes for patients who had comorbid dementia or other memory impairment. Comorbid patients present ambiguous, spoiled identities, problematising the boundaries of health specialisms and frames of understanding. Memory Mate is theorised as a boundary object facilitating service transformation by changing relations between oncology and mental health care practice. It crosses the boundaries between oncology and mental health. Its introduction signifies an important step in reconfiguring relations between the specialisms. As a boundary object, it contains parallel, even contesting worlds, with potential to enable an eventual synthesis of the double stigma of cancer and dementia. Memory Mate comprises physical things, such as an animation, but its principal value is in the interaction it initiates across disciplines and services. It supports evolution of practices to address a newly emergent challenge for health service provision, namely the cancer patient with comorbid dementia/cognitive impairment. Getting clinicians from different disciplines working together on a practical solution generates a dialogue that can shift professional identity and change the culture of practice.

Keywords: Boundary object, cancer, dementia, interdisciplinary teams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 428
131 3D Liver Segmentation from CT Images Using a Level Set Method Based on a Shape and Intensity Distribution Prior

Authors: Nuseiba M. Altarawneh, Suhuai Luo, Brian Regan, Guijin Tang

Abstract:

Liver segmentation from medical images poses more challenges than analogous segmentations of other organs. This contribution introduces a liver segmentation method from a series of computer tomography images. Overall, we present a novel method for segmenting liver by coupling density matching with shape priors. Density matching signifies a tracking method which operates via maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Density matching controls the direction of the evolution process and slows down the evolving contour in regions with weak edges. The shape prior improves the robustness of density matching and discourages the evolving contour from exceeding liver’s boundaries at regions with weak boundaries. The model is implemented using a modified distance regularized level set (DRLS) model. The experimental results show that the method achieves a satisfactory result. By comparing with the original DRLS model, it is evident that the proposed model herein is more effective in addressing the over segmentation problem. Finally, we gauge our performance of our model against matrices comprising of accuracy, sensitivity, and specificity.

Keywords: Bhattacharyya distance, distance regularized level set (DRLS) model, liver segmentation, level set method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285
130 Analysis of One-Way and Two-Way FSI Approaches to Characterise the Flow Regime and the Mechanical Behaviour during Closing Manoeuvring Operation of a Butterfly Valve

Authors: M. Ezkurra, J. A. Esnaola, M. Martinez-Agirre, U. Etxeberria, U. Lertxundi, L. Colomo, M. Begiristain, I. Zurutuza

Abstract:

Butterfly valves are widely used industrial piping components as on-off and flow controlling devices. The main challenge in the design process of this type of valves is the correct dimensioning to ensure proper mechanical performance as well as to minimise flow losses that affect the efficiency of the system. Butterfly valves are typically dimensioned in a closed position based on mechanical approaches considering uniform hydrostatic pressure, whereas the flow losses are analysed by means of CFD simulations. The main limitation of these approaches is that they do not consider either the influence of the dynamics of the manoeuvring stage or coupled phenomena. Recent works have included the influence of the flow on the mechanical behaviour for different opening angles by means of one-way FSI approach. However, these works consider steady-state flow for the selected angles, not capturing the effect of the transient flow evolution during the manoeuvring stage. Two-way FSI modelling approach could allow overcoming such limitations providing more accurate results. Nevertheless, the use of this technique is limited due to the increase in the computational cost. In the present work, the applicability of FSI one-way and two-way approaches is evaluated for the analysis of butterfly valves, showing that not considering fluid-structure coupling involves not capturing the most critical situation for the valve disc.

Keywords: Butterfly valves, fluid-structure interaction, one-way approach, two-way approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
129 Early Age Behavior of Wind Turbine Gravity Foundations

Authors: J. Modu, J. F. Georgin, L. Briançon, E. Antoinet

Abstract:

Wind turbine gravity foundations are designed to resist overturning failure through gravitational forces resulting from their masses. Owing to the relatively high volume of the cementitious material present, the foundations tend to suffer thermal strains and internal cracking due to high temperatures and temperature gradients depending on factors such as geometry, mix design and level of restraint. This is a result of a fully coupled mechanism commonly known as THMC (Thermo- Hygro - Mechanical - Chemical) coupling whose kinetics peak during the early age of concrete. The focus of this paper is therefore to present and offer a discussion on the temperature and humidity evolutions occurring in mass pours such as wind turbine gravity foundations based on sensor results obtained from the monitoring of an actual wind turbine foundation. To offer prediction of the evolutions, the formulation of a 3D Thermal-Hydro-Chemical (THC) model that is mainly derived from classical fundamental physical laws is also presented and discussed. The THC model can be mathematically fully coupled in Finite Element analyses. In the current study, COMSOL Multi-physics software was used to simulate the 3D THC coupling that occurred in the monitored wind turbine foundation to predict the temperature evolution at five different points within the foundation from time of casting.

Keywords: Early age behavior, reinforced concrete, THC 3D models, wind turbines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389
128 Multi-Objective Optimization of a Solar-Powered Triple-Effect Absorption Chiller for Air-Conditioning Applications

Authors: Ali Shirazi, Robert A. Taylor, Stephen D. White, Graham L. Morrison

Abstract:

In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used to simulate the performance of the system over a typical year. A combined energetic-economic-environmental analysis is conducted to determine the system annual primary energy consumption and the total cost, which are considered as two conflicting objectives. A multi-objective optimization of the system is performed using a genetic algorithm to minimize these objectives simultaneously. The optimization results show that the final optimal design of the proposed plant has a solar fraction of 72% and leads to an annual primary energy saving of 0.69 GWh and annual CO2 emissions reduction of ~166 tonnes, as compared to a conventional HVAC system. The economics of this design, however, is not appealing without public funding, which is often the case for many renewable energy systems. The results show that a good funding policy is required in order for these technologies to achieve satisfactory payback periods within the lifetime of the plant.

Keywords: Economic, environmental, multi-objective optimization, solar air-conditioning, triple-effect absorption chiller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528