Using Memetic Algorithms for the Solution of Technical Problems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Using Memetic Algorithms for the Solution of Technical Problems

Authors: Ulrike Völlinger, Erik Lehmann, Rainer Stark

Abstract:

The intention of this paper is, to help the user of evolutionary algorithms to adapt them easier to their problem at hand. For a lot of problems in the technical field it is not necessary to reach an optimum solution, but to reach a good solution in time. In many cases the solution is undetermined or there doesn-t exist a method to determine the solution. For these cases an evolutionary algorithm can be useful. This paper intents to give the user rules of thumb with which it is easier to decide if the problem is suitable for an evolutionary algorithm and how to design them.

Keywords: Multi criteria optimization, Memetic algorithms

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1062866

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406

References:


[1] K. Weicker, Evolution¨are Algorithmen, 1st ed. Teubner Verlag, 2002.
[2] J. H. Holland, Adaption in natural and artifical systems. University of Michigan Press, Ann Arbor, 1975.
[3] K. A. D. Jong, "An analysis of the behavior of a class of genetic adaptive systems," Ph.D. dissertation, University of Michigan, 1975.
[4] I. Rechenberg, Evolutionsstrategie. Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, 1st ed. Frommann- Holzboog, 1973.
[5] H.-P. Schwefel, "Evolutionsstrategie und numerische optimierung," Ph.D. dissertation, Technische Universitt Berlin, 1975.
[6] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artifical intelligence through simulated evolution. Wiley, New York, 1966.
[7] D. B. Fogel, "Evolving artifical intelligence," Ph.D. dissertation, University of California, San Diego, 1992.
[8] J. R. Koza, Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems. Stanford University Computer Science Department, 1990.
[9] R. Dawkins, The selfish gene, new ed. Oxford New York: Oxford University Press, 1989.
[10] . E. Eiben, R. Hinterding, and Z. Michalewicz, Parameter Control in Evolutionary Algorithms. IEEE Computer Society, 1999.
[11] I. Gerdes, F. Klawonn, and R. Kruse, Evolutionre Algorithmen, 1st ed. Vieweg Verlag, 2004.
[12] E. Schneburg, F. Heinzmann, and S. Feddersen, Genetische Algorithmen und Evolutionsstrategien, 1st ed. Addison-Wesley, 1994.
[13] A. van Gelder, Approximate simulation of elastic membranes by triangulated spring meshes. J. Graph. Tools, 3(2):21-42, 1998.
[14] A. Nealen, M. M¨uller, R. Keiser, E. Boxermann, M. Carlson, D. W., and C. Helmberg, "Physically based deformable models in computer graphics," cgforum, pp. 71-94, Jul 2005.
[15] G. Bianchi, B. Solenthaler, G. Szkely, and M. Harders, "Simultaneous topology and stiffness identification for mass-spring models based on fem reference deformations," 2004.
[16] U. V¨ollinger, H. Stier, J. Priesnitz, and F.-L. Krause, "Evolutionary optimization of mass-spring models," CIRP Journal of Manufacturing Science and Technology, vol. 1, pp. 137-141, December 2008.
[17] O. Deussen, Untersuchung effizienter Verfahren zur Bewegungssimulation deformierbarer K¨orper, fortschritt-berichte vdi reihe 20 nr. 215 ed. VDI Verlag, 1996.
[18] V. D. I. VDI, Konstruktionsmethodik - Technisch-wirtschaftliche Bewertung, vdi richtlinie 2225, blatt 3 ed., 1998.