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Abstract—Sometime it is difficult to determine the exact reliability
for complex systems in analytical procedures. Approximate solution
of this problem can be provided through discretization of random
variables. In this paper we describe the usefulness of discretization
of a random variable using the reversed hazard rate function of its
continuous version. Discretization of the exponential distribution has
been demonstrated. Applications of this approach have also been
cited. Numerical calculations indicate that the proposed approach
gives very good approximation of reliability of complex systems
under stress-strength set-up. The performance of the proposed ap-
proach is better than the existing discrete concentration method of
discretization. This approach is conceptually simple, handles analytic
intractability and reduces computational time. The approach can be
applied in manufacturing industries for producing high-reliable items.

Keywords—Discretization, Reversed Hazard Rate, Exponential
distribution, reliability approximation, engineering item.

I. INTRODUCTION

DESIGNING of items in manufacturing industries is a
crucial task. An item should be designed in such away

that its reliability is very high. Now, to asses the same one has
to examine the behavior of the response function of the item
which is random in nature. The response is a function of its
random component values. Moreover, there are other factors
also which makes the response function a random variable.
These factors are like mesuremental errors, uncertainty in
the environmental situations, change of operators etc. So,
one should study the probability distribution of the system
response function. But mostly the task is difficult due to
complexity of the form of the system response function. As
way out we have some alternative techniques. Mote-Carlo
simulation, Taylor series expansion, Numerical integration and
Discretization of variables are the existing alternative tech-
niques in literatures. Evans [1] has studied relative advantages
and disadvantages of the first three methods. Taguchi [2] has
introduced the discretization of random variables method in
the line of experimental design approach. Discretization of
random variables may also be resulted from characterization
results.
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It is an important alternative in approximating system relia-
bilities of complex systems. Principal step of such approxima-
tion is the discretization of the variable(s) under consideration.
Since the component lives may follow different probability dis-
tributions, we should consider, if possible, the discretization of
all the continuous random variables and study their properties
in this regard. We should also study different discretization
approaches with respect to relative advantages or disadvan-
tages. The reversed Hazard Rate (RHR) is an important
concept with nice applications in reliability. We are, therefore,
interested in studying discretization of continuous distributions
using the RHR function. For demonstration purpose we have
taken the case of the exponential distribution. Applications
of the proposed discretization have also been demonstrated.
Reliability approximation of an important engineering item
has been carried out. The paper is organized as follows. Brief
reviews of earlier discretizations have been done in section II.
Section III deals with the proposed discretization approach.
Application of the proposed method has been studied, with
one example, in section IV. Section V concludes the paper.

II. EARLIER WORKS

Let us consider a function, f(X1, X2, . . . , Xn) , of n
random variables. Taguchi[2] has claimed that the random
behavior of f can be studied through the 3n values of the
function corresponding to 3-level combinations of values taken
by each random variable with equal probabilities. The three
level combinations of a random variable are μi −

√
3/2σi,

μi and μi +
√

3/2σi,i = 1, 2, . . . , n where E(Xi) = μi and
V ar(Xi) = σ2

i . D’Errico & Zaino [3] have established the
mathematical basis of the Taguchi’s [2] approach in the normal
setup. They have shown that the first three central moments
of the continuous distribution and of the discrete distribution
are same. They have also generalized the discretization into k
points. According to their approach if Xi follows N(μi, σ2

i )
then each Xi can be discretized into K nodes α1, α2, . . . , αk
with respective probabilities ω1, ω2, . . . , ωk such that first
(2K − 1) central moments of the continuous and of the
discretized distribution are equal. In this approach 3-point
discrete Normal distribution has the probability mass points
μi−

√
3σi, μi and μi+

√
3σi and with probabilities 1

6 , 4
6 , and

1
6 respectively. First five central moments of this particular dis-
crete distribution are equal with the first five central moments
of the continuous N(μi, σ2

i ). Taguchi’s solution is a particular
case of this approach. English et al. [4] have extended this
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approach up to six points. They have also demonstrated
application of the discretization in designing well known
engineering items e.g. Hollow Cylinder, Hollow rectangular
Tube and Power resistor. This method is referred as the method
of moment equalization. Recently, Ghosh & Roy [5] have used
this approach to discretize the Normal distribution in a simpler
way. Discretized distributions can also be resulted through
study of characterizing properties of continuous distributions.
Constancy of failure rate in the discrete domain characterizes
the Geometric (discretized Exponential) distribution (See Roy
& Gupta [6]). Roy [7] has introduced the concept of discrete
concentration in terms of survival (distribution) function. He
has also characterized the Bivariate Geometric distribution
(BVGD) through local constancy of the failure rate function
in the discrete domain. A discrete version of the Normal
distribution was obtained through the characterizing property
of maximum entropy subject to specific mean and variance in
the discrete domain by Kemp [8]. Inusha and Kozubowski [9]
have studied the discrete version of the Laplace distribution
following Kemp [8]. Use of shifted (location shift) distribution
function to discretize a random variable was made by Roy &
Dasgupta [10]. Using distribution function Roy[11] has intro-
duced the discrete version of the normal distribution. Some
non-normal distributions like Weibull, Uniform and Rayleigh
were also discretized by Roy & Dasgupta[12], Roy[13] and
Roy[14] respectively. A linear transformation of the discretized
distribution for equality of first two central moments of the
continuous and of the discretized distribution was introduced
by Roy[14]. It produces better results in the cases of ap-
plications. Roy & Ghosh [15] have discretized the Rayleigh
distribution by using the failure rate function. Ghosh et al.
[16] have examined this approach for the Weibull distribution
also. In the present paper we have used the reversed hazard
rate function of a continuous random variable to discretize it.
The linear transformation proposed by Roy [14] has also been
used.

III. PROPOSED DISCRETIZATION

Let Y be a non-negative absolutely continuous random
variable. Then we know that

S(y) = 1 − F (y) = exp[−
∫ y

0

r(u)du] (1)

where r(y) is the corresponding failure rate, S(y) and F (y)
are the corresponding survival function and the distribution
function respectively. The reversed hazard rate (RHR) of Y is
defined by

a(y) =
f(y)
F (y)

(2)

where f(y) is the pdf of Y . Hence, a(y)dy can be interpreted
as an approximate probability of a failure in (y− dy, y] given
that the failure had occurred in [0, y]. Thus, we have the
following relationship

f(y) = a(y) exp[−
∫ ∞

y

r(u)du] (3)

Now let X be a discrete random variable with support
N = 1, 2, . . . or a subset of it. Also let p(x) = P [X = x],

F (x) = P [X ≤ x] =
∑x
i=1 P (i) and S(x) = P [X >

x] =
∑∞
x+1 p(i), respectively, denote the probability mass

function, distribution function and survival function of X. For
this discrete random variable the hazard rate and the reversed
hazard rate are given, respectively, by

r(x) =
p(x)

S(x − 1)
, x = 1, 2, . . . (4)

and

a(x) =
p(x)
F (x)

, x = 1, 2, . . . (5)

Unlike continuous case in discrete situation both the hazard
rate and the reversed hazard rate can be interpreted as prob-
abilities. When X represents the lifetime of a component the
r(x) is said to be the probability that the component will fail
at time X = x given that it has survived up to time before x .
On the other hand a(x) is the probability that the component
will fail at time X = x , given it is known to have failed
before x . We know that the distribution of X can be uniquely
determined by r(x) using the relationship

S(x) =
x∏
i=0

[1 − r(i)] (6)

This relationship was used for discretization of the continuous
distribution using the failure rate. We rewrite (5) as follows

a(x) =
F (x) − F (x − 1)

F (x)
(7)

Thus, we have

F (x − 1) = [1 − a(x)]F (x) (8)

Now putting x = 0, 1, 2, . . . , t in (8) we have

F (0) =
t−1∏
i=0

[1 − a(i)]F (t) (9)

Combining (2) and (9) we can write

p(t) =
a(t)F (0)∏t
i=1[1 − a(i)]

(10)

Since X is a non-negative discrete random variable hence at
t = 0, F(0)=p(0). We, therefore, write

p(t) =
a(t)p(0)∏t
i=1[1 − a(i)]

(11)

Thus (11) can be used to discretize a continuous random
variable if we know the form of the RHR function of its
distribution. The value of p(0) can be determined from the
condition of sum of total probability.

A. Example

Let us consider the discretization of the exponential distri-
bution. We know that discretization of the exponential distri-
bution yields the geometric distribution except in the method
of moment equalzation. Let the continuous random variable Y
follows the exponential distribution with the survival function
S(y) = exp(−λy) . We denote it by exp(λ) . Then the
failure rate function and the reversed hazard rate function
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of the distribution are respectively given by r(y) = λ and
a(y) = λ exp(−λy)

1−exp(−λy) Substituting the expression of in (11) we
have the discretized version of the exponential distribution.
The discretized exponential distribution have the recursive
relationship

p(t + 1) =
[exp(−λ)1 − exp(−λt)]

[1 − exp(−t − 1) − λ exp(−λt]
p(t), t = 1, 2, . . .

Now for different choices of λ we shall have different discrete
exponential distribution. Therefore, we shall search for a λ to
get a discrete exponential distribution which will be treated
as the standard discrete exponential distribution. Here our first
choice is λ = 1.0 . The corresponding discrete probability
distribution is given in the following table. Graph of the

TABLE I
DISCRETE EXPONENTIAL DISTRIBUTION WITH λ = 1.0

Xd = x Probability
0 0.32439
1 0.45162
2 0.14400
3 0.05087
4 0.01846
5 0.00676
6 0.00248
7 0.00091
8 0.00034
9 0.00012
10 0.00005

TOTAL 1.00000

above discrete distribution does not follow the nature of the
exponential distribution. Thus, we search for another λ which
will have that nature. Calculation shows that for all λ ≥ 1.3
, the obtained discrete distribution has the exponential nature.
Moreover, we have considered the absolute deviations between
means of the discrete and of the continuous distribution to
fix the value of λ. Various choices of λ and corresponding
deviations are shown in TableII. From Table II we note that

TABLE II
CHOICE OF λ FOR DISCRETE EXPONENTIAL DISTRIBUTION

λ True mean Observed mean Deviations
1.3 0.76923 0.74420 0.02503
1.4 0.71429 0.67446 0.03983
1.5 0.66667 0.61305 0.05362
1.6 0.62500 0.55853 0.06647
1.7 0.58824 0.50997 0.07826
1.8 0.55556 0.46649 0.08907
1.9 0.52632 0.42727 0.09905
2.0 0.50000 0.39192 0.10808
2.1 0.47619 0.35991 0.11628
2.2 0.45455 0.33077 0.12378
2.3 0.43478 0.30422 0.13056
2.4 0.41667 0.28003 0.13664
2.5 0.40000 0.25793 0.14207
2.6 0.38462 0.23776 0.14686
2.7 0.37037 0.21916 0.15121
2.8 0.35714 0.20212 0.15502
2.9 0.34483 0.18645 0.15838
3.0 0.33333 0.17204 0.16129

as the value of λ increases the discrete distribution gives larger
absolute deviation with respect to mean. We, therefore, suggest
to take λ = 1.3 and the corresponding discrete distribution,

given in Table III table, may be called as the standard discrete
exponential distribution. To sharpen the discretized distribution

TABLE III
STANDARD DISCRETE EXPONENTIAL DISTRIBUTION WITH

λ = 1.3

Xd = x Probability
0 0.44272
1 0.42032
2 0.10050
3 0.02659
4 0.00719
5 0.00196
6 0.00053
7 0.00015
8 0.00004

TOTAL 1.00000

we have taken a linear transformation of the above discrete
distribution. The transformation has been taken in such a way
that the first two central moments of the continuous and of
the discretized distribution are equal. Following Roy [14] we
take

X∗
d = α + βXd

where α and β are such that

E(X∗
d ) = E(X)

and
V ar(X∗

d ) = V ar(X)

solving for α and β we have the following final form

X∗
d = 0.08541 + 0.9188Xd

where probability distribution of Xd is described in Ta-
ble III. Any non-standard exponential random variable can
be discretized using that standard discretized distribution
through a transformation. Suppose Z has the survival function
exp(−λ1z) . Then its discretized version, Zd , is given by

Zd = (
1.3
λ

)X∗
d

IV. APPLICATION

Let f1(x1, x2, . . . , xn) and f2(y1, y2, . . . , ym), respectively,
be the strength and stress functions of a complex system where
xi & yi are random component values. Then the reliability, R,
of the system is given by

R = P [f1(x1, x2, . . . , xn) > f2(y1, y2, . . . , ym)]

To find out R we have to know the probability distributions
of f1 and f2. Mostly, due to the complex nature of the
functions, the exact distributions are difficult to obtain. Here
we can apply the above discretization method to overcome the
problem. Using the same we approximate the R as follows

R �
∑

. . .
∑ n∏

i=1

P [Xdi
= xdi

]×
m∏
j=1

P [Ydj
= xdj

]×I[f1 > f2]

where I[E] is an indicator function which takes the value 1 if
the event E is true, and the value 0 otherwise. The summation
is over the all possible values of xdi and ydj ’s which are the
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values taken by the discretized versions of the random vari-
ables Xi and Yj , i = 1, 2, . . . , n; j = 1, 2, . . . ,m; respectively.
We can use this discretization method to approximate the dis-
tribution of functions of random variables which are complex
in nature. That is, where we can not find the exact distribution
functions in conventional ways. This discretization may be
used in manufacturing industries like in Engineering Design
by Reliability (EDBR). Here we demonstrate the application
in approximating reliabilities under the stress-strength set-up
through the following worked out example.

A. Workedout example

We consider reliability approximation for designing of a
Tension element (see [17]). The load P acting on the element
is a random variable. The element has a circular cross-
section and its diameter is a random variable because of the
manufacturing tolerance. The ultimate tensile strength of the
material used for the element is a random variable because the
properties of the material vary. The tensile stress function of
the element is given by

s =
P

πr2

where r is the radius of the circular cross-section. Then
under the assumptions that P follows exponential distribution
with mean 20 lb., r follows exponential distribution with
mean 0.15in. and the tensile strength (s ) follows exponential
distribution with mean λ we have approximated the relia-
bilities of the element at different values of λ using the
proposed discretization. We assumed statistical independence
of the distributions of s, P and r. A simulation study,
with 105 replications, was also conducted for judging the
performance of our approximation. For comparison purpose
the same approximation was also conducted using discrete
concentration method (DCM) of discretization. The TableIV
gives the calculated results. The absolute deviations (AD)

TABLE IV
RELIABILITY VALUES OF A TENSION ELEMENT OBTAINED
VIA SIMULATION AND DISCRETIZATIONS BASED ON RHR &

DCM UNDER THE EXPONENTIAL SET-UP

λ Simulation Proposed method DCM
20 0.091 0.145 0.050
80 0.216 0.208 0.168

200 0.332 0.396 0.305
320 0.397 0.420 0.362
1200 0.576 0.479 0.529
2000 0.640 0.641 0.830
5000 0.739 0.660 0.850

25000 0.864 0.864 0.997
40000 0.889 0.865 1.000
50000 0.899 0.884 1.000
100000 0.926 0.890 1.000
500000 0.964 0.973 1.000

1000000 0.975 0.998 1.000

between simulated and approximated reliabilities by different
discreization approaches were computed. Following TableV
describes the absolute deviations mean absolute deviations
(MAD). From the TableV it may be noted that the DCM of
discretization produces 127% more MAD than the proposed

TABLE V
ABSOLUTE DEVIATIONS OF SIMULATED AND APPROXIMATED

RELIABILITIES OF A TENSION ELEMENT OBTAINED VIA
DISCRETIZATIONS BASED ON RHR & DCM UNDER THE

EXPONENTIAL SET-UP

λ Proposed method DCM
20 0.054 0.041
80 0.008 0.048
200 0.064 0.027
320 0.023 0.035

1200 0.097 0.047
2000 0.001 0.190
5000 0.079 0.111
25000 0.000 0.133
40000 0.024 0.111
50000 0.015 0.101

100000 0.036 0.074
500000 0.009 0.036
1000000 0.023 0.025

MAD 0.033 0.075

RHR based discretization. This indicates that the proposed
method works better than DCM.

V. CONCLUSION

Discretization of a random variable based on RHR has
been demonstrated. Exponential distribution was examined for
discretization. In the proposed method discretized exponential
distribution is not the geometric distribution unlike other
approaches viz. discrete concentration, failure rate. Obtained
discrete distribution may be applied to approximate system
reliabilities of complex systems. Probability distributions of
complex functions with exponential variables may also be
approximated using this discretized distribution. For setting
design parameters of different components of a complex
system in manufacturing industries (Engineering Design by
Reliability) this discretization may also be used. From the
worked out example it may be said that in approximating
system reliability, under the stated set-up, the discretization
using RHR performs better than the earlier introduced DCM of
discretization. Thus the proposed approach will be a preferred
choice for discretization in these situations. Efficacy of this
discretization may also be examined by applying it to other
complex systems as well. This approach has the advantages
like simplicity, lesser time consumption for computation, han-
dling of analytically intractable situations etc.

REFERENCES

[1] D. H. Evans, ”Statistical tolerancing: the state of the art: Part II, Methods
of estimating moments,” Journal of Quality Technology, 1975, Vol. 7,
pp. 1-12.

[2] G. Taguchi, ”Performance analysis and design,” Int. Journal of Produc-
tion Research, 1978, Vol. 16, pp. 521-530.

[3] J. R. Drrico and N. A. Zaino Jr., ”Statistical tolerancing using a
modification of Taguchi’s method,” Technometrics, 1988, Vol. 30, pp.
397-405.

[4] J. R. English, T. Sargent, and T. L. Landers, ”A discretizing approach
for stress/strength analysis,”IEEE Trans. on Reliability, 1996, Vol. 45,
pp. 84-89.

[5] T. Ghosh and D. Roy, ”Statistical tolerancing through discretization of
variables,” International Journal. of Quality and Reliability Management,
2011,Vol. 28, pp 220-232.

[6] D. Roy and R. P. Gupta ”Classification of discrete lives,” Microelec-
tronics and Reliability, 2000, Vol.52, pp. 1459-1473.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:7, No:4, 2013 

738International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:7
, N

o:
4,

 2
01

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
70

61
.p

df



[7] D. Roy, ”Reliability measures in the discrete bivariate set- up and related
characterization results for a Bivariate Geometric distribution,” Journal
of Multivariate Analysis, 1993, Vol. 46, pp. 362-373.

[8] A.W. Kemp, ”Characterization of a discrete normal distribution,” 1997,
Vol. 63, pp. 223-229.

[9] S.Inusah and T. J. Kozubowski, ”A discrete analogue of the Laplace
distribution,” Journal of Statistical Planning and Inference, 2006, Vol.
136, pp. 1090-1102.

[10] D. Roy and T. Dasgupta, ”A discretizing approach for evaluating
reliability of complex systems under stress-strength model,” IEEE Trans.
on Reliability, 2001, Vol. 50, pp. 145-150.

[11] D. Roy, ”The discrete normal distribution,” Communications in Statistics
(Theory and Methods), 2003, Vol. 32, pp. 50-53.

[12] D. Roy, and T. Dasgupta, ”Evaluation of reliability of complex systems
by means of a discretizing approach: Weibull set-up,” Int. J. of Quality
and Reliability Management, 2002, Vol. 19, pp. 792-801.

[13] D. Roy, ”Discretization of continuous distributions with an application to
stress-strength analysis,” Calcutta Statistical Association Bulletin, 2002,
Vol. 52, pp. 297-313.

[14] D. Roy, ”Discrete Rayleigh distribution,” IEEE Trans. on Reliability,,
2004, Vol. 53 pp. 255-260.

[15] D. Roy, and T. Ghosh, ”A new discretization approach with application
in reliability estimation,” IEEE Trans. on Reliability, 2009, Vol. 58, pp.
456-461.

[16] T. Ghosh, D. Roy and N. K. Chandra, ”Discretization of Random
Variables with Applications”, Calcutta Statistical Association Bulletin,
2011, Vol. 63, pp. 323-338.

[17] Kapur K.C and Lamberson L.R., Reliability in Engineering Design, New
York: John Wiley & Sons, 1977.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:7, No:4, 2013 

739International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:7
, N

o:
4,

 2
01

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
70

61
.p

df




