
 

 

 
Abstract—Traditionally, three important manufacturing functions 

which are process planning, scheduling and due-date assignment are 
performed sequentially and separately. Although there are numerous 
works on the integration of process planning and scheduling and 
plenty of works focusing on scheduling with due date assignment, 
there are only a few works on integrated process planning, scheduling 
and due-date assignment. Although due-dates are determined without 
taking into account of weights of the customers in the literature, here 
weighted due-date assignment is employed to get better performance. 
Jobs are scheduled according to weighted earliest due date 
dispatching rule and due dates are determined according to some 
popular due date assignment methods by taking into account of the 
weights of each job. Simulated Annealing, Evolutionary Strategies, 
Random Search, hybrid of Random Search and Simulated Annealing, 
and hybrid of Random Search and Evolutionary Strategies, are 
applied as solution techniques. Three important manufacturing 
functions are integrated step-by-step and higher integration levels are 
found better. Search meta-heuristics are found to be very useful while 
improving performance measure.  
 

Keywords—Evolutionary strategies, hybrid searches, process 
planning, simulated annealing, weighted due-date assignment, 
weighted scheduling.  

I. INTRODUCTION 

RADITIONALLY three important manufacturing 
functions, process planning, scheduling and due-date 

assignment are processed separately. Although there are 
plenty of works on IPPS (Integrated Process Planning and 
Scheduling) and SWDDA (Scheduling with Due Date 
Assignment) problems, there are only a few works focusing on 
the IPPSDDA (Integrated Process Planning and Scheduling 
and Due Date Assignment) problem. 

The job shop scheduling problem belongs to the NP-Hard 
problem class without any integration; integrated problems are 
even harder to solve. Thus, metaheuristics are commonly 
utilized in literature. In this research, OS (Ordinary Solution), 
RS (Random Search), SA (Simulated Annealing), ES 
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Evolutionary Strategies), RS/SA (Random Search and 
Simulated Annealing) Hybrid and RS/ES (Random Search and 
Evolutionary Strategies) Hybrid techniques are used. 

According to the Society of Manufacturing Engineers, 
process planning is the systematic determination of the 
methods by which a product is to be manufactured 
economically and competitively. Scheduling allocates 
resources to tasks and considers timing information [1]. 
According to Gordon et al. [2], SWDDA problems have 
received considerable attention recently. According to 
classical inventory management strategy, only tardiness is an 
undesired outcome. On the other hand, according to JIT (Just-
in-Time) both tardiness and earliness are undesired outcomes. 

Since long due dates are unwanted it is reasonable to 
penalize due dates along with tardiness and earliness. In this 
study all of the weighted due-date, earliness and tardiness 
related costs are punished.  

The weight of each customer is not considered when 
designating due dates in the literature. Contrary to this, 
important customers are given closer due dates and scheduled 
earlier and relatively less important customers are given long 
due dates and scheduled later in this study. In this way 
substantial improvement can be obtained for weighted penalty 
function. There can be substantial improvement in all of the 
weighted due-date, earliness and tardiness related costs if 
more important customers are given close due dates and 
scheduled earlier. These three important manufacturing 
functions are interrelated and outputs of upstream functions 
are inputs of downstream functions. For example, process 
plans become input to the scheduling function. Poorly 
prepared process plans become bad inputs to the downstream 
scheduling functions and may not be followed at the shop 
floor.  

Independently performed functions try to reach local 
optimum and do not care about global optimum. For instance 
process planners may frequently select same desired machines 
but may not select some undesired machines at all. Therefore 
machine loading across production lane becomes unbalanced. 
But, if both the process planning and scheduling is taken into 
account simultaneously, process planners may be able to 
prepare more appropriate process plans and improve machine 
balancing at the shop floor. On the other hand, given due-dates 
may be unrealistic, as they might be given excessively far or 
insufficiently close, where they cannot be fulfilled. 
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Unintegrated solution of the problem considerably degrades 
the performance function.  

The problem is represented as a chromosome and every 
chromosome consists of (n+2) genes. The first two genes 
represent the due-date assignment and dispatching rules. The 
remaining genes represent the actively selected route of every 
job. Since the first two genes have a high impact on 
performance compared to the remaining genes, they have 
given higher probabilities to be selected for mutation, as the 
dominant gene approach is utilized in this research.  

Problems are tested for each integration level. Initially, the 
unintegrated level is tested and later the integration degree is 
increased step-by-step by adding more functions to the 
problem. Higher integration levels give better results. All three 
functions are integrated at the highest integration level in 
which the best results are obtained. Full integration with 
directed search is found to be the best of all combinations, as 
expected.  

II. BACKGROUND AND LITERATURE SURVEY 

In this study, three important manufacturing functions are 
integrated step-by-step. There are numerous works on IPPS 
and plenty of works on SWDDA, but only a few works 
focusing on the IPPSDDA problem. 

Some important literature survey on IPPS can be found in 
[3], [4]. Although it is better to have alternative process plans, 
marginal benefit of alternative plans reduce sharply, and thus, 
the number of process plans should be determined wisely. 
Usher [4] studied the impacts of alternative process plans on 
manufacturing performance. Selecting a process plan among 
alternatives becomes more difficult as the number of process 
plans increases. Bhaskaran [5] studied process plan selection 
in his work. 

Scheduling problem alone belongs to the NP-Hard class, 
and integrated problems are even harder to solve. Many of the 
researchers used some metaheuristics in their solution, as [6]-
[14]. Some earlier works on IPPS can be found as [1], [15]-
[22], [6]. Some recent works on IPPS can be found in [3], [4], 
[7], [9], [10], [13], [14], [23]-[31]. 

There are numerous works on SWDDA in the literature, 
which is another popular research problem. Again, it is better 
to look at literature surveys on this problem before mentioning 
other researches. A survey on scheduling with common due 
date assignment is prepared by Gordon et al. [2].  

Sometimes common due dates are tried to be assigned for 
the parts to be assembled together or shipped to the customer 
at the same time. In this case, we should assign common due-
date for the parts. The following works can be given as an 
example on scheduling with common due date assignments; 
[2], [32]-[40]. Some of the works are on scheduling with 
separate due date assignments. Following works can be given 
as an example to this problem; [41]-[47], [37]. 

There are several works on SMSWDDA (Single machine 
scheduling with due date assignment) such as [33], [44], [35], 
[2], [37], [38], [47], [48]. 

Reference [49] can be given as an example to two machine 
flow shop scheduling with due date determination. References 

[43], [2], [50], [39] are examples to works on parallel machine 
scheduling with due date determination. References [51], [45], 
[52] are examples to job shop scheduling with due date 
determination. There are also works on MMSWDDA (Multi 
machine scheduling with due date assignment). References 
[41], [53], [54], and [36], can be given as an example to this 
problem. 

III. PROBLEM DEFINITION 

In this research, the IPPSDDA problem is studied. Although 
plenty of works were conducted on the IPPS and SWDDA 
problems, research into the IPPSDDA problem is very new 
area and there are few studies available on this topic [55]–
[58]. 

In order to solve the problem, simulated annealing and 
evolutionary strategies and some hybrid strategies are used. 
The problem is represented as a chromosome. Each 
chromosome is represented with (n+2) genes which represent 
due-date assignment rules, dispatching rules and actively 
selected routes of every job.  

Integrated process planning, WEDD (Weighted Earliest 
Due Date Scheduling) scheduling, and WDUE (Weighted 
Due-Date Assignment) assignment problems are tested. 
Starting with the unintegrated problem where all functions are 
performed sequentially, every integration combination is 
tested and step-by-step functions are integrated with each 
other. Finally, all of the three functions are integrated and this 
level is found as the best integration level. 

Four shop floors are tested in this research. The largest shop 
floor has 175 jobs, 35 machines and every job has 10 
operations in every route. The first smaller two shop floors 
have five alternative routes and the other larger two shop 
floors have three alternative routes. The processing times of 
each operation of every job in every route changes according 
to normal distribution with a mean of 12 and a standard 
deviation of 6, according to the formula (12+z*6) . 
Processing times assume integer values, and so, they take 
values in between 1 and 30.  

The characteristics of all shop floors are tabulated and 
presented in Table I, where SF is for Shop Floor, # of MC is 
for number of machines, # of J is for number of Jobs, # of R is 
for number of alternative routes, PT is for processing time and 
# of O is for number of operations. 

 
TABLE I  

CHARACTERISTICS OF SHOP FLOORS 

SF SF 1 SF 2 SF 3 SF 4 

# of MC 5 15 25 35 

# of J 25 75 125 175 

# of R 5 5 3 3 

PT 12 z ∗ 6 12 z ∗ 6  12 z ∗ 6  12 z ∗ 6  

# of O 10 10 10 10 

 
Initially, the unintegrated version is tested where all 

functions are performed separately. After that, WEDD 
dispatching is integrated with process plan selection but due 
dates are determined randomly. Later, WDUE assignment is 
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integrated with process plan selection, but this time, jobs are 
scheduled randomly. Finally, all functions are integrated and 
process plan selection, WEDD dispatching and WDUE 
assignments are performed concurrently. 

In this study, one shift is assumed per day and it makes 480 
minutes per day. As a penalty function, all of the weighted 
earliness, tardiness and due-date related costs are penalized 
according to the following formulas (1)-(5). 

 
PD j 	weight	 j ∗ 8 ∗ Due	date/480                (1) 

 

PE j 	weight	 j ∗ 	 5 	4 ∗ E/480                (2) 
 

PT j 	weight	 j ∗ 10	 	12 ∗ T/480             (3) 
 

Penalty j 	PD j 	 	PE	 j 	PT j                 (4) 
 

Total	Penalty	 	∑ Penalty j                   (5) 
 

where PD is for penalty for due date, PE is for penalty for 
earliness, PT is penalty for tardiness, Penalty j  is the total 
penalty occurred for job j and Total	Penalty is the total 
penalty occurred for all jobs which is the ultimate desired 
value. 

IV. METAHEURISTICS USED 

In this study OS, RS, SA, RS/SA, ES, and RS/ES results are 
compared. OS represents initial random poor solutions, and 
RS is undirected search and scans solution space randomly. 
SA and ES are directed searches and gain benefit from earlier 
solutions and are better heuristics compared to RS. RS/SA and 
RS/ES are hybrid heuristics and are initially undirected, but 
later become directed searches. The reason for selecting 
hybrid searches is to benefit from both the power of an 
undirected search at the very beginning of the iterations, and 
later converting to the directed search and using the power of 
the directed search. The search techniques that have been 
utilized in this study are explained below. 

Ordinary Solution (OS): Initially, totally a random 
chromosome is produced and this solution is assumed as 
ordinary solution. This is done to observe how ordinary 
solutions are poor and how directed and undirected search 
metaheuristics are powerful. 

Random Search (RS): In this search, new chromosomes as 
many as in Evolutionary strategies are produced randomly. At 
every iteration, 13 new chromosomes are produced randomly. 
To be fair, in comparison with other search techniques, the 
same number of new chromosomes is produced for each 
search technique during the program execution. 

Simulated Annealing (SA): SA was developed by 
Kirkpatrick et al. [59] in 1983 and used in many problems in 
numerous disciplines. Instead of working on population, this 
research focuses on a single chromosome in each iteration. For 
this reason, more iterations are made to be fair with other 
search techniques. The iteration parameters are tabulated and 
presented in Table II below. 

Random and Simulated Annealing (RS/SA): In this 

research, an initial 10% of iterations are random iterations and 
remaining 90% of iterations are SA iterations. Solution space 
is scanned with random search initially to be able to get a 
better improvement on the solution. After initial random 
iterations we continued with SA search. At Evolutionary 
strategies we work on population with size 10 and we produce 
new 13 chromosomes. Here at SA we work on single 
chromosome and produce one new chromosome. That is why 
to be fair in comparison, in this search iteration, size is 13 
times as many as in the iteration size of Evolutionary 
strategies.  

Evolutionary Strategies (ES): Evolutionary strategies 
were developed in the early 1960s. Two students from the 
Technical University of Berlin, Germany, introduced 
evolutionary strategies while solving optimization problems 
[60], [61]. Unlike genetic algorithms, ES uses only mutation 
operator. At every iteration, 13 new chromosomes produced; 
thus, fewer iterations are applied compared to the SA 
heuristics. 

Random and Evolutionary Strategies (RS/ES): The 
initial 10% of iterations are random iterations and the 
remaining 90% of iterations are ES iterations; 13 new 
chromosomes are produced at every iteration. Thus, fewer 
iterations are applied compared to the SA and RS/SA search 
heuristics, but the same number of chromosomes is tested 
during the program execution. 

RS, ES, and RS/ES hybrid searches are population based 
and 13 new chromosomes are produced at each iteration. For 
RS, ES, and RS/ES hybrid searches 200, 150, 100, and 50 
iterations are applied, respectively. SA and RS/SA hybrid 
searches use only one chromosome at each iteration. Thus, to 
be fair with other methods, 2600, 1950, 1300 and 650 
iterations are applied for four shop floors, respectively. 

CPU times required for RS, SA, RS/SA, ES, and RS/ES 
search heuristics are summarized in Table V.  

 
TABLE II 

ITERATION NUMBERS FOR PURE AND HYBRID SEARCHES 

 RS SA 
RS/SA 
Hybrid 

ES 
RS/ES 
Hybrid 

SF
Random 

Iter. 
SA 
Iter. 

Random 
Iter. 

SA 
Iter. 

ES 
Iter. 

Random 
Iter. 

ES 
Iter. 

1 200 2600 260 2340 200 20 180 

2 150 1950 195 1755 150 15 135 

3 100 1300 130 1170 100 10 100 

4 50 650 65 585 50 5 50 

 

 

Fig. 1 Sample chromosome 
 

Gene representation of the problem is illustrated in Fig. 1. 

DD DR R1j R2j ... ... ... Rnj

Dispatching rule gene

Due date 
assignment gene

jth route 
of job n
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There are 2  genes in a chromosome and the initial two 
genes represent the due-date assignment rules and dispatching 
rules, and remaining  genes represent the actively selected 
routes of every job. 

The dominant gene approach is used in this study. Since 
initial two genes have higher impact on performance measure, 
higher probability for mutation is given. Remaining  genes 
have less effect on penalty function. Thus, lower probability is 
given to be selected for mutation. 

Five types of rules are used while assigning due dates, 
which are the WTWK (Weighted Total Work), WSLK 
(Weighted Slack), WPPW (Weighted Process Plus Wait), 
WNOP (Weighted Number of Operations), and RDM 
(Random) rules. With the different multipliers and constants, 
19 rules are used to assign due dates. These rules are tabulated 
in Table III and explained in Appendix A. 

 
TABLE III 

DUE-DATE ASSIGNMENT RULES 

Method Multiplier k Constant qx Rule no
WTWK k = 1, 2, 3 0, 1, 2 
WSLK qx = q1, q2, q3 3, 4, 5 

WPPW k =1, 2, 3 qx = q1, q2, q3 6, 7, 8, 9, 10, 11, 12, 13, 14 

WNOP k = 1, 2, 3 15, 16, 17 

RDM 18 

 
TABLE IV 

DISPATCHING RULES 

Method Rule No 

WEDD 1 

SIRO 2 

 
The second gene is about scheduling rule and takes one of 

two values. Two rules are used, which are WEDD (Weighted 
Earliest Due Date) and SIRO (Service In Random Order) 
rules. These rules are summarized in Table IV and explained 
in Appendix B. 

V. SOLUTIONS COMPARED 

In this study, OS, RS, SA, RS/SA, ES, and RS/ES search 
solutions are compared with each other. At every integration 
level, six search heuristics are compared. There are four 
different integration levels and in total, 24 different 
combinations for each one of the four shop floors compared. 
The results are summarized in Table V. Next, each integration 
level is summarized. 

SIRO-RDM (OS, RS, SA, RS/SA, ES, RS/ES): This is the 
lowest level of integration, where all functions are 
disintegrated. All search techniques which are OS, RS, SA, 
RS/SA, ES, and RS/ES heuristics are compared. 

WEDD-RDM (OS, RS, SA, RS/SA, ES, RS/ES): Here, 
the WEDD dispatching rule is integrated with process plan 
selection, but the due dates are still determined randomly. 
Here substantial improvements are observed. All search 
techniques which are OS, RS, SA, RS/SA, ES, and RS/ES 
heuristics are compared, where OS solutions are very poor and 
searches are found useful. Directed searches and hybrid 
searches are found superior compared to the undirected search. 

SIRO-WDUE (OS, RS, SA, RS/SA, ES, RS/ES): Later, 
WDUE assignment is integrated with process plan selection, 
but this time, jobs are dispatched in random order. Although 
integrating WDUE improves the global performance 
substantially, SIRO dispatching sharply deteriorates the global 
performance back. 

WEDD-WDUE (OS, RS, SA, RS/SA, ES, RS/ES): 
Finally, three important manufacturing functions are 
integrated, and this is the highest integration level that gives 
the best global performance. 

VI. EXPERIMENTATION 

The integrated problem is coded using C++ programming 
language and run using a Borland C++ 5.02 compiler on a 
laptop with a 2 GHz processor, 8 GB Ram, and CPU times are 
recorded and summarized at Table V. 

A chromosome is used to represent the integrated problem. 
Each chromosome consists of 2  genes to represent due-
date assignment rules, dispatching rules and selected routes of 
every job. Five different rules are used in due date assignment 
with various multipliers and constants which sums up to 19 
different rules. WEDD and SIRO are used as dispatching 
rules. 

Four shop floors in which the characteristics are given at 
Table I are tested. Initially, an unintegrated combination, 
which is SIRO-RDM, is tested. Later, the WEDD-RDM 
combination is tested, where WEDD scheduling and process 
plan selection are integrated. After that, the SIRO-WDUE 
combination is tested and WDUE due date assignment 
methods are integrated with process plan selection. Finally, 
the WEDD-WDUE combination is tested, where all three 
functions are integrated. Here, weighted due date assignment 
and weighted scheduling are applied and important customers 
are given closer due dates and scheduled earlier. This provides 
substantial improvement in performance function, which is 
weighted penalty on earliness, tardiness and due-date related 
costs. 

Four shop floors are tested for 24 different solution 
combinations and the results summarized in Table V. At the 
first shop floor there are 25 jobs and 5 machines. Every job 
has 10 operations at each route. It took approximately 20 
seconds CPU time to run the program. The results are 
summarized in Table V and Fig. 2. Full integration level was 
found to the best integration combination. At the integration 
levels, SA heuristic gave the best result once, ES gave the best 
result once and RS/ES hybrid heuristic gave the best results 
three times. At the full integration level, the best results are 
shared between ES and RS/ES heuristics.  

At the second shop floor, it took approximately about 200 
seconds to complete the run of the program. The results are 
summarized in Table V and Fig. 3. According to the results, 
SA found twice the best solutions in integration levels and ES 
found twice the best solutions in the remaining two levels of 
integration. Again, full integration level is found as the best 
integration level. 

At the third shop floor it took in between 200 and 300 
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seconds to complete the run of the program. The results are 
illustrated in Table V and Fig. 4. In two levels of integration, 
RS/SA gave best results, while the remaining two levels ES 
gave best results and ES and RS/ES shared best result in one 
level of integration. Again, at this shop floor the full 
integration level is found as the best combination as expected. 

At the fourth shop floor, which is the largest shop floor with 

175 jobs and 35 machines, it took about 300 seconds to 
complete the run of the program. The results are summarized 
in Table V and Fig. 5. According to the results, SA gave the 
best result in one level, ES gave the best results in two levels 
and RS/ES gave the best result in the remaining level. Full 
integration level was found the best integration level, as 
expected.

 
TABLE V 

COMPARISON OF TWENTY FOUR SOLUTION COMBINATIONS FOR ALL OF THE SHOP FLOORS 
Level of 

Integration 
(Combination) 

Approaches 
Shop Floor 1 Shop Floor 2 Shop Floor 3 Shop Floor 4 

Best Avg. Worst CPU Best Avg. Worst CPU Best Avg. Worst CPU Best Avg. Worst CPU

SIRO-RDM 

OS 293 293 293 - 906 906 906 - 1413 1413 1413 - 2020 2020 2020 - 

RS 268 273 275 37 853 864 870 392 1355 1372 1378 286 1908 1925 1934 296 

SA 256 260 261 35 825 838 844 196 1358 1365 1369 240 1882 1896 1903 247 

RS/SA 258 263 266 34 846 857 864 346 1292 1318 1326 238 1876 1888 1899 246 

ES 256 260 263 37 826 838 844 405 1315 1323 1329 276 1860 1871 1879 286 

RS/ES 248 252 255 38 827 835 839 379 1322 1325 1327 276 1861 1875 1885 289 

WEDD-RDM 

OS 226 226 226 - 683 683 683 - 1122 1122 1122 - 1616 1616 1616 - 

RS 212 214 215 18 666 675 677 214 1060 1070 1081 286 1500 1513 1520 294 

SA 204 206 207 17 658 661 663 194 1041 1050 1052 245 1474 1489 1495 249 

RS/SA 207 208 209 17 663 668 670 195 1030 1040 1047 243 1484 1501 1508 255 

ES 205 206 207 17 652 654 655 207 1040 1046 1048 274 1469 1480 1487 286 

RS/ES 208 208 208 18 653 657 659 209 1031 1041 1045 276 1467 1479 1485 287 

SIRO-WDUE 

OS 337 337 337 - 1032 1032 1032 - 1570 1570 1570 - 2265 2265 2265 - 

RS 271 273 276 20 865 872 877 225 1328 1339 1349 299 1886 1907 1923 306 

SA 265 270 273 19 861 868 873 203 1312 1333 1342 254 1876 1900 1915 260 

RS/SA 268 276 278 19 851 862 868 202 1319 1328 1336 255 1894 1907 1920 260 

ES 257 262 265 20 823 848 855 222 1295 1313 1324 294 1879 1896 1907 299 

RS/ES 255 258 260 20 842 852 858 222 1302 1320 1327 294 1880 1896 1909 302 

WEDD-
WDUE 

OS 271 271 271 - 865 865 865 - 1318 1318 1318 - 1894 1894 1894 - 

RS 192 197 199 20 610 622 627 225 948 957 963 303 1357 1376 1386 314 

SA 188 190 192 18 599 610 615 206 943 953 958 265 1355 1373 1386 273 

RS/SA 189 191 193 18 601 609 613 206 947 955 959 268 1357 1378 1386 273 

ES 185 187 188 20 588 595 599 221 931 939 944 294 1345 1363 1375 309 

RS/ES 185 188 189 20 593 602 606 222 931 939 944 297 1349 1369 1380 310 

  

 

Fig. 2 Results of Shop Floor 1 (25x5x5) 
 

At the highest level of integration, we repeated the 
experiments five times where at the lower levels of integration 
we applied only single experiment. Five different random 
number seeds are used to test the highest level of integration 
for five replicas. Thus, for four shop floors, 20 experiments 
are applied, where ES gave the best results in 11 replicas, 
RS/SA gave the best results in 4 replicas, RS/ES gave best 

results in 3 replicas, SA gave best results in one replica and 
RS gave the best results once. Through the experiments, just 
once best result are obtained from random search which is 
totally a random result rather than the power of random 
search. 

 

 

Fig. 3 Results of Shop Floor 2 (75x15x5) 
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Fig. 4 Results of Shop Floor 3 (125x25x3) 
 

 

Fig. 5 Results of Shop Floor 4 (175x35x3) 

VII. CONCLUSION 

Although there are only a few researches have focused on 
the IPPSDDA problem, there are numerous works on the sub 
integrated levels such as IPPS and SWDDA problems. Some 
of the researches addressing the IPPSDDA problem are 
mentioned in this research. Since all of these three important 
manufacturing functions are highly interrelated, it is better to 
consider them concurrently. A separate solution of the 
functions causes local optimization for each function, but 
substantially deteriorates the global optimum. If process plans 
are prepared separately, then poor and unrealistic process 
plans can be sent to the downstream scheduling function and 
this may cause unbalanced machine loading and reduce 
overall shop floor utilization. Independently performed 
scheduling function may not consider due date constraint and 
process plans wisely. Independently given due-dates may be 
unrealistic for shop floors and unreasonably too close due 
dates may be designated such that firms may not keep their 
promise to the customer, and therefore, the reputation of firms 
may be effected negatively. On the other hand, firms may give 
unnecessarily long due-dates to customers; this sharply 
increases, due-date and earliness related costs. 

In this study, weighted due date assignment techniques are 
used where important customers are given closer due dates 
and are scheduled earlier. As a result, substantial 
improvements in overall weighted earliness, tardiness and 
due-date related costs are obtained.  

In this research, some pure and hybrid metaheuristics are 
utilized while solving the integrated problem, namely RS, SA, 
RS/SA, ES, RS/ES metaheuristics. None of the metaheuristics 
gave the best results in every experiment. As expected, a fully 
integrated combination is found as the best integration level. 
Directed search heuristics are found better than random 
search. Since random search is marginally attractive only at 
the beginning of the iterations, combining with other search 
methods and making hybrid searches was found to be 
promising metaheuristics. 

Initially, the SIRO-RDM combination is tested, and as 
expected, this lowest level of integration is found to be very 
poor. At this level process plans are selected independently, 
due dates are determined randomly and jobs are scheduled in 
random order. After that, the WEDD-RDM combination is 
tested; where, scheduling is integrated with process plan 
selection but due dates are still determined randomly. 
Substantial improvements are observed at this level of 
integration. 

Later, the SIRO-WDUE combination is tested; where, 
weighted due-date assignment is integrated with process plan 
selection, but this time jobs are dispatched in random order. 
Although weighted due-date assignment provides substantial 
improvements at the performance function, SIRO dispatching 
severely deteriorates the penalty function back. 

Finally, the WEDD-WDUE combination is tested where the 
three functions are fully integrated. Process plan selection is 
integrated with WEDD dispatching and with weighted due 
date assignment. As expected, this level is found as the best 
combination and gave the best improvements in the penalty 
function. 

APPENDIX  

A. Due-Date Assignment Rules 

WTWK	 Weighted	Total	Work  Due w ∗ k ∗ TPT 
 

WSLK	 Weighted	Slack  Due TPT	 w ∗ 	q  
 

WPPW	 Weighted	Process	Plus	Wait Due
q ∗ w 	 	w ∗ k ∗ TPT 

 
WNOP	 Weighted	Number	of	operations Due NOP	 ∗ 	w ∗ k  

 
RDM	 Random	due	date	assign. Due

N	~	 3 ∗ P , P /2 	2  

 
where; w , w  are determined according to the weights of the 
customers; TPT is total processing time; P  is mean 
processing time of all jobs waiting. 

B. Dispatching Rules 

WEDD: Weighted Earliest Due Date 
SIRO (Service in Random order): A job among waiting jobs 

is selected randomly to be processed. 
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