Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Structure and Magnetic Properties of Nanocomposite Fe2O3/TiO2 Catalysts Fabricated by Heterogeneous Precipitation
Authors: Jana P. Vejpravova, Daniel Niznansky, Vaclav Vales, Barbara Bittova, Vaclav Tyrpekl, Stanislav Danis, Vaclav Holy, Stephen Doyle
Abstract:
The aim of our work is to study phase composition, particle size and magnetic response of Fe2O3/TiO2 nanocomposites with respect to the final annealing temperature. Those nanomaterials are considered as smart catalysts, separable from a liquid/gaseous phase by applied magnetic field. The starting product was obtained by an ecologically acceptable route, based on heterogeneous precipitation of the TiO2 on modified g-Fe2O3 nanocrystals dispersed in water. The precursor was subsequently annealed on air at temperatures ranging from 200 oC to 900 oC. The samples were investigated by synchrotron X-ray powder diffraction (S-PXRD), magnetic measurements and Mössbauer spectroscopy. As evidenced by S-PXRD and Mössbauer spectroscopy, increasing the annealing temperature causes evolution of the phase composition from anatase/maghemite to rutile/hematite, finally above 700 oC the pseudobrookite (Fe2TiO5) also forms. The apparent particle size of the various Fe2O3/TiO2 phases has been determined from the highquality S-PXRD data by using two different approaches: the Rietveld refinement and the Debye method. Magnetic response of the samples is discussed in considering the phase composition and the particle size.Keywords: X-ray diffraction, profile analysis, Mössbauer spectroscopy, magnetic properties, TiO2, Fe2O3, Fe2TiO5
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1328810
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123References:
[1] B. Pal, M. Sharon, G. Nogami, "Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane", Mater. Chem. Phys., vol. 59, pp. 254-261, 1999.
[2] J.A. Navio, G. Colon, M.I. Litter, G.N. Bianco, "Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron(III) acetylacetonate", J. Mol. Catal. A. Chem., vol. 106, pp. 267, 1996.
[3] D. Sun, T.T. Meng, T.H. Loong, T.J. Hwa, "Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane", Water Sci. Technol., vol. 19, pp. 315601, 2008.
[4] S.K. Mohapatra, S. Banerjee, M. Misra,, "Synthesis of Fe2O3/TiO2 nanorod-nanotube arrays by filling TiO2 nanotubes with Fe", Nanotechnology, vol. 49, pp. 103-110, 2004.
[5] J. Morales, L. Sanchez, F. Martin, F. Berry, X. Ren, "Synthesis and Characterization of Nanometric Iron and Iron-Titanium Oxides by Mechanical Milling: Electrochemical Properties as Anodic Materials in Lithium Cells", J. Electrochem. Soc., vol. 152, pp. A1748-A1754, 2005.
[6] V. Tyrpekl, J. P. Vejpravova, A. Roca, N. Murafa, L. Szatmary and D. Niznansky, "Magnetically separable photocatalytic composite g- Fe2O3@TiO2 synthesized by heterogeneous precipitation", Appl. Surf. Sci., vol. 257, pp. 4844-4848, 2011.
[7] B. E. Warren, X-ray Diffraction, Dover Publications, New York, 1990.
[8] V. Vales, J. P. Vejpravova, V. Holy, V. Tyrpekl, P. Brazda and S. Doyle, "Study of the phase composition of Fe2O3 and Fe2O3/TiO2 nanoparticles using X-ray diffraction and Debye formula", Phys. Status Solidi C, vol. 7, pp. 1399-1404, 2010.
[9] J. Rodriguez-Carvajal, FullProf User-s Guide Manual, CEA-CRNS, France, 2000.
[10] S.N. Klausem, K. Lefmann, P.-A. Lingard, L. T. Kuhn, C.R.H. Bahl, C. Frandsen, S. Morup, B. Roessli, N. Cavadini, C. Niedermayer, "Magnetic anisotropy and quantized spin waves in hematite nanoparticles", Phys. Rev. B, vol. 70, pp. 214411, 2004.
[11] S.N. Klausem, K. Lefmann, P.-A. Lingard, L. T. Kuhn, C.R.H. Bahl, C. Frandsen, S. Morup, B. Roessli, N. Cavadini, C. Niedermayer, "Magnetic anisotropy and quantized spin waves in hematite nanoparticles", Phys. Rev. B, vol. 70, pp. 214411, 2004.