Search results for: Function Approximation Technique (FAT)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5234

Search results for: Function Approximation Technique (FAT)

5234 Comparison between Beta Wavelets Neural Networks, RBF Neural Networks and Polynomial Approximation for 1D, 2DFunctions Approximation

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn - R from scattered samples (xi; y = f(xi)) i=1....n, where first, we have little a priori knowledge on the unknown function f: it lives in some infinite dimensional smooth function space and second the function approximation process is performed iteratively: each new measure on the function (xi; f(xi)) is used to compute a new estimate f as an approximation of the function f. Simulation results are demonstrated to validate the generalization ability and efficiency of the proposed Beta wavelet network.

Keywords: Beta wavelets networks, RBF neural network, training algorithms, MSE, 1-D, 2D function approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
5233 Multiresolution Approach to Subpixel Registration by Linear Approximation of PSF

Authors: Erol Seke, Kemal Özkan

Abstract:

Linear approximation of point spread function (PSF) is a new method for determining subpixel translations between images. The problem with the actual algorithm is the inability of determining translations larger than 1 pixel. In this paper a multiresolution technique is proposed to deal with the problem. Its performance is evaluated by comparison with two other well known registration method. In the proposed technique the images are downsampled in order to have a wider view. Progressively decreasing the downsampling rate up to the initial resolution and using linear approximation technique at each step, the algorithm is able to determine translations of several pixels in subpixel levels.

Keywords: Point Spread Function, Subpixel translation, Superresolution, Multiresolution approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
5232 Adaptive Impedance Control for Unknown Time-Varying Environment Position and Stiffness

Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura

Abstract:

This study is concerned with a new adaptive impedance control strategy to compensate for unknown time-varying environment stiffness and position. The uncertainties are expressed by Function Approximation Technique (FAT), which allows the update laws to be derived easily using Lyapunov stability theory. Computer simulation results are presented to validate the effectiveness of the proposed strategy.

Keywords: Adaptive Impedance Control, Function Approximation Technique (FAT), unknown time-varying environment position and stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
5231 Particle Swarm Optimization and Quantum Particle Swarm Optimization to Multidimensional Function Approximation

Authors: Diogo Silva, Fadul Rodor, Carlos Moraes

Abstract:

This work compares the results of multidimensional function approximation using two algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum Particle Swarm Optimization (QPSO). These algorithms were both tested on three functions - The Rosenbrock, the Rastrigin, and the sphere functions - with different characteristics by increasing their number of dimensions. As a result, this study shows that the higher the function space, i.e. the larger the function dimension, the more evident the advantages of using the QPSO method compared to the PSO method in terms of performance and number of necessary iterations to reach the stop criterion.

Keywords: PSO, QPSO, function approximation, AI, optimization, multidimensional functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
5230 FAT based Adaptive Impedance Control for Unknown Environment Position

Authors: N. Z. Azlan, H. Yamaura

Abstract:

This paper presents the Function Approximation Technique (FAT) based adaptive impedance control for a robotic finger. The force based impedance control is developed so that the robotic finger tracks the desired force while following the reference position trajectory, under unknown environment position and uncertainties in finger parameters. The control strategy is divided into two phases, which are the free and contact phases. Force error feedback is utilized in updating the uncertain environment position during contact phase. Computer simulations results are presented to demonstrate the effectiveness of the proposed technique.

Keywords: Adaptive impedance control, force based impedance control, force control, Function Approximation Technique (FAT), unknown environment position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
5229 Adaptive Impedance Control for Unknown Non-Flat Environment

Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura

Abstract:

This paper presents a new adaptive impedance control strategy, based on Function Approximation Technique (FAT) to compensate for unknown non-flat environment shape or time-varying environment location. The target impedance in the force controllable direction is modified by incorporating adaptive compensators and the uncertainties are represented by FAT, allowing the update law to be derived easily. The force error feedback is utilized in the estimation and the accurate knowledge of the environment parameters are not required by the algorithm. It is shown mathematically that the stability of the controller is guaranteed based on Lyapunov theory. Simulation results presented to demonstrate the validity of the proposed controller.

Keywords: Adaptive impedance control, Function Approximation Technique (FAT), impedance control, unknown environment position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
5228 A New Approach to Solve Blasius Equation using Parameter Identification of Nonlinear Functions based on the Bees Algorithm (BA)

Authors: E. Assareh, M.A. Behrang, M. Ghalambaz, A.R. Noghrehabadi, A. Ghanbarzadeh

Abstract:

In this paper, a new approach is introduced to solve Blasius equation using parameter identification of a nonlinear function which is used as approximation function. Bees Algorithm (BA) is applied in order to find the adjustable parameters of approximation function regarding minimizing a fitness function including these parameters (i.e. adjustable parameters). These parameters are determined how the approximation function has to satisfy the boundary conditions. In order to demonstrate the presented method, the obtained results are compared with another numerical method. Present method can be easily extended to solve a wide range of problems.

Keywords: Bees Algorithm (BA); Approximate Solutions; Blasius Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
5227 A Note on Negative Hypergeometric Distribution and Its Approximation

Authors: S. B. Mansuri

Abstract:

In this paper, at first we explain about negative hypergeometric distribution and its properties. Then we use the w-function and the Stein identity to give a result on the poisson approximation to the negative hypergeometric distribution in terms of the total variation distance between the negative hypergeometric and poisson distributions and its upper bound.

Keywords: Negative hypergeometric distribution, Poisson distribution, Poisson approximation, Stein-Chen identity, w-function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3088
5226 Best Co-approximation and Best Simultaneous Co-approximation in Fuzzy Normed Spaces

Authors: J. Kavikumar, N. S. Manian, M.B.K. Moorthy

Abstract:

The main purpose of this paper is to consider the t-best co-approximation and t-best simultaneous co-approximation in fuzzy normed spaces. We develop the theory of t-best co-approximation and t-best simultaneous co-approximation in quotient spaces. This new concept is employed us to improve various characterisations of t-co-proximinal and t-co-Chebyshev sets.

Keywords: Fuzzy best co-approximation, fuzzy quotient spaces, proximinality, Chebyshevity, best simultaneous co-approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
5225 Definable Subsets in Covering Approximation Spaces

Authors: Xun Ge, Zhaowen Li

Abstract:

Covering approximation spaces is a class of important generalization of approximation spaces. For a subset X of a covering approximation space (U, C), is X definable or rough? The answer of this question is uncertain, which depends on covering approximation operators endowed on (U, C). Note that there are many various covering approximation operators, which can be endowed on covering approximation spaces. This paper investigates covering approximation spaces endowed ten covering approximation operators respectively, and establishes some relations among definable subsets, inner definable subsets and outer definable subsets in covering approximation spaces, which deepens some results on definable subsets in approximation spaces.

Keywords: Covering approximation space, covering approximation operator, definable subset, inner definable subset, outer definable subset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
5224 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore , the number of centers will be considered since it affects the performance of approximation.

Keywords: Extended kalmin filter (EKF), classification problem, radial basis function networks (RBFN), finite impulse response (FIR)filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
5223 Variational EM Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we propose the variational EM inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multiclass. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.

Keywords: Bayesian rule, Gaussian process classification model with multiclass, Gaussian process prior, human action classification, laplace approximation, variational EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
5222 RANFIS : Rough Adaptive Neuro-Fuzzy Inference System

Authors: Sandeep Chandana, Rene V. Mayorga

Abstract:

The paper presents a new hybridization methodology involving Neural, Fuzzy and Rough Computing. A Rough Sets based approximation technique has been proposed based on a certain Neuro – Fuzzy architecture. A New Rough Neuron composition consisting of a combination of a Lower Bound neuron and a Boundary neuron has also been described. The conventional convergence of error in back propagation has been given away for a new framework based on 'Output Excitation Factor' and an inverse input transfer function. The paper also presents a brief comparison of performances, of the existing Rough Neural Networks and ANFIS architecture against the proposed methodology. It can be observed that the rough approximation based neuro-fuzzy architecture is superior to its counterparts.

Keywords: Boundary neuron, neuro-fuzzy, output excitation factor, RANFIS, rough approximation, rough neural computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
5221 On an Open Problem for Definable Subsets of Covering Approximation Spaces

Authors: Mei He, Ying Ge, Jingyu Qian

Abstract:

Let (U;D) be a Gr-covering approximation space (U; C) with covering lower approximation operator D and covering upper approximation operator D. For a subset X of U, this paper investigates the following three conditions: (1) X is a definable subset of (U;D); (2) X is an inner definable subset of (U;D); (3) X is an outer definable subset of (U;D). It is proved that if one of the above three conditions holds, then the others hold. These results give a positive answer of an open problem for definable subsets of covering approximation spaces.

Keywords: Covering approximation space, covering approximation operator, definable subset, inner definable subset, outer definable subset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
5220 Some Separations in Covering Approximation Spaces

Authors: Xun Ge, Jinjin Li, Ying Ge

Abstract:

Adopting Zakowski-s upper approximation operator C and lower approximation operator C, this paper investigates granularity-wise separations in covering approximation spaces. Some characterizations of granularity-wise separations are obtained by means of Pawlak rough sets and some relations among granularitywise separations are established, which makes it possible to research covering approximation spaces by logical methods and mathematical methods in computer science. Results of this paper give further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

Keywords: Rough set, covering approximation space, granularitywise separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
5219 An Empirical Validation of the Linear- Hyperbolic Approximation of the I-V Characteristic of a Solar Cell Generator

Authors: A. A. Penin

Abstract:

An empirical linearly-hyperbolic approximation of the I - V characteristic of a solar cell is presented. This approximation is based on hyperbolic dependence of a current of p-n junctions on voltage for large currents. Such empirical approximation is compared with the early proposed formal linearly-hyperbolic approximation of a solar cell. The expressions defining laws of change of parameters of formal approximation at change of a photo current of family of characteristics are received. It allows simplifying a finding of parameters of approximation on actual curves, to specify their values. Analytical calculation of load regime for linearly - hyperbolic model leads to quadratic equation. Also, this model allows to define soundly a deviation from the maximum power regime and to compare efficiency of regimes of solar cells with different parameters.

Keywords: a solar cell generator, I − V characteristic, p − n junction, approximation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
5218 Synthesis of Wavelet Filters using Wavelet Neural Networks

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

An application of Beta wavelet networks to synthesize pass-high and pass-low wavelet filters is investigated in this work. A Beta wavelet network is constructed using a parametric function called Beta function in order to resolve some nonlinear approximation problem. We combine the filter design theory with wavelet network approximation to synthesize perfect filter reconstruction. The order filter is given by the number of neurons in the hidden layer of the neural network. In this paper we use only the first derivative of Beta function to illustrate the proposed design procedures and exhibit its performance.

Keywords: Beta wavelets, Wavenet, multiresolution analysis, perfect filter reconstruction, salient point detect, repeatability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
5217 Approximation for Average Error Probability of BPSK in the Presence of Phase Error

Authors: Yeonsoo Jang, Dongweon Yoon, Ki Ho Kwon, Jaeyoon Lee, Wooju Lee

Abstract:

Phase error in communications systems degrades error performance. In this paper, we present a simple approximation for the average error probability of the binary phase shift keying (BPSK) in the presence of phase error having a uniform distribution on arbitrary intervals. For the simple approximation, we use symmetry and periodicity of a sinusoidal function. Approximate result for the average error probability is derived, and the performance is verified through comparison with simulation result.

Keywords: Average error probability, Phase shift keying, Phase error

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
5216 Approximations to the Distribution of the Sample Correlation Coefficient

Authors: John N. Haddad, Serge B. Provost

Abstract:

Given a bivariate normal sample of correlated variables, (Xi, Yi), i = 1, . . . , n, an alternative estimator of Pearson’s correlation coefficient is obtained in terms of the ranges, |Xi − Yi|. An approximate confidence interval for ρX,Y is then derived, and a simulation study reveals that the resulting coverage probabilities are in close agreement with the set confidence levels. As well, a new approximant is provided for the density function of R, the sample correlation coefficient. A mixture involving the proposed approximate density of R, denoted by hR(r), and a density function determined from a known approximation due to R. A. Fisher is shown to accurately approximate the distribution of R. Finally, nearly exact density approximants are obtained on adjusting hR(r) by a 7th degree polynomial.

Keywords: Sample correlation coefficient, density approximation, confidence intervals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
5215 Reliability Approximation through the Discretization of Random Variables using Reversed Hazard Rate Function

Authors: Tirthankar Ghosh, Dilip Roy, Nimai Kumar Chandra

Abstract:

Sometime it is difficult to determine the exact reliability for complex systems in analytical procedures. Approximate solution of this problem can be provided through discretization of random variables. In this paper we describe the usefulness of discretization of a random variable using the reversed hazard rate function of its continuous version. Discretization of the exponential distribution has been demonstrated. Applications of this approach have also been cited. Numerical calculations indicate that the proposed approach gives very good approximation of reliability of complex systems under stress-strength set-up. The performance of the proposed approach is better than the existing discrete concentration method of discretization. This approach is conceptually simple, handles analytic intractability and reduces computational time. The approach can be applied in manufacturing industries for producing high-reliable items.

Keywords: Discretization, Reversed Hazard Rate, Exponential distribution, reliability approximation, engineering item.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2622
5214 The Error Analysis of An Upwind Difference Approximation for a Singularly Perturbed Problem

Authors: Jiming Yang

Abstract:

An upwind difference approximation is used for a singularly perturbed problem in material science. Based on the discrete Green-s function theory, the error estimate in maximum norm is achieved, which is first-order uniformly convergent with respect to the perturbation parameter. The numerical experimental result is verified the valid of the theoretical analysis.

Keywords: Singularly perturbed, upwind difference, uniform convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
5213 Reduction of Linear Time-Invariant Systems Using Routh-Approximation and PSO

Authors: S. Panda, S. K. Tomar, R. Prasad, C. Ardil

Abstract:

Order reduction of linear-time invariant systems employing two methods; one using the advantages of Routh approximation and other by an evolutionary technique is presented in this paper. In Routh approximation method the denominator of the reduced order model is obtained using Routh approximation while the numerator of the reduced order model is determined using the indirect approach of retaining the time moments and/or Markov parameters of original system. By this method the reduced order model guarantees stability if the original high order model is stable. In the second method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical examples.

Keywords: Model Order Reduction, Markov Parameters, Routh Approximation, Particle Swarm Optimization, Integral Squared Error, Steady State Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3288
5212 Deformation of Water Waves by Geometric Transitions with Power Law Function Distribution

Authors: E. G. Bautista, J. M. Reyes, O. Bautista, J. C. Arcos

Abstract:

In this work, we analyze the deformation of surface waves in shallow flows conditions, propagating in a channel of slowly varying cross-section. Based on a singular perturbation technique, the main purpose is to predict the motion of waves by using a dimensionless formulation of the governing equations, considering that the longitudinal variation of the transversal section obey a power-law distribution. We show that the spatial distribution of the waves in the varying cross-section is a function of a kinematic parameter,κ , and two geometrical parameters εh and w ε . The above spatial behavior of the surface elevation is modeled by an ordinary differential equation. The use of single formulas to model the varying cross sections or transitions considered in this work can be a useful approximation to natural or artificial geometrical configurations.

Keywords: Surface waves, Asymptotic solution, Power law function, Non-dispersive waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
5211 Solution of First kind Fredholm Integral Equation by Sinc Function

Authors: Khosrow Maleknejad, Reza Mollapourasl, Parvin Torabi, Mahdiyeh Alizadeh,

Abstract:

Sinc-collocation scheme is one of the new techniques used in solving numerical problems involving integral equations. This method has been shown to be a powerful numerical tool for finding fast and accurate solutions. So, in this paper, some properties of the Sinc-collocation method required for our subsequent development are given and are utilized to reduce integral equation of the first kind to some algebraic equations. Then convergence with exponential rate is proved by a theorem to guarantee applicability of numerical technique. Finally, numerical examples are included to demonstrate the validity and applicability of the technique.

Keywords: Integral equation, Fredholm type, Collocation method, Sinc approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
5210 Blind Image Deconvolution by Neural Recursive Function Approximation

Authors: Jiann-Ming Wu, Hsiao-Chang Chen, Chun-Chang Wu, Pei-Hsun Hsu

Abstract:

This work explores blind image deconvolution by recursive function approximation based on supervised learning of neural networks, under the assumption that a degraded image is linear convolution of an original source image through a linear shift-invariant (LSI) blurring matrix. Supervised learning of neural networks of radial basis functions (RBF) is employed to construct an embedded recursive function within a blurring image, try to extract non-deterministic component of an original source image, and use them to estimate hyper parameters of a linear image degradation model. Based on the estimated blurring matrix, reconstruction of an original source image from a blurred image is further resolved by an annealed Hopfield neural network. By numerical simulations, the proposed novel method is shown effective for faithful estimation of an unknown blurring matrix and restoration of an original source image.

Keywords: Blind image deconvolution, linear shift-invariant(LSI), linear image degradation model, radial basis functions (rbf), recursive function, annealed Hopfield neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
5209 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types

Authors: Chaghoub Soraya, Zhang Xiaoyan

Abstract:

This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.

Keywords: Approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
5208 Approximation to the Hardy Operator on Topological Measure Spaces

Authors: Kairat T. Mynbaev, Elena N. Lomakina

Abstract:

We consider a Hardy type operator generated by a family of open subsets of a Hausdorff topological space. The family is indexed with non-negative real numbers and is totally ordered. For this operator, we obtain two-sided bounds of its norm, a compactness criterion and bounds for its approximation numbers. Previously bounds for its approximation numbers have been established only in the one-dimensional case, while we do not impose any restrictions on the dimension of the Hausdorff space. The bounds for the norm and conditions for compactness have been found earlier but our approach is different in that we use domain partitions for all problems under consideration.

Keywords: Approximation numbers, boundedness and compactness, multidimensional Hardy operator, Hausdorff topological space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124
5207 Denoising and Compression in Wavelet Domainvia Projection on to Approximation Coefficients

Authors: Mario Mastriani

Abstract:

We describe a new filtering approach in the wavelet domain for image denoising and compression, based on the projections of details subbands coefficients (resultants of the splitting procedure, typical in wavelet domain) onto the approximation subband coefficients (much less noisy). The new algorithm is called Projection Onto Approximation Coefficients (POAC). As a result of this approach, only the approximation subband coefficients and three scalars are stored and/or transmitted to the channel. Besides, with the elimination of the details subbands coefficients, we obtain a bigger compression rate. Experimental results demonstrate that our approach compares favorably to more typical methods of denoising and compression in wavelet domain.

Keywords: Compression, denoising, projections, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
5206 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.

Keywords: Multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, Importance sampling, approximate posterior distribution, Marginal likelihood evidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
5205 Investigating the Performance of Minimax Search and Aggregate Mahalanobis Distance Function in Evolving an Ayo/Awale Player

Authors: Randle O. A., Olugbara, O. O., Lall M.

Abstract:

In this paper we describe a hybrid technique of Minimax search and aggregate Mahalanobis distance function synthesis to evolve Awale game player. The hybrid technique helps to suggest a move in a short amount of time without looking into endgame database. However, the effectiveness of the technique is heavily dependent on the training dataset of the Awale strategies utilized. The evolved player was tested against Awale shareware program and the result is appealing.

Keywords: Minimax Search, Mahalanobis Distance, Strategic Game, Awale

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654