Search results for: Electrical Discharge Machining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1197

Search results for: Electrical Discharge Machining

807 Novel Intrinsic Conducting Polymer Current Limiting Device (CLD) for Surge Protection

Authors: Noor H Jabarullah

Abstract:

In the past many uneconomic solutions for limitation and interruption of short-circuit currents in low power applications have been introduced, especially polymer switch based on the positive temperature coefficient of resistance (PCTR) concept. However there are many limitations in the active material, which consists of conductive fillers. This paper presents a significantly improved and simplified approach that replaces the existing current limiters with faster switching elements. Its elegance lies in the remarkable simplicity and low-cost processes of producing the device using polyaniline (PANI) doped with methane-sulfonic acid (MSA). Samples characterized as lying in the metallic and critical regimes of metal insulator transition have been studied by means of electrical performance in the voltage range from 1V to 5 V under different environmental conditions. Moisture presence is shown to increase the resistivity and also improved its current limiting performance. Additionally, the device has also been studied for electrical resistivity in the temperature range 77 K-300 K. The temperature dependence of the electrical conductivity gives evidence for a transport mechanism based on variable range hopping in three dimensions.

Keywords: Conducting polymer, current limiter, intrinsic, moisture dependence, polyaniline, resettable, surge protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
806 Optimizing Materials Cost and Mechanical Properties of PVC Electrical Cable-s Insulation by Using Mixture Experimental Design Approach

Authors: Safwan Altarazi, Raghad Hemeimat, Mousa Wakileh, Ra'ad Qsous, Aya Khreisat

Abstract:

With the development of the Polyvinyl chloride (PVC) products in many applications, the challenge of investigating the raw material composition and reducing the cost have both become more and more important. Considerable research has been done investigating the effect of additives on the PVC products. Most of the PVC composites research investigates only the effect of single/few factors, at a time. This isolated consideration of the input factors does not take in consideration the interaction effect of the different factors. This paper implements a mixture experimental design approach to find out a cost-effective PVC composition for the production of electrical-insulation cables considering the ASTM Designation (D) 6096. The results analysis showed that a minimum cost can be achieved through using 20% virgin PVC, 18.75% recycled PVC, 43.75% CaCO3 with participle size 10 microns, 14% DOP plasticizer, and 3.5% CPW plasticizer. For maximum UTS the compound should consist of: 17.5% DOP, 62.5% virgin PVC, and 20.0% CaCO3 of particle size 5 microns. Finally, for the highest ductility the compound should be made of 35% virgin PVC, 20% CaCO3 of particle size 5 microns, and 45.0% DOP plasticizer.

Keywords: ASTM 6096, mixture experimental-design approach, PVC electrical cable insulation, recycled PVC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4664
805 A Novel Eccentric Lapping Method with Two Rotatable Lapping Plates for Finishing Cemented Carbide Balls

Authors: C. C. Lv, Y. L. Sun, D. W. Zuo

Abstract:

Cemented carbide balls are usually implemented in industry under the environment of high speed, high temperature, corrosiveness and strong collisions. However, its application is limited due to high fabrication cost, processing efficiency and quality. A novel eccentric lapping method with two rotatable lapping plates was proposed in this paper. A mathematical model was constructed to analyze the influence of each design parameter on this lapping method. To validate this new lapping method, an orthogonal experiment was conducted with cemented carbide balls (YG6). The simulation model was verified and the optimal lapping parameters were derived. The results show that the surface roundness of the balls reaches to 0.65um from 2um in 1 hour using this lapping method. So, using this novel lapping method, it can effectively improve the machining precision and efficiency of cemented carbide balls.

Keywords: Cemented carbide balls, eccentric lapping, high precision, lapping tracks, V-groove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464
804 Automation System for Optimization of Electrical and Thermal Energy Production in Cogenerative Gas Power Plants

Authors: Ion Miciu

Abstract:

The system is made with main distributed components: First Level: Industrial Computers placed in Control Room (monitors thermal and electrical processes based on the data provided by the second level); Second Level: PLCs which collects data from process and transmits information on the first level; also takes commands from this level which are further, passed to execution elements from third level; Third Level: field elements consisting in 3 categories: data collecting elements; data transfer elements from the third level to the second; execution elements which take commands from the second level PLCs and executes them after which transmits the confirmation of execution to them. The purpose of the automatic functioning is the optimization of the co-generative electrical energy commissioning in the national energy system and the commissioning of thermal energy to the consumers. The integrated system treats the functioning of all the equipments and devices as a whole: Gas Turbine Units (GTU); MT 20kV Medium Voltage Station (MVS); 0,4 kV Low Voltage Station (LVS); Main Hot Water Boilers (MHW); Auxiliary Hot Water Boilers (AHW); Gas Compressor Unit (GCU); Thermal Agent Circulation Pumping Unit (TPU); Water Treating Station (WTS).

Keywords: Automation System, Cogenerative Power Plant, Control, Monitoring, Real Time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
803 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: Distributed energy resources, network energy system, optimization, microgeneration system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
802 Emission Constrained Hydrothermal Scheduling Algorithm

Authors: Sayeed Salam

Abstract:

This paper presents an efficient emission constrained hydrothermal scheduling algorithm that deals with nonlinear functions such as the water discharge characteristics, thermal cost, and transmission loss. It is then incorporated into the hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production cost causes a substantial reduction in emission.

Keywords: Emission constraint, Hydrothermal coordination, and Hydrothermal scheduling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
801 Inspection of Geometrical Integrity of Work Piece and Measurement of Tool Wear by the Use of Photo Digitizing Method

Authors: R. Alipour, F. Nadjarian, A. Alinaghizade

Abstract:

Considering complexity of products, new geometrical design and investment tolerances that are necessary, measuring and dimensional controlling involve modern and more precise methods. Photo digitizing method using two cameras to record pictures and utilization of conventional method named “cloud points" and data analysis by the use of ATOUS software, is known as modern and efficient in mentioned context. In this paper, benefits of photo digitizing method in evaluating sampling of machining processes have been put forward. For example, assessment of geometrical integrity surface in 5-axis milling process and measurement of carbide tool wear in turning process, can be can be brought forward. Advantages of this method comparing to conventional methods have been expressed.

Keywords: photo digitizing, tool wear, geometrical integrity, cloud points

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
800 Guidelines for Developing, Supervising, Assessing and Evaluating Capstone Design Project of BSc in Electrical and Electronic Engineering Program

Authors: Muhibul Haque Bhuyan

Abstract:

Inclusion of any design project in an undergraduate electrical and electronic engineering curriculum and producing creative ideas in the final year capstone design projects have received numerous comments at the Board of Accreditation for Engineering and Technical Education (BAETE) several times by the mentors and visiting program evaluator team members at different public and private universities in Bangladesh. To eradicate this deficiency which is needed for getting the program accreditation, a thorough change was required in the Department of Electrical and Electronic Engineering (EEE) for its BSc in EEE program at Southeast University, Dhaka, Bangladesh. We suggested making changes in the course curriculum titles and contents, emphasizing to include capstone design projects, question setting, examining students through other standard methods, selecting and retaining Outcome-Based Education (OBE)-oriented engineering faculty members, improving laboratories through purchasing new equipment and software as well as developing new experiments for each laboratory courses, and engaging the students to practical designs in various courses and final year projects. This paper reports on capstone design project course objectives, course outcomes, mapping with the program outcomes, cognitive domain of learning, assessment schemes, guidelines, suggestions and recommendations for supervision processes, assessment strategy, and rubric setting, etc. It is expected that this will substantially improve the capstone design projects offering, supervision, and assessment in the undergraduate EEE program to fulfill the arduous requirements of BAETE accreditation based on OBE.

Keywords: Course outcome, capstone design project, assessment and evaluation, electrical and electronic engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 461
799 Photodetector Engineering with Plasmonic Properties

Authors: Hasan Furkan Kurt, Tugba Nur Atabey, Onat Cavit Dereli, Ahmad Salmanogli, H. Selcuk Gecim

Abstract:

In the article, the main goal is to study the effect of the plasmonic properties on the photocurrent generated by a photodetector. Fundamentally, a typical photodetector is designed and simulated using the finite element methods. To utilize the plasmonic effect, gold nanoparticles with different shape, size and morphology are buried into the intrinsic region. Plasmonic effect is arisen through the interaction of the incoming light with nanoparticles by which electrical properties of the photodetector are manipulated. In fact, using plasmonic nanoparticles not only increases the absorption bandwidth of the incoming light, but also generates a high intensity near-field close to the plasmonic nanoparticles. Those properties strongly affect the generated photocurrent. The simulation results show that using plasmonic nanoparticles significantly enhances the electrical properties of the photodetectors. More importantly, one can easily manipulate the plasmonic properties of the gold nanoparticles through engineering the nanoparticles' size, shape and morphology. Another important phenomenon is plasmon-plasmon interaction inside the photodetector. It is shown that plasmon-plasmon interaction improves the electron-hole generation rate by which the rate of the current generation is severely enhanced. This is the key factor that we want to focus on, to improve the photodetector electrical properties.

Keywords: Nanoparticles, plasmonic, plasmon-plasmon interaction, plasmonic photodetector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
798 Simulating Voltage Sag Using PSCAD Software

Authors: Kang Chia Yang, Hushairi HJ Zen, Nur Ikhmar@Najemeen Binti Ayob

Abstract:

Power quality is used to describe the degree of consistency of electrical energy expected from generation source to point of use. The term power quality refers to a wide variety of electromagnetic phenomena that characterize the voltage and current at a given time and at a given location on the power system. Power quality problems can be defined as problem that results in failure of customer equipments, which manifests itself as an economic burden to users, or produces negative impacts on the environment. Voltage stability, power factor, harmonics pollution, reactive power and load unbalance are some of the factors that affect the consistency or the quality level. This research proposal proposes to investigate and analyze the causes and effects of power quality to homes and industries in Sarawak. The increasing application of electronics equipment used in the industries and homes has caused a big impact on the power quality. Many electrical devices are now interconnected to the power network and it can be observed that if the power quality of the network is good, then any loads connected to it will run smoothly and efficiently. On the other hand, if the power quality of the network is bad, then loads connected to it will fail or may cause damage to the equipments and reduced its lifetime. The outcome of this research will enable better and novel solutions of poor power quality to small industries and reduce damage of electrical devices and products in the industries.

Keywords: Power quality, power network, voltage dip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4298
797 Material Concepts and Processing Methods for Electrical Insulation

Authors: R. Sekula

Abstract:

Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.

Keywords: Curing, epoxy insulation, numerical simulations, recycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
796 Theoretical Calculation of Electrical and Optical Properties of BaZrO3

Authors: Leyla Safaie Kouchaksaraie

Abstract:

In this project electrical and optical properties of BaZrO3 have been accomplished through the full-potential linear augmented plane wave (FP-LAPW) by applying Wein2k software. In this study band structure, density of state, gap energy, refractive index and optical conduction have been studied. The results of calculations show that BaZrO3 is an insulator with an indirect gap in which 3.2 ev and studied refractive index equal 2.07. These results are in accordance with the ones obtained in experimental researches.

Keywords: Density Functional Theory (DFT), Full PotentialLinearized Augmented Plane Wave (Fp-LAPW), GeneralizedGradient Approximation (GGA), Linearized Augmented Plane Wave(LAPW), Local Density Approximation (LDA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
795 A Linearization and Decomposition Based Approach to Minimize the Non-Productive Time in Transfer Lines

Authors: Hany Osman, M. F. Baki

Abstract:

We address the balancing problem of transfer lines in this paper to find the optimal line balancing that minimizes the nonproductive time. We focus on the tool change time and face orientation change time both of which influence the makespane. We consider machine capacity limitations and technological constraints associated with the manufacturing process of auto cylinder heads. The problem is represented by a mixed integer programming model that aims at distributing the design features to workstations and sequencing the machining processes at a minimum non-productive time. The proposed model is solved by an algorithm established using linearization schemes and Benders- decomposition approach. The experiments show the efficiency of the algorithm in reaching the exact solution of small and medium problem instances at reasonable time.

Keywords: Transfer line balancing, Benders' decomposition, Linearization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
794 Roughness and Hardness of 60/40 Cu-Zn Alloy

Authors: Pavana Manvikar, G K Purohit

Abstract:

The functional performance of machined components, often, depends on surface topography, hardness, nature of stress and strain induced on the surface, etc. Invariably, surfaces of metallic components obtained by turning, milling, etc., consist of irregularities such as machining marks are responsible for the above. Surface finishing/coating processes used to produce improved surface quality/textures are classified as chip-removal and chip-less processes. Burnishing is chip-less cold working process carried out to improve surface finish, hardness and resistance to fatigue and corrosion; not obtainable by other surface coating and surface treatment processes. It is a very simple, but effective method which improves surface characteristics and is reported to introduce compressive stresses.

Of late, considerable attention is paid to post-machining, finishing operations, such as burnishing. During burnishing the micro-irregularities start to deform plastically, initially the crests are gradually flattened and zones of reduced deformation are formed. When all the crests are deformed, the valleys between the micro-irregularities start moving in the direction of the newly formed surface. The grain structure is then condensed, producing a smoother and harder surface with superior load-carrying and wear-resistant capabilities.

Burnishing can be performed on a lathe with a highly polished ball or roller type tool which is traversed under force over a rotating/stationary work piece. Often, several passes are used to obtain the work piece surface with the desired finish and hardness.

This paper presents the findings of an experimental investigation on the effect of ball burnishing parameters such as, burnishing speed, feed, force and number of passes; on surface roughness (Ra) and micro-hardness (Hv) of a 60/40 copper/zinc alloy, using a 2-level fractional factorial design of experiments (DoE). Mathematical models were developed to predict surface roughness and hardness generated by burnishing in terms of the above process parameters. A ball-type tool, designed and constructed from a high chrome steel material (HRC=63 and Ra=0.012 µm), was used for burnishing of fine-turned cylindrical bars (0.68-0.78µm and 145Hv). They are given by,

 

Ra= 0.305-0.005X1 - 0.0175X2 + 0.0525X4 + 0.0125X1X4 -0.02X2X4 - 0.0375X3X4

 

Hv=160.625 -2.37 5X1 + 5.125X2 + 1.875X3 + 4.375X4 - 1.625X1X4 + 4.375X2X4 - 2.375X3X4

 

High surface microhardness (175HV) was obtained at 400rpm, 2passes, 0.05mm/rev and 15kgf., and high surface finish (0.20µm) was achieved at 30kgf, 0.1mm/rev, 112rpm and single pass. In other words, surface finish improved by 350% and microhardness improved by 21% compared to as machined conditions.

Keywords: Ball burnishing, surface roughness, micro-hardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
793 Wireless Neural Stimulator with Adjustable Electrical Quantity

Authors: Young-Seok Choi

Abstract:

The neural stimulation has been gaining much interest in neuromodulation research and clinical trials. For efficiency, there is a need for variable electrical stimulation such as current and voltage stimuli as well as wireless framework. In this regard, we develop the wireless neural stimulator capable of voltage and current stimuli. The system consists of ZigBee which is a wireless communication module and stimulus generator. The stimulus generator with 8-bits resolution enable both mono-polar and bi-polar waveform in voltage (-3.3~3.3V) and current(-330~330µA) stimulus mode which is controllable. The experimental results suggest that the proposed neural stimulator can play a role as an effective approach for neuromodulation.

Keywords: Neural stimulator, current stimulation, voltage stimulation, neuromodulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
792 Chips of Ti-6Al-2Sn-4Zr-6Mo Alloy – A Detailed Geometry Study

Authors: Dmytro Ostroushko, Karel Saksl, Carsten Siemers, Zuzana Rihova

Abstract:

Titanium alloys like Ti-6Al-2Sn-4Zr-6Mo (Ti- 6246) are widely used in aerospace applications. Component manufacturing, however, is difficult and expensive as their machinability is extremely poor. A thorough understanding of the chip formation process is needed to improve related metal cutting operations.In the current study, orthogonal cutting experiments have been performed and theresulting chips were analyzed by optical microscopy and scanning electron microscopy.Chips from aTi- 6246ingot were produced at different cutting speeds and cutting depths. During the experiments, depending of the cutting conditions, continuous or segmented chips were formed. Narrow, highly deformed and grain oriented zones, the so-called shear zone, separated individual segments. Different material properties have been measured in the shear zones and the segments.

Keywords: Titanium alloy, Ti-6246, chip formation, machining, shear zone, microstructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
791 Electrical Properties of n-CdO/p-Si Heterojunction Diode Fabricated by Sol Gel

Authors: S.Aksoy, Y.Caglar

Abstract:

n-CdO/p-Si heterojunction diode was fabricated using sol-gel spin coating technique which is a low cost and easily scalable method for preparing of semiconductor films. The structural and morphological properties of CdO film were investigated. The X-ray diffraction (XRD) spectra indicated that the film was of polycrystalline nature. The scanning electron microscopy (SEM) images indicate that the surface morphology CdO film consists of the clusters formed with the coming together of the nanoparticles. The electrical characterization of Au/n-CdO/p–Si/Al heterojunction diode was investigated by current-voltage. The ideality factor of the diode was found to be 3.02 for room temperature. The reverse current of the diode strongly increased with illumination intensity of 100 mWcm-2 and the diode gave a maximum open circuit voltage Voc of 0.04 V and short-circuits current Isc of 9.92×10-9 A.

Keywords: CdO, heterojunction semiconductor devices, ideality factor, current-voltage characteristics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330
790 Thermal and Electrical Properties of Carbon Nanotubes Purified by Acid Digestion

Authors: Neslihan Yuca, Nilgün Karatepe, Fahrettin Yakuphanoğlu

Abstract:

Carbon nanotubes (CNTs) possess unique structural, mechanical, thermal and electronic properties, and have been proposed to be used for applications in many fields. However, to reach the full potential of the CNTs, many problems still need to be solved, including the development of an easy and effective purification procedure, since synthesized CNTs contain impurities, such as amorphous carbon, carbon nanoparticles and metal particles. Different purification methods yield different CNT characteristics and may be suitable for the production of different types of CNTs. In this study, the effect of different purification chemicals on carbon nanotube quality was investigated. CNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. The liquid phase oxidation method was applied for the purification of the synthesized CNT materials. Three different acid chemicals (HNO3, H2SO4, and HCl) were used in the removal of the metal catalysts from the synthesized CNT material to investigate the possible effects of each acid solution to the purification step. Purification experiments were carried out at two different temperatures (75 and 120 °C), two different acid concentrations (3 and 6 M) and for three different time intervals (6, 8 and 15 h). A 30% H2O2 : 3M HCl (1:1 v%) solution was also used in the purification step to remove both the metal catalysts and the amorphous carbon. The purifications using this solution were performed at the temperature of 75°C for 8 hours. Purification efficiencies at different conditions were evaluated by thermogravimetric analysis. Thermal and electrical properties of CNTs were also determined. It was found that the obtained electrical conductivity values for the carbon nanotubes were typical for organic semiconductor materials and thermal stabilities were changed depending on the purification chemicals.

Keywords: Carbon nanotubes, purification, acid digestion, thermalstability, electrical conductivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
789 Evolution, Tendencies and Impact of Standardization of Input/Output Platforms in Full Scale Simulators for Training Power Plant Operators

Authors: Zabre Eric, Román Rafael

Abstract:

This article presents the evolution and technological changes implemented on the full scale simulators developed by the Simulation Department of the Instituto de Investigaciones Eléctricas1 (Mexican Electric Research Institute) and located at different training centers around the Mexican territory, and allows US to know the last updates, basically from the input/output view point, of the current simulators at some facilities of the electrical sector as well as the compatible industry of the electrical manufactures and industries such as Comision Federal de Electricidad (CFE*, The utility Mexican company). Tendencies of these developments and impact within the operators- scope are also presented.

Keywords: Control room, communication protocol, instructor console, modeling, controller, training simulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
788 Effect of Thickness on Structural and Electrical Properties of CuAlS2 Thin Films Grown by Two Stage Vacuum Thermal Evaporation Technique

Authors: A. U. Moreh, M. Momoh, H. N. Yahya, B. Hamza, I. G. Saidu, S. Abdullahi

Abstract:

This work studies the effect of thickness on structural and electrical properties of CuAlS2 thin films grown by two stage vacuum thermal evaporation technique. CuAlS2 thin films of thicknesses 50nm, 100nm and 200nm were deposited on suitably cleaned corning 7059 glass substrate at room temperature (RT). In the first stage Cu-Al precursors were grown at room temperature by thermal evaporation and in the second stage Cu-Al precursors were converted to CuAlS2 thin films by sulfurisation under sulfur atmosphere at the temperature of 673K. The structural properties of the films were examined by X-ray diffraction (XRD) technique while electrical properties of the specimens were studied using four point probe method. The XRD studies revealed that the films are of crystalline in nature having tetragonal structure. The variations of the micro-structural parameters, such as crystallite size (D), dislocation density ( ), and micro-strain ( ), with film thickness were investigated. The results showed that the crystallite sizes increase as the thickness of the film increases. The dislocation density and micro-strain decreases as the thickness increases. The resistivity (  ) of CuAlS2 film is found to decrease with increase in film thickness, which is related to the increase of carrier concentration with film thickness. Thus thicker films exhibit the lowest resistivity and high carrier concentration, implying these are the most conductive films. Low electrical resistivity and high carrier concentration are widely used as the essential components in various optoelectronic devices such as light-emitting diode and photovoltaic cells.

Keywords: Crystalline, CuAlS2, evaporation, resistivity, sulfurisation, thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
787 Throughput Analysis over Power Line Communication Channel in an Electric Noisy Scenario

Authors: Edward P. Guillen, Julián J. López, Cesar Y. Barahona

Abstract:

Powerline Communications –PLC– as an alternative method for broadband networking, has the advantage of transmitting over channels already used for electrical distribution or even transmission. But these channels have been not designed with usual wired channels requirements for broadband applications such as stable impedance or known attenuation, and the network have to reject noises caused by electrical appliances that share the same channel. Noise control standards are difficult to complain or simply do not exist on Latin-American environments. This paper analyzes PLC throughput for home connectivity by probing noisy channel scenarios in a PLC network and the statistical results are shown.

Keywords: Power Line Communications, OFDM, Noise Analysis, Throughput Analysis, PLC, Home Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
786 Determination of Cd, Zn, K, pH, TNV, Organic Material and Electrical Conductivity (EC) Distribution in Agricultural Soils using Geostatistics and GIS (Case Study: South- Western of Natanz- Iran)

Authors: Abbas Hani, Seyed Ali Hoseini Abari

Abstract:

Soil chemical and physical properties have important roles in compartment of the environment and agricultural sustainability and human health. The objectives of this research is determination of spatial distribution patterns of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) in agricultural soils of Natanz region in Esfehan province. In this study geostatistic and non-geostatistic methods were used for prediction of spatial distribution of these parameters. 64 composite soils samples were taken at 0-20 cm depth. The study area is located in south of NATANZ agricultural lands with area of 21660 hectares. Spatial distribution of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) was determined using geostatistic and geographic information system. Results showed that Cd, pH, TNV and K data has normal distribution and Zn, OC and EC data had not normal distribution. Kriging, Inverse Distance Weighting (IDW), Local Polynomial Interpolation (LPI) and Redial Basis functions (RBF) methods were used to interpolation. Trend analysis showed that organic carbon in north-south and east to west did not have trend while K and TNV had second degree trend. We used some error measurements include, mean absolute error(MAE), mean squared error (MSE) and mean biased error(MBE). Ordinary kriging(exponential model), LPI(Local polynomial interpolation), RBF(radial basis functions) and IDW methods have been chosen as the best methods to interpolating of the soil parameters. Prediction maps by disjunctive kriging was shown that in whole study area was intensive shortage of organic matter and more than 63.4 percent of study area had shortage of K amount.

Keywords: Electrical conductivity, Geostatistics, Geographical Information System, TNV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
785 Reliability Analysis in Electrical Distribution System Considering Preventive Maintenance Applications on Circuit Breakers

Authors: Mahmud Fotuhi-Firuzabad, Saeed Afshar

Abstract:

This paper presents the results of a preventive maintenance application-based study and modeling of failure rates in breakers of electrical distribution systems. This is a critical issue in the reliability assessment of a system. In the analysis conducted in this paper, the impacts of failure rate variations caused by a preventive maintenance are examined. This is considered as a part of a Reliability Centered Maintenance (RCM) application program. A number of load point reliability indices is derived using the mathematical model of the failure rate, which is established using the observed data in a distribution system.

Keywords: Reliability-Centered Maintenance (RCM), failure rate, preventive maintenance (PM), Distribution System Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445
784 Testing the Accuracy of ML-ANN for Harmonic Estimation in Balanced Industrial Distribution Power System

Authors: Wael M. El-Mamlouk, Metwally A. El-Sharkawy, Hossam. E. Mostafa

Abstract:

In this paper, we analyze and test a scheme for the estimation of electrical fundamental frequency signals from the harmonic load current and voltage signals. The scheme was based on using two different Multi Layer Artificial Neural Networks (ML-ANN) one for the current and the other for the voltage. This study also analyzes and tests the effect of choosing the optimum artificial neural networks- sizes which determine the quality and accuracy of the estimation of electrical fundamental frequency signals. The simulink tool box of the Matlab program for the simulation of the test system and the test of the neural networks has been used.

Keywords: Harmonics, Neural Networks, Modeling, Simulation, Active filters, electric Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
783 A Novel Approach to EMABS and Comparison with ABS

Authors: Mehrdad N. Khajavi, Abbas Hosseini, N.Bani Mostafa

Abstract:

In this paper two different Antilock braking system (ABS) are simulated and compared. One is the ordinary hydraulic ABS system which we call it ABS and the other is Electromagnetic Antilock braking system which is called (EMABS) the basis of performance of an EMABS is based upon Electromagnetic force. In this system there is no need to use servo hydraulic booster which are used in ABS system. In EMABS to generate the desired force we have use a magnetic relay which works with an input voltage through an air gap (g). The generated force will be amplified by the relay arm, and is applied to the brake shoes and thus the braking torque is generated. The braking torque is proportional to the applied electrical voltage E. to adjust the braking torque it is only necessary to regulate the electrical voltage E which is very faster and has a much smaller time constant T than the ABS system. The simulations of these two different ABS systems are done with MATLAB/SIMULINK software and the superiority of the EMABS has been shown.

Keywords: ABS, EMABS, ECU

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
782 Feasibility Study of the Quadcopter Propeller Vibrations for the Energy Production

Authors: Nneka Osuchukwu, Leonid Shpanin

Abstract:

The concept of converting the kinetic energy of quadcopter propellers into electrical energy is considered in this contribution following the feasibility study of the propeller vibrations, theoretical energy conversion, and simulation techniques. Analysis of the propeller vibration performance is presented via graphical representation of calculated and simulated parameters, in order to demonstrate the possibility of recovering the harvested energy from the propeller vibrations of the quadcopter while the quadcopter is in operation. Consideration of using piezoelectric materials in such concept, converting the mechanical energy of the propeller into the electrical energy, is given. Photographic evidence of the propeller in operation is presented and discussed together with experimental results to validate the theoretical concept.

Keywords: Unmanned aerial vehicle, energy harvesting, piezoelectric material, propeller vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
781 Switched Reluctance Generator for Wind Power Applications

Authors: M. Nassereddine, J. Rizk, M. Nagrial

Abstract:

Green house effect has becomes a serious concern in many countries due to the increase consumption of the fossil fuel. There have been many studies to find an alternative power source. Wind energy found to be one of the most useful solutions to help in overcoming the air pollution and global. There is no agreed solution to conversion of wind energy to electrical energy. In this paper, the advantages of using a Switched Reluctance Generator (SRG) for wind energy applications. The theoretical study of the self excitation of a SRG and the determination of the variable parameters in a SRG design are discussed. The design parameters for the maximum power output of the SRG are computed using Matlab simulation. The designs of the circuit to control the variable parameters in a SRG to provide the maximum power output are also discussed.

Keywords: Switched Reluctance Generator, Wind Power, Electrical Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
780 Effect of Coolant on Cutting Forces and Surface Roughness in Grinding of CSM GFRP

Authors: P Chockalingam, K Kok, R Vijayaram

Abstract:

This paper presents a comparative study on dry and wet grinding through experimental investigation in the grinding of CSM glass fibre reinforced polymer laminates using a pink aluminium oxide wheel. Different sets of experiments were performed to study the effects of the independent grinding parameters such as grinding wheel speed, feed and depth of cut on dependent performance criteria such as cutting forces and surface finish. Experimental conditions were laid out using design of experiment central composite design. An effective coolant was sought in this study to minimise cutting forces and surface roughness for GFRP laminates grinding. Test results showed that the use of coolants reduces surface roughness, although not necessarily the cutting forces. These research findings provide useful economic machining solution in terms of optimized grinding conditions for grinding CSM GFRP.

Keywords: Chopped Strand Mat GFRP laminates, Dry and Wet Grinding, Cutting Forces, Surface Finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4201
779 The Calculation of Electromagnetic Fields (EMF) in Substations of Shopping Centers

Authors: Adnan Muharemovic, Hidajet Salkic, Mario Klaric, Irfan Turkovic, Aida Muharemovic

Abstract:

In nature, electromagnetic fields always appear like atmosphere static electric field, the earth's static magnetic field and the wide-rang frequency electromagnetic field caused by lightening. However, besides natural electromagnetic fields (EMF), today human beings are mostly exposed to artificial electromagnetic fields due to technology progress and outspread use of electrical devices. To evaluate nuisance of EMF, it is necessary to know field intensity for every frequency which appears and compare it with allowed values. Low frequency EMF-s around transmission and distribution lines are time-varying quasi-static electromagnetic fields which have conservative component of low frequency electrical field caused by charges and eddy component of low frequency magnetic field caused by currents. Displacement current or field delay are negligible, so energy flow in quasi-static EMF involves diffusion, analog like heat transfer. Electrical and magnetic field can be analyzed separately. This paper analysis the numerical calculations in ELF-400 software of EMF in distribution substation in shopping center. Analyzing the results it is possible to specify locations exposed to the fields and give useful suggestion to eliminate electromagnetic effect or reduce it on acceptable level within the non-ionizing radiation norms and norms of protection from EMF.

Keywords: Electromagnetic Field, Density of Electromagnetic Flow, Place of Proffesional Exposure, Place of Increased Sensitivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3810
778 CuO Thin Films Deposition by Spray Pyrolysis: Influence of Precursor Solution Properties

Authors: M. Lamri Zeggar, F. Bourfaa, A. Adjimi, F. Boutbakh, M. S. Aida, N. Attaf

Abstract:

CuO thin films were deposited by spray ultrasonic pyrolysis with different precursor solution. Two staring solution slats were used namely: copper acetate and copper chloride. The influence of these solutions on CuO thin films proprieties of is instigated. The X rays diffraction (XDR) analysis indicated that the films deposed with copper acetate are amorphous however the films elaborated with copper chloride have monoclinic structure. UV- Visible transmission spectra showed a strong absorbance of the deposited CuO thin films in the visible region. Electrical characterization has shown that CuO thin films prepared with copper acetate have a higher electrical conductivity.

Keywords: Thin films, cuprous oxide, spray pyrolysis, precursor solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247