Search results for: Differential Forms
1310 Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus
Authors: Lina Wu, Ye Li, Jia Liu
Abstract:
We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.
Keywords: Differential Forms, Hölder Inequality, Liouville-type problems, p-balanced growth, p-harmonic maps, q-energy growth, tests for series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8301309 The Global Stability Using Lyapunov Function
Authors: R. Kongnuy, E. Naowanich, T. Kruehong
Abstract:
An important technique in stability theory for differential equations is known as the direct method of Lyapunov. In this work we deal global stability properties of Leptospirosis transmission model by age group in Thailand. First we consider the data from Division of Epidemiology Ministry of Public Health, Thailand between 1997-2011. Then we construct the mathematical model for leptospirosis transmission by eight age groups. The Lyapunov functions are used for our model which takes the forms of an Ordinary Differential Equation system. The globally asymptotically for equilibrium states are analyzed.Keywords: Age Group, Leptospirosis, Lyapunov Function, Ordinary Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21501308 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations
Authors: Fuziyah Ishak, Siti Norazura Ahmad
Abstract:
Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.
Keywords: Accuracy, extended trapezoidal method, numerical solution, Volterra integro-differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16571307 Signal Transmission Analysis of Differential Pairs Using Semicircle-Shaped Via Structure
Authors: Moonjung Kim, Chang-Ho Hyun, Won-Ho Kim
Abstract:
In this paper, the signal transmission analysis of the semicircle-shaped via structure for the differential pairs is presented in the frequency range up to 10 GHz. In order to improve the signal transmission properties in the differential pairs, single via is separated centrally into two semicircle-shaped sections, which are interconnected with the traces of differential pairs respectively. This via structure make possible to route differential pairs using only one via. In addition, it can improve impedance discontinuity around its region and then enhance the signal transmission properties in the differential pairs. The electrical analysis such as S-parameter calculation and eye diagram simulation has been performed to investigate the improvement of the signal transmission property in the differential pairs with new via structure.Keywords: Differential pairs, signal transmission property, via, S-parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39281306 Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation
Authors: Tarun Kumar Rawat, Abhirup Lahiri, Ashish Gupta
Abstract:
In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parameters for improved noise characteristics of the differential amplifier.
Keywords: Single-ended input differential amplifier, Noise, stochastic differential equation, mean and variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17241305 Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order
Authors: Raja Muhammad Asif Zahoor, Junaid Ali Khan, I. M. Qureshi
Abstract:
In this article an evolutionary technique has been used for the solution of nonlinear Riccati differential equations of fractional order. In this method, genetic algorithm is used as a tool for the competent global search method hybridized with active-set algorithm for efficient local search. The proposed method has been successfully applied to solve the different forms of Riccati differential equations. The strength of proposed method has in its equal applicability for the integer order case, as well as, fractional order case. Comparison of the method has been made with standard numerical techniques as well as the analytic solutions. It is found that the designed method can provide the solution to the equation with better accuracy than its counterpart deterministic approaches. Another advantage of the given approach is to provide results on entire finite continuous domain unlike other numerical methods which provide solutions only on discrete grid of points.Keywords: Riccati Equation, Non linear ODE, Fractional differential equation, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19431304 Laplace Technique to Find General Solution of Differential Equations without Initial Conditions
Authors: Adil Al-Rammahi
Abstract:
Laplace transformations have wide applications in engineering and sciences. All previous studies of modified Laplace transformations depend on differential equation with initial conditions. The purpose of our paper is to solve the linear differential equations (not initial value problem) and then find the general solution (not particular) via the Laplace transformations without needed any initial condition. The study involves both types of differential equations, ordinary and partial.
Keywords: Differential Equations, Laplace Transformations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31851303 A Sandwich-type Theorem with Applications to Univalent Functions
Authors: Sukhwinder Singh Billing, Sushma Gupta, Sukhjit Singh Dhaliwal
Abstract:
In the present paper, we obtain a sandwich-type theorem. As applications of our main result, we discuss the univalence and starlikeness of analytic functions in terms of certain differential subordinations and differential inequalities.Keywords: Univalent function, Starlike function, Differential subordination, Differential superordination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13251302 Integral Image-Based Differential Filters
Authors: Kohei Inoue, Kenji Hara, Kiichi Urahama
Abstract:
We describe a relationship between integral images and differential images. First, we derive a simple difference filter from conventional integral image. In the derivation, we show that an integral image and the corresponding differential image are related to each other by simultaneous linear equations, where the numbers of unknowns and equations are the same, and therefore, we can execute the integration and differentiation by solving the simultaneous equations. We applied the relationship to an image fusion problem, and experimentally verified the effectiveness of the proposed method.
Keywords: Integral images, differential images, differential filters, image fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20991301 Two-dimensional Differential Transform Method for Solving Linear and Non-linear Goursat Problem
Authors: H. Taghvafard, G. H. Erjaee
Abstract:
A method for solving linear and non-linear Goursat problem is given by using the two-dimensional differential transform method. The approximate solution of this problem is calculated in the form of a series with easily computable terms and also the exact solutions can be achieved by the known forms of the series solutions. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Several examples are given to demonstrate the reliability and the performance of the presented method.Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23851300 Application of the Hybrid Methods to Solving Volterra Integro-Differential Equations
Authors: G.Mehdiyeva, M.Imanova, V.Ibrahimov
Abstract:
Beginning from the creator of integro-differential equations Volterra, many scientists have investigated these equations. Classic method for solving integro-differential equations is the quadratures method that is successfully applied up today. Unlike these methods, Makroglou applied hybrid methods that are modified and generalized in this paper and applied to the numerical solution of Volterra integro-differential equations. The way for defining the coefficients of the suggested method is also given.Keywords: Integro-differential equations, initial value problem, hybrid methods, predictor-corrector method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17331299 Cutting and Breaking Events in Telugu
Authors: Vasanta Duggirala, Y. Viswanatha Naidu
Abstract:
This paper makes a contribution to the on-going debate on conceptualization and lexicalization of cutting and breaking (C&B) verbs by discussing data from Telugu, a language of India belonging to the Dravidian family. Five Telugu native speakers- verbalizations of agentive actions depicted in 43 short video-clips were analyzed. It was noted that verbalization of C&B events in Telugu requires formal units such as simple lexical verbs, explicator compound verbs, and other complex verb forms. The properties of the objects involved, the kind of instruments used, and the manner of action had differential influence on the lexicalization patterns. Further, it was noted that all the complex verb forms encode 'result' and 'cause' sub-events in that order. Due to the polysemy associated with some of the verb forms, our data does not support the straightforward bipartition of this semantic domain.Keywords: Cluster analysis, Cutting and breaking events, Polysemy, Semantic extension, Telugu.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21481298 Strict Stability of Fuzzy Differential Equations with Impulse Effect
Authors: Sanjay K.Srivastava, Bhanu Gupta
Abstract:
In this paper some results on strict stability heve beeb extended for fuzzy differential equations with impulse effect using Lyapunov functions and Razumikhin technique.
Keywords: Fuzzy differential equations, Impulsive differential equations, Strict stability, Lyapunov function, Razumikhin technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14691297 Ψ-Eventual Stability of Differential System with Impulses
Authors: Bhanu Gupta
Abstract:
In this paper, the criteria of Ψ-eventual stability have been established for generalized impulsive differential systems of multiple dependent variables. The sufficient conditions have been obtained using piecewise continuous Lyapunov function. An example is given to support our theoretical result.
Keywords: impulsive differential equations, Lyapunov function, eventual stability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40521296 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease
Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.
Keywords: Parkinson's disease, Step method, delay differential equation, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7341295 Numerical Study of Some Coupled PDEs by using Differential Transformation Method
Authors: Reza Abazari, Rasool Abazari
Abstract:
In this paper, the two-dimension differential transformation method (DTM) is employed to obtain the closed form solutions of the three famous coupled partial differential equation with physical interest namely, the coupled Korteweg-de Vries(KdV) equations, the coupled Burgers equations and coupled nonlinear Schrödinger equation. We begin by showing that how the differential transformation method applies to a linear and non-linear part of any PDEs and apply on these coupled PDEs to illustrate the sufficiency of the method for this kind of nonlinear differential equations. The results obtained are in good agreement with the exact solution. These results show that the technique introduced here is accurate and easy to apply.
Keywords: Coupled Korteweg-de Vries(KdV) equation, Coupled Burgers equation, Coupled Schrödinger equation, differential transformation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30021294 Closed-Form Solution of Second Order Linear Ordinary Differential Equations
Authors: Saeed Otarod
Abstract:
A transformational method is employed to obtain closed-form integral solutions for nonhomogeneous second order linear ordinary differential equations in terms of a particular solution of the corresponding homogeneous part. To find the particular solution of the homogeneous part, the equation is first transformed into a simple Riccati equation from which the general solution of the nonhomogeneous second order linear differential equation, in the form of a closed integral equation, is inferred. The method is applied to the solution of Schr¨odinger equation for hydrogen-like atoms. A generic nonhomogeneous second order linear differential equation has also been solved to further exemplify the methodology.
Keywords: Closed form, Second order ordinary differential equations, explicit, linear equations, differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 111293 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions
Authors: Mustafa Bayram Gücen, Coşkun Yakar
Abstract:
In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11281292 Three Phase Fault Analysis of DC-Link Rectifier using new Power Differential Protection Concept
Abstract:
The concept of differential protection based on current quantities has been discussed in many paper and researches. For certificating and inverting of currents and voltages through converter systems, there is no conventional current differential relay, which can compare current quantities, because they are different in form and frequencies. An overview over a new concept of differential protection for converters based on instantaneous power quantities will be discussed in this paper. To drive the power quantities a mathematical background of the space vectors will be introduced. A simple DCLink is preceded in this paper and a power analysis description and simulation is derived using Matlab®/ SimulinkTM concerning a certain construction scheme of Power Differential Relay System. Finally a complete analysis of three phase fault in DC-Link Rectifier is discussed to ensure the ability of Power Differential Protection System to detect the fault in main and selectivity protection sections.
Keywords: Space Vectors, Power Differential Relay (PDR), Short Circuit Power, Diode Recovery Energy, Detected Power Differential Signal (DPDS), Power Space Vector (PSV), Power Space Vector Protection Area (PSVPA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33881291 Existence of Solution for Boundary Value Problems of Differential Equations with Delay
Authors: Xiguang Li
Abstract:
In this paper , by using fixed point theorem , upper and lower solution-s method and monotone iterative technique , we prove the existence of maximum and minimum solutions of differential equations with delay , which improved and generalize the result of related paper.
Keywords: Banach space, boundary value problem, differential equation, delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12321290 Projective Synchronization of a Class of Fractional-Order Chaotic Systems
Authors: Zahra Yaghoubi, Nooshin Bigdeli, Karim Afshar
Abstract:
This paper at first presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. After that a drive-response synchronization method with linear output error feedback is presented for “generalized projective synchronization" for a class of fractional-order chaotic systems via a scalar transmitted signal. Genesio_Tesi and Duffing systems are used to illustrate the effectiveness of the proposed synchronization method. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18131289 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
Discrete linear multistep block method of uniform order for the solution of first order initial value problems (IVPs) in ordinary differential equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.
Keywords: Block Method, First Order Ordinary Differential Equations, Hybrid, Self starting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27961288 Exterior Calculus: Economic Growth Dynamics
Authors: Troy L. Story
Abstract:
Mathematical models of dynamics employing exterior calculus are mathematical representations of the same unifying principle; namely, the description of a dynamic system with a characteristic differential one-form on an odd-dimensional differentiable manifold leads, by analysis with exterior calculus, to a set of differential equations and a characteristic tangent vector (vortex vector) which define transformations of the system. Using this principle, a mathematical model for economic growth is constructed by proposing a characteristic differential one-form for economic growth dynamics (analogous to the action in Hamiltonian dynamics), then generating a pair of characteristic differential equations and solving these equations for the rate of economic growth as a function of labor and capital. By contracting the characteristic differential one-form with the vortex vector, the Lagrangian for economic growth dynamics is obtained.
Keywords: Differential geometry, exterior calculus, Hamiltonian geometry, mathematical economics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14891287 Adomian Decomposition Method Associated with Boole-s Integration Rule for Goursat Problem
Authors: Mohd Agos Salim Nasir, Ros Fadilah Deraman, Siti Salmah Yasiran
Abstract:
The Goursat partial differential equation arises in linear and non linear partial differential equations with mixed derivatives. This equation is a second order hyperbolic partial differential equation which occurs in various fields of study such as in engineering, physics, and applied mathematics. There are many approaches that have been suggested to approximate the solution of the Goursat partial differential equation. However, all of the suggested methods traditionally focused on numerical differentiation approaches including forward and central differences in deriving the scheme. An innovation has been done in deriving the Goursat partial differential equation scheme which involves numerical integration techniques. In this paper we have developed a new scheme to solve the Goursat partial differential equation based on the Adomian decomposition (ADM) and associated with Boole-s integration rule to approximate the integration terms. The new scheme can easily be applied to many linear and non linear Goursat partial differential equations and is capable to reduce the size of computational work. The accuracy of the results reveals the advantage of this new scheme over existing numerical method.Keywords: Goursat problem, partial differential equation, Adomian decomposition method, Boole's integration rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18571286 Existence of Iterative Cauchy Fractional Differential Equation
Authors: Rabha W. Ibrahim
Abstract:
Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.
Keywords: Fractional calculus, fractional differential equation, Cauchy equation, Riemann-Liouville fractional operators, Volterra integral equation, non-expansive mapping, iterative differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26851285 An Application of Differential Subordination to Analytic Functions
Authors: Sukhwinder Singh Billing, Sushma Gupta, Sukhjit Singh Dhaliwal
Abstract:
the present paper, using the technique of differential subordination, we obtain certain results for analytic functions defined by a multiplier transformation in the open unit disc E = { z : IzI < 1}. We claim that our results extend and generalize the existing results in this particular direction
Keywords: function, Differential subordination, Multiplier transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13301284 Solution of Nonlinear Second-Order Pantograph Equations via Differential Transformation Method
Authors: Nemat Abazari, Reza Abazari
Abstract:
In this work, we successfully extended one-dimensional differential transform method (DTM), by presenting and proving some theorems, to solving nonlinear high-order multi-pantograph equations. This technique provides a sequence of functions which converges to the exact solution of the problem. Some examples are given to demonstrate the validity and applicability of the present method and a comparison is made with existing results.
Keywords: Nonlinear multi-pantograph equation, delay differential equation, differential transformation method, proportional delay conditions, closed form solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25601283 ψ-exponential Stability for Non-linear Impulsive Differential Equations
Authors: Bhanu Gupta, Sanjay K. Srivastava
Abstract:
In this paper, we shall present sufficient conditions for the ψ-exponential stability of a class of nonlinear impulsive differential equations. We use the Lyapunov method with functions that are not necessarily differentiable. In the last section, we give some examples to support our theoretical results.Keywords: Exponential stability, globally exponential stability, impulsive differential equations, Lyapunov function, ψ-stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39371282 Exterior Calculus: Economic Profit Dynamics
Authors: Troy L. Story
Abstract:
A mathematical model for the Dynamics of Economic Profit is constructed by proposing a characteristic differential oneform for this dynamics (analogous to the action in Hamiltonian dynamics). After processing this form with exterior calculus, a pair of characteristic differential equations is generated and solved for the rate of change of profit P as a function of revenue R (t) and cost C (t). By contracting the characteristic differential one-form with a vortex vector, the Lagrangian is obtained for the Dynamics of Economic Profit.Keywords: Differential geometry, exterior calculus, Hamiltonian geometry, mathematical economics, economic functions, and dynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25401281 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices
Authors: Khosrow Maleknejad, Yaser Rostami
Abstract:
In this paper, Semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions
Keywords: Integro-differential equations, Quartic B-spline wavelet, Operational matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3153