Search results for: Evolutionary strategies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1227

Search results for: Evolutionary strategies

1227 Molecular Evolutionary Analysis of Yeast Protein Interaction Network

Authors: Soichi Ogishima, Takeshi Hase, So Nakagawa, Yasuhiro Suzuki, Hiroshi Tanaka

Abstract:

To understand life as biological system, evolutionary understanding is indispensable. Protein interactions data are rapidly accumulating and are suitable for system-level evolutionary analysis. We have analyzed yeast protein interaction network by both mathematical and biological approaches. In this poster presentation, we inferred the evolutionary birth periods of yeast proteins by reconstructing phylogenetic profile. It has been thought that hub proteins that have high connection degree are evolutionary old. But our analysis showed that hub proteins are entirely evolutionary new. We also examined evolutionary processes of protein complexes. It showed that member proteins of complexes were tend to have appeared in the same evolutionary period. Our results suggested that protein interaction network evolved by modules that form the functional unit. We also reconstructed standardized phylogenetic trees and calculated evolutionary rates of yeast proteins. It showed that there is no obvious correlation between evolutionary rates and connection degrees of yeast proteins.

Keywords: Protein interaction network, evolution, modularity, evolutionary rate, connection degrees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
1226 Solving Process Planning, Weighted Earliest Due Date Scheduling and Weighted Due Date Assignment Using Simulated Annealing and Evolutionary Strategies

Authors: Halil Ibrahim Demir, Abdullah Hulusi Kokcam, Fuat Simsir, Özer Uygun

Abstract:

Traditionally, three important manufacturing functions which are process planning, scheduling and due-date assignment are performed sequentially and separately. Although there are numerous works on the integration of process planning and scheduling and plenty of works focusing on scheduling with due date assignment, there are only a few works on integrated process planning, scheduling and due-date assignment. Although due-dates are determined without taking into account of weights of the customers in the literature, here weighted due-date assignment is employed to get better performance. Jobs are scheduled according to weighted earliest due date dispatching rule and due dates are determined according to some popular due date assignment methods by taking into account of the weights of each job. Simulated Annealing, Evolutionary Strategies, Random Search, hybrid of Random Search and Simulated Annealing, and hybrid of Random Search and Evolutionary Strategies, are applied as solution techniques. Three important manufacturing functions are integrated step-by-step and higher integration levels are found better. Search meta-heuristics are found to be very useful while improving performance measure.

Keywords: Evolutionary strategies, hybrid searches, process planning, simulated annealing, weighted due-date assignment, weighted scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
1225 Understanding Evolutionary Algorithms through Interactive Graphical Applications

Authors: Javier Barrachina, Piedad Garrido, Manuel Fogue, Julio A. Sanguesa, Francisco J. Martinez

Abstract:

It is very common to observe, especially in Computer Science studies that students have difficulties to correctly understand how some mechanisms based on Artificial Intelligence work. In addition, the scope and limitations of most of these mechanisms are usually presented by professors only in a theoretical way, which does not help students to understand them adequately. In this work, we focus on the problems found when teaching Evolutionary Algorithms (EAs), which imitate the principles of natural evolution, as a method to solve parameter optimization problems. Although this kind of algorithms can be very powerful to solve relatively complex problems, students often have difficulties to understand how they work, and how to apply them to solve problems in real cases. In this paper, we present two interactive graphical applications which have been specially designed with the aim of making Evolutionary Algorithms easy to be understood by students. Specifically, we present: (i) TSPS, an application able to solve the ”Traveling Salesman Problem”, and (ii) FotEvol, an application able to reconstruct a given image by using Evolution Strategies. The main objective is that students learn how these techniques can be implemented, and the great possibilities they offer.

Keywords: Education, evolutionary algorithms, evolution strategies, interactive learning applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064
1224 Evolutionary Cobreeding of Cooperative and Competitive Subcultures

Authors: Emilia Nercissians

Abstract:

Neoclassical and functionalist explanations of self organization in multiagent systems have been criticized on several accounts including unrealistic explication of overadapted agents and failure to resolve problems of externality. The paper outlines a more elaborate and dynamic model that is capable of resolving these dilemmas. An illustrative example where behavioral diversity is cobred in a repeated nonzero sum task via evolutionary computing is presented.

Keywords: evolutionary stability, externalities, neofunctionalism, prisoners' dilemma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
1223 An Evolutionary Statistical Learning Theory

Authors: Sung-Hae Jun, Kyung-Whan Oh

Abstract:

Statistical learning theory was developed by Vapnik. It is a learning theory based on Vapnik-Chervonenkis dimension. It also has been used in learning models as good analytical tools. In general, a learning theory has had several problems. Some of them are local optima and over-fitting problems. As well, statistical learning theory has same problems because the kernel type, kernel parameters, and regularization constant C are determined subjectively by the art of researchers. So, we propose an evolutionary statistical learning theory to settle the problems of original statistical learning theory. Combining evolutionary computing into statistical learning theory, our theory is constructed. We verify improved performances of an evolutionary statistical learning theory using data sets from KDD cup.

Keywords: Evolutionary computing, Local optima, Over-fitting, Statistical learning theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
1222 Evolutionary Algorithms for the Multiobjective Shortest Path Problem

Authors: José Maria A. Pangilinan, Gerrit K. Janssens

Abstract:

This paper presents an overview of the multiobjective shortest path problem (MSPP) and a review of essential and recent issues regarding the methods to its solution. The paper further explores a multiobjective evolutionary algorithm as applied to the MSPP and describes its behavior in terms of diversity of solutions, computational complexity, and optimality of solutions. Results show that the evolutionary algorithm can find diverse solutions to the MSPP in polynomial time (based on several network instances) and can be an alternative when other methods are trapped by the tractability problem.

Keywords: Multiobjective evolutionary optimization, geneticalgorithms, shortest paths.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
1221 Variational Evolutionary Splines for Solving a Model of Temporomandibular Disorders

Authors: Alberto Hananel

Abstract:

The aim of this work is to modelize the occlusion of a person with temporomandibular disorders as an evolutionary equation and approach its solution by the construction and characterizing of discrete variational splines. To formulate the problem, certain boundary conditions have been considered. After showing the existence and the uniqueness of the solution of such a problem, a convergence result of a discrete variational evolutionary spline is shown. A stress analysis of the occlusion of a human jaw with temporomandibular disorders by finite elements is carried out in FreeFem++ in order to prove the validity of the presented method.

Keywords: Approximation, evolutionary PDE, finite element method, temporomandibular disorders, variational spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
1220 Evolutionary Decision Trees and Software Metrics for Module Defects Identification

Authors: Monica Chiş

Abstract:

Software metric is a measure of some property of a piece of software or its specification. The aim of this paper is to present an application of evolutionary decision trees in software engineering in order to classify the software modules that have or have not one or more reported defects. For this some metrics are used for detecting the class of modules with defects or without defects.

Keywords: Evolutionary decision trees, decision trees, softwaremetrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
1219 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems

Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras

Abstract:

The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.

Keywords: MOEAs, Multiobjective optimization, ZDT test functions, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
1218 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children

Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco

Abstract:

Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.

Keywords: Feature selection, multi-objective evolutionary computation, unsupervised classification, behavior assessment system for children.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
1217 Universal Method for Timetable Construction based on Evolutionary Approach

Authors: Maciej Norberciak

Abstract:

Timetabling problems are often hard and timeconsuming to solve. Most of the methods of solving them concern only one problem instance or class. This paper describes a universal method for solving large, highly constrained timetabling problems from different domains. The solution is based on evolutionary algorithm-s framework and operates on two levels – first-level evolutionary algorithm tries to find a solution basing on given set of operating parameters, second-level algorithm is used to establish those parameters. Tabu search is employed to speed up the solution finding process on first level. The method has been used to solve three different timetabling problems with promising results.

Keywords: Evolutionary algorithms, tabu search, timetabling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
1216 Speed Control of Permanent Magnet Synchronous Motor Using Evolutionary Fuzzy PID Controller

Authors: M. Umabharathi, S. Vijayabaskar

Abstract:

Evolutionary Fuzzy PID Speed Controller for Permanent Magnet Synchronous Motor (PMSM) is developed to achieve the Speed control of PMSM in Closed Loop operation and to deal with the existence of transients. Consider a Fuzzy PID control design problem, based on common control Engineering Knowledge. If the transient error is big, that Good transient performance can be obtained by increasing the P and I gains and decreasing the D gains. To autotune the control parameters of the Fuzzy PID controller, the Evolutionary Algorithms (EA) are developed. EA based Fuzzy PID controller provides better speed control and guarantees the closed loop stability. The Evolutionary Fuzzy PID controller can be implemented in real time Applications without any concern about instabilities that leads to system failure or damage.

Keywords: Evolutionary Algorithm (EA), Fuzzy system, Genetic Algorithm (GA), Membership, Permanent Magnet Synchronous Motor (PMSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2959
1215 Mining Sequential Patterns Using Hybrid Evolutionary Algorithm

Authors: Mourad Ykhlef, Hebah ElGibreen

Abstract:

Mining Sequential Patterns in large databases has become an important data mining task with broad applications. It is an important task in data mining field, which describes potential sequenced relationships among items in a database. There are many different algorithms introduced for this task. Conventional algorithms can find the exact optimal Sequential Pattern rule but it takes a long time, particularly when they are applied on large databases. Nowadays, some evolutionary algorithms, such as Particle Swarm Optimization and Genetic Algorithm, were proposed and have been applied to solve this problem. This paper will introduce a new kind of hybrid evolutionary algorithm that combines Genetic Algorithm (GA) with Particle Swarm Optimization (PSO) to mine Sequential Pattern, in order to improve the speed of evolutionary algorithms convergence. This algorithm is referred to as SP-GAPSO.

Keywords: Genetic Algorithm, Hybrid Evolutionary Algorithm, Particle Swarm Optimization algorithm, Sequential Pattern mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
1214 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Authors: Li Shoutao, Gordon Lee

Abstract:

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Keywords: adaptive fuzzy neural inference, evolutionary tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
1213 Evolutionary Dynamics on Small-World Networks

Authors: Jan Rychtar, Brian Stadler

Abstract:

We study how the outcome of evolutionary dynamics on graphs depends on a randomness on the graph structure. We gradually change the underlying graph from completely regular (e.g. a square lattice) to completely random. We find that the fixation probability increases as the randomness increases; nevertheless, the increase is not significant and thus the fixation probability could be estimated by the known formulas for underlying regular graphs.

Keywords: evolutionary dynamics, small-world networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
1212 Feasibility of the Evolutionary Algorithm using Different Behaviours of the Mutation Rate to Design Simple Digital Logic Circuits

Authors: Konstantin Movsovic, Emanuele Stomeo, Tatiana Kalganova

Abstract:

The evolutionary design of electronic circuits, or evolvable hardware, is a discipline that allows the user to automatically obtain the desired circuit design. The circuit configuration is under the control of evolutionary algorithms. Several researchers have used evolvable hardware to design electrical circuits. Every time that one particular algorithm is selected to carry out the evolution, it is necessary that all its parameters, such as mutation rate, population size, selection mechanisms etc. are tuned in order to achieve the best results during the evolution process. This paper investigates the abilities of evolution strategy to evolve digital logic circuits based on programmable logic array structures when different mutation rates are used. Several mutation rates (fixed and variable) are analyzed and compared with each other to outline the most appropriate choice to be used during the evolution of combinational logic circuits. The experimental results outlined in this paper are important as they could be used by every researcher who might need to use the evolutionary algorithm to design digital logic circuits.

Keywords: Evolvable hardware, evolutionary algorithm, digitallogic circuit, mutation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
1211 Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies

Authors: Madhav V. Chitturi, Anshu Manik, Kasthurirangan Gopalakrishnan

Abstract:

The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.

Keywords: HMA, dynamic modulus, GA, evolutionarycomputation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
1210 Using Memetic Algorithms for the Solution of Technical Problems

Authors: Ulrike Völlinger, Erik Lehmann, Rainer Stark

Abstract:

The intention of this paper is, to help the user of evolutionary algorithms to adapt them easier to their problem at hand. For a lot of problems in the technical field it is not necessary to reach an optimum solution, but to reach a good solution in time. In many cases the solution is undetermined or there doesn-t exist a method to determine the solution. For these cases an evolutionary algorithm can be useful. This paper intents to give the user rules of thumb with which it is easier to decide if the problem is suitable for an evolutionary algorithm and how to design them.

Keywords: Multi criteria optimization, Memetic algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
1209 Partial 3D Reconstruction using Evolutionary Algorithms

Authors: Mónica Pérez-Meza, Rodrigo Montúfar-Chaveznava

Abstract:

When reconstructing a scenario, it is necessary to know the structure of the elements present on the scene to have an interpretation. In this work we link 3D scenes reconstruction to evolutionary algorithms through the vision stereo theory. We consider vision stereo as a method that provides the reconstruction of a scene using only a couple of images of the scene and performing some computation. Through several images of a scene, captured from different positions, vision stereo can give us an idea about the threedimensional characteristics of the world. Vision stereo usually requires of two cameras, making an analogy to the mammalian vision system. In this work we employ only a camera, which is translated along a path, capturing images every certain distance. As we can not perform all computations required for an exhaustive reconstruction, we employ an evolutionary algorithm to partially reconstruct the scene in real time. The algorithm employed is the fly algorithm, which employ “flies" to reconstruct the principal characteristics of the world following certain evolutionary rules.

Keywords: 3D Reconstruction, Computer Vision, EvolutionaryAlgorithms, Vision Stereo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
1208 A Comparison of SVM-based Criteria in Evolutionary Method for Gene Selection and Classification of Microarray Data

Authors: Rameswar Debnath, Haruhisa Takahashi

Abstract:

An evolutionary method whose selection and recombination operations are based on generalization error-bounds of support vector machine (SVM) can select a subset of potentially informative genes for SVM classifier very efficiently [7]. In this paper, we will use the derivative of error-bound (first-order criteria) to select and recombine gene features in the evolutionary process, and compare the performance of the derivative of error-bound with the error-bound itself (zero-order) in the evolutionary process. We also investigate several error-bounds and their derivatives to compare the performance, and find the best criteria for gene selection and classification. We use 7 cancer-related human gene expression datasets to evaluate the performance of the zero-order and first-order criteria of error-bounds. Though both criteria have the same strategy in theoretically, experimental results demonstrate the best criterion for microarray gene expression data.

Keywords: support vector machine, generalization error-bound, feature selection, evolutionary algorithm, microarray data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
1207 The Mutated Distance between Two Mixture Trees

Authors: Wan Chian Li, Justie Su-Tzu Juan, Yi-Chun Wang, Shu-Chuan Chen

Abstract:

The evolutionary tree is an important topic in bioinformation. In 2006, Chen and Lindsay proposed a new method to build the mixture tree from DNA sequences. Mixture tree is a new type evolutionary tree, and it has two additional information besides the information of ordinary evolutionary tree. One of the information is time parameter, and the other is the set of mutated sites. In 2008, Lin and Juan proposed an algorithm to compute the distance between two mixture trees. Their algorithm computes the distance with only considering the time parameter between two mixture trees. In this paper, we proposes a method to measure the similarity of two mixture trees with considering the set of mutated sites and develops two algorithm to compute the distance between two mixture trees. The time complexity of these two proposed algorithms are O(n2 × max{h(T1), h(T2)}) and O(n2), respectively

Keywords: evolutionary tree, mixture tree, mutated site, distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
1206 Evolutionary Computing Approach for the Solution of Initial value Problems in Ordinary Differential Equations

Authors: A. Junaid, M. A. Z. Raja, I. M. Qureshi

Abstract:

An evolutionary computing technique for solving initial value problems in Ordinary Differential Equations is proposed in this paper. Neural network is used as a universal approximator while the adaptive parameters of neural networks are optimized by genetic algorithm. The solution is achieved on the continuous grid of time instead of discrete as in other numerical techniques. The comparison is carried out with classical numerical techniques and the solution is found with a uniform accuracy of MSE ≈ 10-9 .

Keywords: Neural networks, Unsupervised learning, Evolutionary computing, Numerical methods, Fitness evaluation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
1205 Self-Organizing Maps in Evolutionary Approachmeant for Dimensioning Routes to the Demand

Authors: J.-C. Créput, A. Koukam, A. Hajjam

Abstract:

We present a non standard Euclidean vehicle routing problem adding a level of clustering, and we revisit the use of self-organizing maps as a tool which naturally handles such problems. We present how they can be used as a main operator into an evolutionary algorithm to address two conflicting objectives of route length and distance from customers to bus stops minimization and to deal with capacity constraints. We apply the approach to a real-life case of combined clustering and vehicle routing for the transportation of the 780 employees of an enterprise. Basing upon a geographic information system we discuss the influence of road infrastructures on the solutions generated.

Keywords: Evolutionary algorithm, self-organizing map, clustering and vehicle routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
1204 Fractional Delay FIR Filters Design with Enhanced Differential Evolution

Authors: Krzysztof Walczak

Abstract:

Fractional delay FIR filters design method based on the differential evolution algorithm is presented. Differential evolution is an evolutionary algorithm for solving a global optimization problems in the continuous search space. In the proposed approach, an evolutionary algorithm is used to determine the coefficients of a fractional delay FIR filter based on the Farrow structure. Basic differential evolution is enhanced with a restricted mating technique, which improves the algorithm performance in terms of convergence speed and obtained solution. Evolutionary optimization is carried out by minimizing an objective function which is based on the amplitude response and phase delay errors. Experimental results show that the proposed algorithm leads to a reduction in the amplitude response and phase delay errors relative to those achieved with the Least-Squares method.

Keywords: Fractional Delay Filters, Farrow Structure, Evolutionary Computation, Differential Evolution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
1203 A New Evolutionary Algorithm for Cluster Analysis

Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour

Abstract:

Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.

Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
1202 Multiobjective Optimal Power Flow Using Hybrid Evolutionary Algorithm

Authors: Alawode Kehinde O., Jubril Abimbola M. Komolafe Olusola A.

Abstract:

This paper solves the environmental/ economic dispatch power system problem using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and its hybrid with a Convergence Accelerator Operator (CAO), called the NSGA-II/CAO. These multiobjective evolutionary algorithms were applied to the standard IEEE 30-bus six-generator test system. Several optimization runs were carried out on different cases of problem complexity. Different quality measure which compare the performance of the two solution techniques were considered. The results demonstrated that the inclusion of the CAO in the original NSGA-II improves its convergence while preserving the diversity properties of the solution set.

Keywords: optimal power flow, multiobjective power dispatch, evolutionary algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
1201 A Phenomic Algorithm for Reconstruction of Gene Networks

Authors: Rio G. L. D'Souza, K. Chandra Sekaran, A. Kandasamy

Abstract:

The goal of Gene Expression Analysis is to understand the processes that underlie the regulatory networks and pathways controlling inter-cellular and intra-cellular activities. In recent times microarray datasets are extensively used for this purpose. The scope of such analysis has broadened in recent times towards reconstruction of gene networks and other holistic approaches of Systems Biology. Evolutionary methods are proving to be successful in such problems and a number of such methods have been proposed. However all these methods are based on processing of genotypic information. Towards this end, there is a need to develop evolutionary methods that address phenotypic interactions together with genotypic interactions. We present a novel evolutionary approach, called Phenomic algorithm, wherein the focus is on phenotypic interaction. We use the expression profiles of genes to model the interactions between them at the phenotypic level. We apply this algorithm to the yeast sporulation dataset and show that the algorithm can identify gene networks with relative ease.

Keywords: Evolutionary computing, gene expression analysis, gene networks, microarray data analysis, phenomic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
1200 Combining an Optimized Closed Principal Curve-Based Method and Evolutionary Neural Network for Ultrasound Prostate Segmentation

Authors: Tao Peng, Jing Zhao, Yanqing Xu, Jing Cai

Abstract:

Due to missing/ambiguous boundaries between the prostate and neighboring structures, the presence of shadow artifacts, as well as the large variability in prostate shapes, ultrasound prostate segmentation is challenging. To handle these issues, this paper develops a hybrid method for ultrasound prostate segmentation by combining an optimized closed principal curve-based method and the evolutionary neural network; the former can fit curves with great curvature and generate a contour composed of line segments connected by sorted vertices, and the latter is used to express an appropriate map function (represented by parameters of evolutionary neural network) for generating the smooth prostate contour to match the ground truth contour. Both qualitative and quantitative experimental results showed that our proposed method obtains accurate and robust performances.

Keywords: Ultrasound prostate segmentation, optimized closed polygonal segment method, evolutionary neural network, smooth mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 453
1199 A Quantum-Inspired Evolutionary Algorithm forMultiobjective Image Segmentation

Authors: Hichem Talbi, Mohamed Batouche, Amer Draa

Abstract:

In this paper we present a new approach to deal with image segmentation. The fact that a single segmentation result do not generally allow a higher level process to take into account all the elements included in the image has motivated the consideration of image segmentation as a multiobjective optimization problem. The proposed algorithm adopts a split/merge strategy that uses the result of the k-means algorithm as input for a quantum evolutionary algorithm to establish a set of non-dominated solutions. The evaluation is made simultaneously according to two distinct features: intra-region homogeneity and inter-region heterogeneity. The experimentation of the new approach on natural images has proved its efficiency and usefulness.

Keywords: Image segmentation, multiobjective optimization, quantum computing, evolutionary algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
1198 Memetic Algorithm Based Path Planning for a Mobile Robot

Authors: Neda Shahidi, Hadi Esmaeilzadeh, Marziye Abdollahi, Caro Lucas

Abstract:

In this paper, the problem of finding the optimal collision free path for a mobile robot, the path planning problem, is solved using an advanced evolutionary algorithm called memetic algorithm. What is new in this work is a novel representation of solutions for evolutionary algorithms that is efficient, simple and also compatible with memetic algorithm. The new representation makes it possible to solve the problem with a small population and in a few generations. It also makes the genetic operator simple and allows using an efficient local search operator within the evolutionary algorithm. The proposed algorithm is applied to two instances of path planning problem and the results are available.

Keywords: Path planning problem, Memetic Algorithm, Representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740