Search results for: Electromyography signal
1220 The Utility of Wavelet Transform in Surface Electromyography Feature Extraction -A Comparative Study of Different Mother Wavelets
Authors: Farzaneh Akhavan Mahdavi, Siti Anom Ahmad, Mohd Hamiruce Marhaban, Mohammad-R. Akbarzadeh-T
Abstract:
Electromyography (EMG) signal processing has been investigated remarkably regarding various applications such as in rehabilitation systems. Specifically, wavelet transform has served as a powerful technique to scrutinize EMG signals since wavelet transform is consistent with the nature of EMG as a non-stationary signal. In this paper, the efficiency of wavelet transform in surface EMG feature extraction is investigated from four levels of wavelet decomposition and a comparative study between different mother wavelets had been done. To recognize the best function and level of wavelet analysis, two evaluation criteria, scatter plot and RES index are recruited. Hereupon, four wavelet families, namely, Daubechies, Coiflets, Symlets and Biorthogonal are studied in wavelet decomposition stage. Consequently, the results show that only features from first and second level of wavelet decomposition yields good performance and some functions of various wavelet families can lead to an improvement in separability class of different hand movements.
Keywords: Electromyography signal, feature extraction, wavelettransform, means absolute value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28411219 Noise Removal from Surface Respiratory EMG Signal
Authors: Slim Yacoub, Kosai Raoof
Abstract:
The aim of this study was to remove the two principal noises which disturb the surface electromyography signal (Diaphragm). These signals are the electrocardiogram ECG artefact and the power line interference artefact. The algorithm proposed focuses on a new Lean Mean Square (LMS) Widrow adaptive structure. These structures require a reference signal that is correlated with the noise contaminating the signal. The noise references are then extracted : first with a noise reference mathematically constructed using two different cosine functions; 50Hz (the fundamental) function and 150Hz (the first harmonic) function for the power line interference and second with a matching pursuit technique combined to an LMS structure for the ECG artefact estimation. The two removal procedures are attained without the use of supplementary electrodes. These techniques of filtering are validated on real records of surface diaphragm electromyography signal. The performance of the proposed methods was compared with already conducted research results.Keywords: Surface EMG, Adaptive, Matching Pursuit, Powerline interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43251218 Review of Surface Electromyogram Signals: Its Analysis and Applications
Authors: Anjana Goen, D. C. Tiwari
Abstract:
Electromyography (EMG) is the study of muscles function through analysis of electrical activity produced from muscles. This electrical activity which is displayed in the form of signal is the result of neuromuscular activation associated with muscle contraction. The most common techniques of EMG signal recording are by using surface and needle/wire electrode where the latter is usually used for interest in deep muscle. This paper will focus on surface electromyogram (SEMG) signal. During SEMG recording, several problems had to been countered such as noise, motion artifact and signal instability. Thus, various signal processing techniques had been implemented to produce a reliable signal for analysis. SEMG signal finds broad application particularly in biomedical field. It had been analyzed and studied for various interests such as neuromuscular disease, enhancement of muscular function and human-computer interface.
Keywords: Evolvable hardware (EHW), Functional Electrical Simulation (FES), Hidden Markov Model (HMM), Hjorth Time Domain (HTD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35161217 Electromyography Activity of the Rectus Femoris and Biceps Femoris Muscles during Prostration and Squat Exercise
Authors: Mohd Safee M. K., Wan Abas W. A. B, Ibrahim F., Abu Osman N. A., Abdul Malik N. A.
Abstract:
This paper investigates the activity of the rectus femoris (RF) and biceps femoris (BF) in healthy subjects during salat (prostration) and specific exercise (squat exercise) using electromyography (EMG). A group of undergraduates aged between 19 to 25 years voluntarily participated in this study. The myoelectric activity of the muscles were recorded and analyzed. The finding indicated that there were contractions of the muscles during the salat and exercise with almost same EMG’s level. From the result, Wilcoxon’s Rank Sum test showed significant difference between prostration and squat exercise (p<0.05) but the differences was very small; RF (8.63%MVC) and BF (11.43%MVC). Therefore, salat may be useful in strengthening exercise and also in rehabilitation programs for lower limb activities. This pilot study conducted initial research into the biomechanical responses of human muscles in various positions of salat.
Keywords: Electromyography, exercise, muscle, salat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31551216 Low Cost Surface Electromyographic Signal Amplifier Based On Arduino Microcontroller
Authors: Igor Luiz Bernardes de Moura, Luan Carlos de Sena Monteiro Ozelim, Fabiano Araujo Soares
Abstract:
The development of an low cost acquisition system of S-EMG signals which are reliable, comfortable for the user and with high mobility shows to be a relevant proposition in modern biomedical engineering scenario. In the study, the sampling capacity of the Arduino microcontroller Atmel Atmega328 with an A / D converter with 10-bit resolution and its reconstructing capability of a signal of surface electromyography is analyzed. An electronic circuit to capture the signal through two differential channels was designed, signals from Biceps Brachialis of a healthy man of 21 years was acquired to test the system prototype. ARV, MDF, MNF and RMS estimators were used to compare de acquired signals with physiological values. The Arduino was configured with a sampling frequency of 1.5kHz for each channel, and the tests with the circuit designed offered a SNR of 20.57dB.
Keywords: Eletromyography, Arduino, Low-Cost, Atmel Atmega328 microcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49451215 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.
Keywords: Electrocardiogram, manifold learning, Laplacian Eigenmaps, running pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11211214 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle
Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores, Valentin Soloiu
Abstract:
This work describes a system that uses electromyography (EMG) signals obtained from muscle sensors and an Artificial Neural Network (ANN) for signal classification and pattern recognition that is used to control a small unmanned aerial vehicle using specific arm movements. The main objective of this endeavor is the development of an intelligent interface that allows the user to control the flight of a drone beyond direct manual control. The sensor used were the MyoWare Muscle sensor which contains two EMG electrodes used to collect signals from the posterior (extensor) and anterior (flexor) forearm, and the bicep. The collection of the raw signals from each sensor was performed using an Arduino Uno. Data processing algorithms were developed with the purpose of classifying the signals generated by the arm’s muscles when performing specific movements, namely: flexing, resting, and motion of the arm. With these arm motions roll control of the drone was achieved. MATLAB software was utilized to condition the signals and prepare them for the classification. To generate the input vector for the ANN and perform the classification, the root mean square and the standard deviation were processed for the signals from each electrode. The neuromuscular information was trained using an ANN with a single 10 neurons hidden layer to categorize the four targets. The result of the classification shows that an accuracy of 97.5% was obtained. Afterwards, classification results are used to generate the appropriate control signals from the computer to the drone through a Wi-Fi network connection. These procedures were successfully tested, where the drone responded successfully in real time to the commanded inputs.
Keywords: Biosensors, electromyography, Artificial Neural Network, Arduino, drone flight control, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5571213 Bioarm, a Prostheses without Surgery
Authors: J. Sagouis, A. Chamel, E. Carre, C. Casasreales, G. Rudnik, M. Cerdan
Abstract:
Robotics provides answers to amputees. The most expensive solutions surgically connect the prosthesis to nerve endings. There are also several types of non-invasive technologies that recover nerve messages passing through the muscles. After analyzing these messages, myoelectric prostheses perform the desired movement. The main goal is to avoid all surgeries, which can be heavy and offer cheaper alternatives. For an amputee, we use valid muscles to recover the electrical signal involved in a muscle movement. EMG sensors placed on the muscle allows us to measure a potential difference, which our program transforms into control for a robotic arm with two degrees of freedom. We have shown the feasibility of non-invasive prostheses with two degrees of freedom. Signal analysis and an increase in degrees of freedom is still being improved.
Keywords: Prosthesis, electromyography (EMG), robotic arm, nerve message.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741212 Design of Medical Information Storage System – ECG Signal
Authors: A. Rubiano F, N. Olarte, D. Lara
Abstract:
This paper presents the design, implementation and results related to the storage system of medical information associated to the ECG (Electrocardiography) signal. The system includes the signal acquisition modules, the preprocessing and signal processing, followed by a module of transmission and reception of the signal, along with the storage and web display system of the medical platform. The tests were initially performed with this signal, with the purpose to include more biosignal under the same system in the future.Keywords: Acquisition, ECG Signal, Storage, Web Platform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22691211 Electronic System Design for Respiratory Signal Processing
Authors: C. Matiz C., N. Olarte L., A. Rubiano F.
Abstract:
This paper presents the design related to the electronic system design of the respiratory signal, including phases for processing, followed by the transmission and reception of this signal and finally display. The processing of this signal is added to the ECG and temperature sign, put up last year. Under this scheme is proposed that in future also be conditioned blood pressure signal under the same final printed circuit and worked.Keywords: Conditioning, Respiratory Signal, Storage, Teleconsultation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23561210 Stochastic Resonance in Nonlinear Signal Detection
Authors: Youguo Wang, Lenan Wu
Abstract:
Stochastic resonance (SR) is a phenomenon whereby the signal transmission or signal processing through certain nonlinear systems can be improved by adding noise. This paper discusses SR in nonlinear signal detection by a simple test statistic, which can be computed from multiple noisy data in a binary decision problem based on a maximum a posteriori probability criterion. The performance of detection is assessed by the probability of detection error Per . When the input signal is subthreshold signal, we establish that benefit from noise can be gained for different noises and confirm further that the subthreshold SR exists in nonlinear signal detection. The efficacy of SR is significantly improved and the minimum of Per can dramatically approach to zero as the sample number increases. These results show the robustness of SR in signal detection and extend the applicability of SR in signal processing.Keywords: Probability of detection error, signal detection, stochastic resonance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15331209 A Novel EMG Feedback Control Method in Functional Electrical Stimulation Cycling System for Stroke Patients
Authors: Chien-Chih Chen, Ya-Hsin Hsueh, Zong-Cian He
Abstract:
With getting older in the whole population, the prevalence of stroke and its residual disability is getting higher and higher recently in Taiwan. The functional electrical stimulation cycling system (FESCS) is useful for hemiplegic patients. Because that the muscle of stroke patients is under hybrid activation. The raw electromyography (EMG) represents the residual muscle force of stroke subject whereas the peak-to-peak of stimulus EMG indicates the force enhancement benefiting from ES. It seems that EMG signals could be used for a parameter of feedback control mechanism. So, we design the feedback control protocol of FESCS, it includes physiological signal recorder, FPGA biomedical module, DAC and electrical stimulation circuit. Using the intensity of real-time EMG signal obtained from patients, as a feedback control method for the output voltage of FES-cycling system.Keywords: Functional Electrical Stimulation cycling system EMG, control protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21151208 Noise-Improved Signal Detection in Nonlinear Threshold Systems
Authors: Youguo Wang, Lenan Wu
Abstract:
We discuss the signal detection through nonlinear threshold systems. The detection performance is assessed by the probability of error Per . We establish that: (1) when the signal is complete suprathreshold, noise always degrades the signal detection both in the single threshold system and in the parallel array of threshold devices. (2) When the signal is a little subthreshold, noise degrades signal detection in the single threshold system. But in the parallel array, noise can improve signal detection, i.e., stochastic resonance (SR) exists in the array. (3) When the signal is predominant subthreshold, noise always can improve signal detection and SR always exists not only in the single threshold system but also in the parallel array. (4) Array can improve signal detection by raising the number of threshold devices. These results extend further the applicability of SR in signal detection.Keywords: Probability of error, signal detection, stochasticresonance, threshold system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14371207 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading
Authors: Danladi Ali, Onah Festus Iloabuchi
Abstract:
In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using onedimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.
Keywords: One-dimensional multilevel wavelets, path loss, GSM signal strength, propagation and urban environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581206 Electromyographic Activity of the Medial Gastrocnemius and Lateral Gastrocnemius Muscle during Salat-s and Specific Exercise
Authors: M. K. M. Safee, W. A. B. Wan Abas, N. A. Abu Osman, F. Ibrahim
Abstract:
This paper investigates the activity of the gastrocnemius (Gas) muscle in healthy subjects during salat (ruku- position) and specific exercise [Unilateral Plantar Flexion Exercise (UPFE)] using electromyography (EMG). Both lateral and medial Gas muscles were assessed. A group of undergraduates aged between 19 to 25 years voluntarily participated in this study. The myoelectric activity of the muscles were recorded and analyzed. The finding indicated that there were contractions of the muscles during the salat and exercise with almost same EMG-s level. From the result, Wilcoxon-s Rank Sum test showed no significant difference between ruku- and UPFE for both medial (p=0.082) and lateral (p=0.226) of GAS muscles. Therefore, salat may be useful in strengthening exercise and also in rehabilitation programs for lower limb activities.Keywords: Electromyography, salat, exercise, muscle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21451205 All Optical Wavelength Conversion Based On Four Wave Mixing in Optical Fiber
Authors: Surinder Singh, Gursewak Singh Lovkesh
Abstract:
We have designed wavelength conversion based on four wave mixing in an optical fiber at 10 Gb/s. The power of converted signal increases with increase in signal power. The converted signal power is investigated as a function of input signal power and pump power. On comparison of converted signal power at different value of input signal power, we observe that best converted signal power is obtained at -2 dBm input signal power for both up conversion as well as for down conversion. Further, FWM efficiency, quality factor is observed for increase in input signal power and optical fiber length.Keywords: FWM, Optical fiber, Quality, Wavelength Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22441204 Development of Intelligent Time/Frequency Based Signal Detection Algorithm for Intrusion Detection System
Authors: Waqas Ahmed, S Sajjad Haider Zaidi
Abstract:
For the past couple of decades Weak signal detection is of crucial importance in various engineering and scientific applications. It finds its application in areas like Wireless communication, Radars, Aerospace engineering, Control systems and many of those. Usually weak signal detection requires phase sensitive detector and demodulation module to detect and analyze the signal. This article gives you a preamble to intrusion detection system which can effectively detect a weak signal from a multiplexed signal. By carefully inspecting and analyzing the respective signal, this system can successfully indicate any peripheral intrusion. Intrusion detection system (IDS) is a comprehensive and easy approach towards detecting and analyzing any signal that is weakened and garbled due to low signal to noise ratio (SNR). This approach finds significant importance in applications like peripheral security systems.Keywords: Data Acquisition, fast frequency transforms, Lab VIEW software, weak signal detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25101203 Algorithm of Measurement of Noise Signal Power in the Presence of Narrowband Interference
Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev
Abstract:
A power measurement algorithm of the input mix components of the noise signal and narrowband interference is considered using functional transformations of the input mix in the postdetection processing channel. The algorithm efficiency analysis has been carried out for different interference-to-signal ratio. Algorithm performance features have been explored by numerical experiment results.
Keywords: Noise signal, continuous narrowband interference, signal power, spectrum width, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13971202 Detecting Abnormal ECG Signals Utilising Wavelet Transform and Standard Deviation
Authors: Dejan Stantic, Jun Jo
Abstract:
ECG contains very important clinical information about the cardiac activities of the heart. Often the ECG signal needs to be captured for a long period of time in order to identify abnormalities in certain situations. Such signal apart of a large volume often is characterised by low quality due to the noise and other influences. In order to extract features in the ECG signal with time-varying characteristics at first need to be preprocessed with the best parameters. Also, it is useful to identify specific parts of the long lasting signal which have certain abnormalities and to direct the practitioner to those parts of the signal. In this work we present a method based on wavelet transform, standard deviation and variable threshold which achieves 100% accuracy in identifying the ECG signal peaks and heartbeat as well as identifying the standard deviation, providing a quick reference to abnormalities.
Keywords: Electrocardiogram-ECG, Arrhythmia, Signal Processing, Wavelet Transform, Standard Deviation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29091201 Envelope Echo Signal of Metal Sphere in the Fresh Water
Authors: A. Mahfurdz, Sunardi, H. Ahmad
Abstract:
An envelope echo signal measurement is proposed in this paper using echo signal observation from the 200 kHz echo sounder receiver. The envelope signal without any object is compared with the envelope signal of the sphere. Two diameter size steel ball (3.1 cm & 2.2 cm) and two diameter size air filled stainless steel ball (4.8 cm & 7.4 cm) used in this experiment. The target was positioned about 0.5 m and 1.0 meter from the transducer face using nylon rope. From the echo observation in time domain, it is obviously shown that echo signal structure is different between the size, distance and type of metal sphere. The amplitude envelope voltage for the bigger sphere is higher compare to the small sphere and it confirm that the bigger sphere have higher target strength compare to the small sphere. Although the structure signal without any object are different compare to the signal from the sphere, the reflected signal from the tank floor increase linearly with the sphere size. We considered this event happened because of the object position approximately to the tank floor.Keywords: echo sounder, target strength, sphere, echo signal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16061200 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy
Authors: Nazaket Gazieva
Abstract:
Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.
Keywords: Biometric voice prints, fundamental frequency, phonogram, speech signal, temporal characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5771199 Array Signal Processing: DOA Estimation for Missing Sensors
Authors: Lalita Gupta, R. P. Singh
Abstract:
Array signal processing involves signal enumeration and source localization. Array signal processing is centered on the ability to fuse temporal and spatial information captured via sampling signals emitted from a number of sources at the sensors of an array in order to carry out a specific estimation task: source characteristics (mainly localization of the sources) and/or array characteristics (mainly array geometry) estimation. Array signal processing is a part of signal processing that uses sensors organized in patterns or arrays, to detect signals and to determine information about them. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal. Using Beamforming we can direct the majority of signal energy we receive from a group of array. Multiple signal classification (MUSIC) is a highly popular eigenstructure-based estimation method of direction of arrival (DOA) with high resolution. This Paper enumerates the effect of missing sensors in DOA estimation. The accuracy of the MUSIC-based DOA estimation is degraded significantly both by the effects of the missing sensors among the receiving array elements and the unequal channel gain and phase errors of the receiver.
Keywords: Array Signal Processing, Beamforming, ULA, Direction of Arrival, MUSIC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30211198 Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference
Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev
Abstract:
A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference-to-signal ratio. Algorithm performance features have been explored by numerical experiment results.
Keywords: Noise signal, pulse interference, signal power, spectrum width, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14721197 A Novel Machining Signal Filtering Technique: Z-notch Filter
Authors: Nuawi M. Z., Lamin F., Ismail A. R., Abdullah S., Wahid Z.
Abstract:
A filter is used to remove undesirable frequency information from a dynamic signal. This paper shows that the Znotch filter filtering technique can be applied to remove the noise nuisance from a machining signal. In machining, the noise components were identified from the sound produced by the operation of machine components itself such as hydraulic system, motor, machine environment and etc. By correlating the noise components with the measured machining signal, the interested components of the measured machining signal which was less interfered by the noise, can be extracted. Thus, the filtered signal is more reliable to be analysed in terms of noise content compared to the unfiltered signal. Significantly, the I-kaz method i.e. comprises of three dimensional graphical representation and I-kaz coefficient, Z∞ could differentiate between the filtered and the unfiltered signal. The bigger space of scattering and the higher value of Z∞ demonstrated that the signal was highly interrupted by noise. This method can be utilised as a proactive tool in evaluating the noise content in a signal. The evaluation of noise content is very important as well as the elimination especially for machining operation fault diagnosis purpose. The Z-notch filtering technique was reliable in extracting noise component from the measured machining signal with high efficiency. Even though the measured signal was exposed to high noise disruption, the signal generated from the interaction between cutting tool and work piece still can be acquired. Therefore, the interruption of noise that could change the original signal feature and consequently can deteriorate the useful sensory information can be eliminated.
Keywords: Digital signal filtering, I-kaz method, Machiningmonitoring, Noise Cancelling, Sound
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18841196 Hybrid Method Using Wavelets and Predictive Method for Compression of Speech Signal
Authors: Karima Siham Aoubid, Mohamed Boulemden
Abstract:
The development of the signal compression algorithms is having compressive progress. These algorithms are continuously improved by new tools and aim to reduce, an average, the number of bits necessary to the signal representation by means of minimizing the reconstruction error. The following article proposes the compression of Arabic speech signal by a hybrid method combining the wavelet transform and the linear prediction. The adopted approach rests, on one hand, on the original signal decomposition by ways of analysis filters, which is followed by the compression stage, and on the other hand, on the application of the order 5, as well as, the compression signal coefficients. The aim of this approach is the estimation of the predicted error, which will be coded and transmitted. The decoding operation is then used to reconstitute the original signal. Thus, the adequate choice of the bench of filters is useful to the transform in necessary to increase the compression rate and induce an impercevable distortion from an auditive point of view.Keywords: Compression, linear prediction analysis, multiresolution analysis, speech signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13381195 Adaptive Line Enhancement of Narrowband Signal
Authors: Young-Seok Choi
Abstract:
The Adaptive Line Enhancer (ALE) is widely used for enhancing narrowband signals corrupted by broadband noise. In this paper, we propose novel ALE methods to improve the enhancing capability. The proposed methods are motivated by the fact that the output of the ALE is a fine estimate of the desired narrowband signal with the broadband noise component suppressed. The proposed methods preprocess the input signal using ALE filter to regenerate a finer input signal. Thus the proposed ALE is driven by the input signal with higher signal-to-noise ratio (SNR). The analysis and simulation results are presented to demonstrate that the proposed ALE has better performance than conventional ALE’s.Keywords: Adaptive filter, adaptive line enhancer, noise, feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20861194 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.
Keywords: Antenna array, signal detection, ToA, AoA estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20471193 Denosing ECG using Translation Invariant Multiwavelet
Authors: Jeong Yup Han, Su Kyung Lee, Hong Bae Park
Abstract:
In this paper, we propose a method to reduce the various kinds of noise while gathering and recording the electrocardiogram (ECG) signal. Because of the defects of former method in the noise elimination of ECG signal, we use translation invariant (TI) multiwavelet denoising method to the noise elimination. The advantage of the proposed method is that it may not only remain the geometrical characteristics of the original ECG signal and keep the amplitudes of various ECG waveforms efficiently, but also suppress impulsive noise to some extent. The simulation results indicate that the proposed method are better than former removing noise method in aspects of remaining geometrical characteristics of ECG signal and the signal-to-noise ratio (SNR).Keywords: ECG, TI multiwavelet, denoise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17681192 Oil Debris Signal Detection Based on Integral Transform and Empirical Mode Decomposition
Authors: Chuan Li, Ming Liang
Abstract:
Oil debris signal generated from the inductive oil debris monitor (ODM) is useful information for machine condition monitoring but is often spoiled by background noise. To improve the reliability in machine condition monitoring, the high-fidelity signal has to be recovered from the noisy raw data. Considering that the noise components with large amplitude often have higher frequency than that of the oil debris signal, the integral transform is proposed to enhance the detectability of the oil debris signal. To cancel out the baseline wander resulting from the integral transform, the empirical mode decomposition (EMD) method is employed to identify the trend components. An optimal reconstruction strategy including both de-trending and de-noising is presented to detect the oil debris signal with less distortion. The proposed approach is applied to detect the oil debris signal in the raw data collected from an experimental setup. The result demonstrates that this approach is able to detect the weak oil debris signal with acceptable distortion from noisy raw data.Keywords: Integral transform, empirical mode decomposition, oil debris, signal processing, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17171191 Control Signal from EOG Analysis and Its Application
Authors: Myoung Ro Kim, Gilwon Yoon
Abstract:
A game using electro-oculography (EOG) as control signal was introduced in this study. Various EOG signals are generated by eye movements. Even though EOG is a quite complex type of signal, distinct and separable EOG signals could be classified from horizontal and vertical, left and right eye movements. Proper signal processing was incorporated since EOG signal has very small amplitude in the order of micro volts and contains noises influenced by external conditions. Locations of the electrodes were set to be above and below as well as left and right positions of the eyes. Four control signals of up, down, left and right were generated. A microcontroller processed signals in order to simulate a DDR game. A LCD display showed arrows falling down with four different head directions. This game may be used as eye exercise for visual concentration and acuity. Our proposed EOG control signal can be utilized in many other applications of human machine interfaces such as wheelchair, computer keyboard and home automation.
Keywords: DDR game, EOG, eye movement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4796