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Abstract—We consider a Hardy type operator generated by a
family of open subsets of a Hausdorff topological space. The family
is indexed with non-negative real numbers and is totally ordered. For
this operator, we obtain two-sided bounds of its norm, a compactness
criterion and bounds for its approximation numbers. Previously
bounds for its approximation numbers have been established only in
the one-dimensional case, while we do not impose any restrictions on
the dimension of the Hausdorff space. The bounds for the norm and
conditions for compactness have been found earlier but our approach
is different in that we use domain partitions for all problems under
consideration.

Keywords—Approximation numbers, boundedness and
compactness, multidimensional Hardy operator, Hausdorff
topological space.

I. INTRODUCTION

THE one-dimensional Hardy inequality

[∫ ∞

0

u(x)

(∫ x

0

f

)q

dμ (x)

]1/q
≤ C

(∫ ∞

0

fpvdν

)1/p

has been studied in detail and complete characterizations of its

validity for all non-negative functions f have been obtained in

terms of pairs of weights u, v and measures μ, ν for all pairs

of exponents p, q, see [4]-[7], [9] for the history and extensive

references.

In the one-dimensional case most researchers have used

tools of one-dimensional calculus, such as integration by parts

[16]. The lack of such tools has been the main obstacle

on the way to multidimensional results. Some results have

been established under simplifying assumptions (for p ≤ q
[3], by using spherical coordinates [14], [1] or the polar

decomposition [12], [13] or assuming that the weights are

products of functions of one variable [17], [11]).

Sinnamon [15] and Mynbaev [10] have obtained very

general results in the multidimensional case, without

simplifying assumptions of the type just mentioned. Our

statements on the boundedness and compactness of the Hardy

operator are less general than in these two papers (the

compactness condition has been obtained by Sinnamon).

However, the partitions method applied here has the advantage

that, unlike [15] and [10], it does not use advanced properties
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of measures beyond σ-additivity and it opens the door to

many generalizations of the results that are known in the

one-dimensional case, whether they are based on partitions

or not. The bounds for approximation numbers we give in the

multidimensional case are new, see [2], [8].

II. MAIN RESULTS

We consider integration over expanding subsets Ω(t) of an

arbitrary open set Ω in a Hausdorff topological space X with

σ-additive Borel measures μ, ν. In the classical case one can

notice that the subdomain Ω (t) = (0, t) of Ω = (0,∞) has

ω (t) = t as the boundary in the relative topology and that

Ω (t) = {s ∈ Ω : ω (s) < ω (t)} . Our conditions on the family

{Ω (t)} are based on this observation. Specifically, they are

stated as follows:

Assumption a) {Ω(t) : t ≥ 0} is a one-parametric family

of open subsets of Ω which satisfy monotonicity: for t1 <
t2, Ω(t1) is a proper subset of Ω(t2).

b) Ω(t) start at the empty set and eventually cover almost

all Ω: Ω(0) = ∩t>0Ω(t) = ∅, ν (Ω\ ∪t>0 Ω(t)) = 0.
c) Further, denote ω(t) = Ω(t) ∩ (Ω\Ω(t)) the boundary

of Ω(t) in the relative topology. We require the boundaries to

be disjoint and cover almost all Ω: ω(t1) ∩ ω(t2) = ∅, t1 	=
t2, ν(Ω\ ∪t>0 ω(t)) = 0.

d) Passing to a different parametrization, if necessary, we

can assume that ν (Ω\ ∪t≤N ω(t)) > 0 for any N < ∞.
e) Finally, we assume that boundaries are thin in the sense

that ν(ω(t)) = 0 for all t > 0.
Operator T definition
The main implication is that for ν-almost each x ∈ Ω there

exists a unique τ(x) > 0 such that x ∈ ω(τ(x)), which allows

us to define

Tf(x) =

∫
Ω(τ(x))

fdν, x ∈ Ω,

for any non-negative M-measurable f. Thus the Hardy type

inequality is(∫
Ω

|Tf |qudμ
)1/q

≤ C

(∫
Ω

|f |pvdν
)1/p

.

Lp
vdν(Ω) denotes the space with the norm ‖f‖Lp

vdν(Ω) =(∫
Ω
|f |pvdν)1/p where v is a weight function. ‖T‖ =

‖T‖Lp
vdν(Ω)→Lq

udμ(Ω) is the norm of a linear operator T acting

from Lp
vdν(Ω) to Lq

udμ(Ω) and C = ‖T‖ is the best constant

in[∫
Ω

∣∣∣∣∣
∫
Ω(τ(x))

fdν

∣∣∣∣∣
q

u(x)dμ(x)

]1/q

≤ C

(∫
Ω

|f |p vdν
)1/p

.
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Put

Ψ(t) =

(∫
Ω\Ω(t)

udμ

)1/q (∫
Ω(t)

v−p′/pdν

)1/p′

.

The notation A ≈ B means that the ratio A/B is bounded

from above and below by some absolute constants.

Theorem 1. If 1 < p ≤ q < ∞, then C ≈ A where

A = supt>0 Ψ(t).

Let 0 < q < p, 1 < p < ∞ and put 1/r = 1/q − 1/p,

Φ(y) =

(∫
Ω\Ω(τ(y))

udμ

)1/p (∫
Ω(τ(y))

v−p′/pdν

)1/p′

.

Theorem 2. If 1 < p < ∞ and 0 < q < p, then C ≈ B,

where B =
(∫

Ω
Φrudμ

)1/r
.

Proof steps

• Discretize the problem using binary partitions.

• To discrete sums apply analogs of one-dimensional tools

(like integration by parts and an integral of a full

derivative).

• Estimate resulting discrete sums by integrals.

Here is an example of the property applied to discrete sums.

Lemma 1. Let a ≥ 1. We have

∑
j≥k

⎛
⎝ ∑

i≥j+1

Vi

⎞
⎠

a−1

Vj+1 ≥ 1

a

⎛
⎝ ∑

i≥k+1

Vi

⎞
⎠

a

for any non-negative numbers Vi such that the left side is finite.

Result for the adjoint operator
Analogs of Theorems 1 and 2 hold for the adjoint operator

T ∗. Denote

Ψ∗(t) =

(∫
Ω(t)

udμ

)1/q (∫
Ω\Ω(t)

v−p′/pdν

)1/p′

,

Φ∗(t) =

(∫
Ω(τ(y))

udμ

)1/p (∫
Ω\Ω(τ(y))

v−p′/pdν

)1/p′

and consider the inequality

[∫
Ω

u(x)

(∫
Ω\Ω(τ(x))

fdν

)q

dμ(x)

]1/q

≤ C∗
(∫

Ω

fpvdν

)1/p

.

Theorem 3. Let the sets {Ω(t)} , weight functions u, v and

measures μ, ν satisfy the same conditions as before.

1) If 1 < p ≤ q < ∞ then C∗ ≈ A∗ where A∗ =
supt>0 Ψ

∗(t).
2) If 0 < q < p, 1 < p < ∞ then C∗ ≈ B∗ where B∗ =(∫
Ω
(Φ∗)r udμ

)1/r
, 1/r = 1/q − 1/p.

The next subject is compactness of T. The notation allows

one to trace similarity with [15]. Denote

a (x) =

∫
Ω\Ω(x)

udμ,

b (x) =

∫
Ω(x)

v−p′/pdν, 0 < x < ∞,

li = lim sup
x→i

a (x)
1/q

b (x)
1/p′

, for i = 0,∞,

l = max {l0, l∞} .

Lemma 2. Suppose that a (x) < ∞, b (x) < ∞ on (0,∞) .
If l > ε > 0 then there exists a sequence {gn} such that

‖gn‖Lp
vdν(Ω) = 1, ‖Tgn − Tgm‖Lq

udμ(Ω) > ε.

Theorem 4. a) If 1 < p ≤ q < ∞, then T is compact if and

only if A < ∞ and l = 0. b) If 1 < q < p and T is bounded,

then T is compact.

Our next task is to obtain bounds for approximation

numbers (a-numbers) of the operator T . Let X,Y be two

Banach spaces. For a bounded linear operator T : X → Y
its n-th a-number, n ∈ N , is defined by

an(T ) = inf {‖T − P‖}

where the inf is taken over all bounded linear operators of

rankP < n.

For [a, b] ⊆ [0,∞) we initially consider the question of how

well the operator χ[a,b]T is approximated by averages. To this

end, successively define

μu (Ω [a, b]) =

∫
Ω[a,b]

udμ,

T̄ f =
1

μu (Ω [a, b])

∫
Ω[a,b]

(Tf)udμ, (1)

T[a,b]f (x) = χΩ[a,b] (x)
(
Tf (x)− T̄[a,b]f

)
.

Theorem 5 Choose the point c so that

μu (Ω [a, c]) = μu (Ω [c, b]) =
1

2
μu (Ω [a, b]) .

a) Let 1 < p ≤ q < ∞ and denote

A∗ [a, c] = sup
a<τ(x)<c

(∫
Ω[a,τ(x)]

udμ

)1/q

(∫
Ω[τ(x),c]

v−p′/pdν

)1/p′

,

A [c, b] = sup
c<τ(x)<b

(∫
Ω[τ(x),b]

udμ

)1/q

(∫
Ω[c,τ(x)]

v−p′/pdν

)1/p′

.

Then
∥∥T[a,b]

∥∥
Lp

vdν(Ω)→Lq
udμ(Ω)

� max {A∗ [a, c] , A [c, b]} .
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b) Let 1 < q < p < ∞ and put

B∗ [a, c] =

[∫
Ω[a,c]

(∫
Ω[a,τ(x)]

udμ
)r/p

(∫
Ω[τ(x),c]

v−p′/pdν
)r/p′

u (x) dμ (x)

]1/r ,

B [c, b] =

[∫
Ω[c,b]

(∫
Ω[τ(x),b]

udμ
)r/p

(∫
Ω[c,τ(x)]

v−p′/pdν
)r/p′

u (x) dμ (x)

]1/r
.

Then
∥∥T[a,b]

∥∥
Lp

vdν(Ω)→Lq
udμ(Ω)

� max {B∗ [a, c] , B [c, b]} .
Denote

A [a, b] = max {A∗ [a, c] , A [c, b]} , 0 ≤ a < b ≤ ∞.

Obviously, for any 0 < x < ∞ we have

A [a, b] → 0 if a, b → x; A [a, b] > 0 if a < b.

Everywhere below we assume that T is compact.

Lemma 3. Let 1 < p ≤ q < ∞ and 0 < ε < maxΨ. There

exist points 0 = t0 < t1 < ... < tN < tN+1 = ∞ such that

with the notation Δk = [tk, tk+1), k = 0, ..., N one has

sup
t∈Δ0

Ψ(t) = ε, max
k=1,...,N−2

A (Δk) = ε, (2)

A (ΔN−1) ≤ ε, sup
t∈ΔN

Ψ(t) = ε.

With Ωk = Ω(Δk) put for k = 1, ..., N − 1

Tkf (x) =

∫
Ω(τ(x))\Ω(tk)

fdν, μu (Ωk) =

∫
Ωk

udμ,

T̄kf =
1

μu (Ωk)

∫
Ωk

(Tf)udμ,

Pkf (x) = χΩk
(x)

{
Tf (x)− [

Tkf (x)− T̄kf
]}

(3)

= χΩk
(x)

{∫
Ω(tk)

fdν + T̄kf

}
,

P0f = 0, PNf (x) = χΩN
(x)

∫
Ω(tN )

fdν.

Each of Pk is one-dimensional, so P =
∑N

k=1 has rank

rankP ≤ N .

We use the approach developed in [2].

Theorem 6. Let 1 < p ≤ q < ∞ and suppose the covering

{Ωk : k = 0, ..., N} satisfies (2). Then

c1ε (N − 2)
1/q−1/p ≤ aN−1 (T ) , aN+1 (T ) ≤ c2ε. (4)

Remark. Obviously, when p = q, (4) gives a same-order

two-sided bound for a-numbers. Besides, the upper bound on

a-numbers gives an upper bound for the Gelfand, Kolmogorov

and entropy numbers because the a-numbers are the largest

among s-numbers of linear operators.

To consider the case 1 < q < p < ∞ we assume that

‖T‖ < ∞ and therefore B < ∞ by Theorem 2. Denote

Φ∗
[a,b] (x) =

(∫
Ω[a,τ(x)]

udμ

)1/p

(∫
Ω[τ(x),b]

v−p′/pdν

)1/p′

,

Φ[a,b] (x) =

(∫
Ω[τ(x),b]

udμ

)1/p

(∫
Ω[a,τ(x)]

v−p′/pdν

)1/p′

B [a, b] =

[∫
Ω[a,b]

(
Φ∗

[a,c]χ[a,c] +Φ[c,b]χ[c,b]

)r

udμ

]1/r

where c = c (a, b) is the constant from Theorem 5.

Bound from above Let 0 < ε < B. Select t′, t′′ to satisfy(∫
Ω(t′)

Φrudμ

)1/r

= ε, (5)

(∫
Ω[t′′,∞]

Φrudμ

)1/r

= ε.

Let {Δk : k = 1, ..., N} be a uniform (and finite) partition of

[t′, t′′] into segments Δk of length m. From the bound

N∑
k=1

B (Δk)
r ≤ max

k
sup

τ(x)∈Δk

(
Φ∗

Δk
(x) + ΦΔk

(x)
) ∫

Ω[t′,t′′]
udμ

we see that m can be chosen so that(
N∑

k=1

B (Δk)
r

)1/r

= ε. (6)

With definitions (3) and putting Ωk = Ω(Δk) we have for

each k by Theorem 1(∫
Ωk

|Tf − Pkf |q udμ
)1/q

≤ cB (Δk)

(∫
Ωk

|f |p vdν
)1/p

.

By Theorem 2 (5) implies(∫
Ω(t′)

|Tf |q udμ
)1/q

≤ cε

(∫
Ω(t′)

|f |p vdν
)1/p

,

(∫
Ω[t′′,∞]

|Tf |q udμ
)1/q

≤ cε

(∫
Ω[t′′,∞]

|f |p vdν
)1/p

.

We use definitions of P0, ..., PN from Theorem 5. Put P =∑N
k=1 Pk. The last three estimates and (6) give(∫

Ω

|Tf − Pf |q udμ
)1/q

≤ cε

(∫
Ω

|f |p vdν
)1/p

.

Since rankP ≤ N this proves that aN+1 (T ) ≤ cε. Thus,

with the partition defined above we have

Theorem 7. Suppose 1 < q < p < ∞, T is bounded and

0 < ε < B. Then aN+1 (T ) ≤ cε.
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Bound from below. Let t′, t′′ be chosen as in (5) and put

t0 = 0, t1 = t′. On the n-th step, if supt>tn B (tn, t) ≥
ε then we put tn+1 = min {t > tn : B (tn, t) = ε} . If

supt>tn B (tn, t) < ε we put tn+1 = ∞. This process stops

in a finite number of steps. Suppose that it does not and that

tn → t ≤ ∞. Then

max
{
Φ∗

[a,b] (x) ,Φ[a,b] (x)
}

≤
(∫

Ω[t′,∞]

udμ

)1/p (∫
Ω(t′′)

v−p′/pdν

)1/p′

= c

for t′ ≤ a < b ≤ t′′.

Hence, for each k, εr = B (Δk)
r ≤ (2c)

r ∫
Ω(Δk)

udμ,∑
k

∫
Ω(Δk)

udμ = ∞, which contradicts compactness.

Denoting N the total number of segments, for an arbitrary

bounded linear operator P : Lp
vdν → Lq

udμ, rankP < N − 1,
we have the following statement:

Theorem 8 Suppose 1 < q < p < ∞, T is bounded and

0 < ε < B. Then aN−1 (T ) ≥ cε.

III. CONCLUSION

This research shows that domain partitions can be

productively used in the current setup to obtain generalizations

of many one-dimensional results.
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