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Abstract—In this paper , by using fixed point theorem , upper and
lower solution’s method and monotone iterative technique , we prove
the existence of maximum and minimum solutions of differential
equations with delay , which improved and generalize the result of
related paper.
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I. INTRODUCTION

THE theory of differential equation with delay is emerging
as an important area of investigation since it is much

richer than the corresponding theory of concerning equation
without delay . Many mathematical models described by dif-
ferential equation with delay are arising from neural networks
ecological mathematics and automatic control areas, it has
become the focus of science research . The character of the
equation with delay is that the rate of change is not only
depend on the current state but also the state of past time,
Recently, some existence results concerning the problem of
differential equation with delay have been obtained ([1-4]) ,
in thesis [4], by using fixed point theorem, upper and lower
solution’s method and monotone iterative technique, Ms Yang
proved the existence of solution for the equation :{

x′(t) = f(t, x(t), xt),
αx(0) = x(2π), α = 1,

where f : [0, 2π] × C[0, 2π] × C[−τ, 0] → R is continuous,
x ∈ C[[0, 2π], R], xt(s) = x(t + s), s ∈ [−τ, 0], t ∈ [0, 2π]
and xt ∈ C[−τ, 0], 0 < τ < 2π . Motivated by the work
of Yang , in this paper we study the following second-order
differential equation :{

x′(t) = f(t, x(t), xt),
αx(0) = x(2π), α > 1, (1)

if 1 > α > 0 , let s = 2π − t , then it can be switched to
the case of equation (1). For convenience sake , we list some
preliminary lemmas .

Lemma 1.1 Let X be a complete space , if A is a contract
mapping in X , then A has only one fixed point in X .

Lemma 1.2 Let E = C[[−τ, 2π], R]
⋂
C1[0, 2π], R], E0 =

{x ∈ C[[−τ, 2π], R] : x(θ) = x(0), θ ∈ [−τ, 0]}, ‖ x ‖0=

max
t∈[−τ,2π]

| x(t) | , if α × N ×

∫ 2π

0

∫ t

t−τ

k∗(t, s)dsdt < 1,

where N ≥ 0, k∗(t, s) = k(t, s)eM(t−s),M > 0, k ∈
C[[0, 2π]× [−τ, 2π], R+] , then m ∈ E

⋂
E0,m

′

≤ −Mm−
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N

∫ t

t−τ

k(t, s)m(s)ds, αm(0) ≤ m(2π) ⇒ m(t) ≤ 0, t ∈

[0, 2π].

Proof : From m
′

≤ −Mm − N

∫ t

t−τ

k(t, s)m(s)ds,i.e.

m
′

+Mm ≤ −N

∫ t

t−τ

k(t, s)m(s)ds, we can get

(meMt)
′

≤ −N

∫ t

t−τ

k∗(t, s)m(s)eMsds.

Let v(t) = m(t)eMt, then

⎧⎨
⎩ v

′

≤ −N

∫ t

t−τ

k∗(t, s)v(s)ds,

v(2π) ≥ αv(0),
(2)

if we want to certify m(t) ≤ 0, t ∈ [0, 2π] , we only need to
prove v(t) ≤ 0, t ∈ [0, 2π] , otherwise we can just suppose
max

t∈[0,2π]
v(t) = v(τ1) , because of v(2π) ≥ αv(0) , obviously

τ1 �= 0 , so τ1 ∈ (0, 2π] , let min
t∈[0,2π]

v(t) = v(τ0) , it is easy to

see v(τ0) < 0 , otherwise by(2) we can see v(t) is increasing
in [0, 2π] , this is a contradiction to v(2π) > αv(0)).

Suppose v(τ0) = −λ, λ > 0, we consider following two
different cases:
case 1: if τ0 ∈ [0, τ1], then we have

v(τ1) =v(τ0) +
∫ τ1

τ0

v
′

(t)dt

≤ −λ−N

∫ τ1

τ0

∫ t

t−τ

k∗(t, s)v(s)dsdt

≤ −λ+Nλ

∫ τ1

τ0

∫ t

t−τ

k∗(t, s)dsdt

≤ λ(−1 +N

∫ 2π

0

∫ t

t−τ

k∗(t, s)dsdt),

this is contradiction to v(τ1) > 0 .
case 2 : τ0 ∈ (τ1, 2π] , by virtue of

v(2π) =v(τ0) +
∫ 2π

τ0

v
′

(t)dt = −λ+
∫ 2π

τ0

v
′

(t)dt,

v(0) = v(τ1) −
∫ τ1

0

v
′

(t)dt , and v(2π) ≥ αv(0) ,

we can get −λ+
∫ 2π

τ0

v
′

(t)dt ≥ αv(τ1) − α

∫ τ1

0

v
′

(t)dt ,

i.e.
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αv(τ1) ≤ −λ+
∫ 2π

τ0

v
′

(t)dt+ α

∫ τ1

0

v
′

(t)dt

≤ −λ+Nλ

∫ 2π

τ0

∫ t

t−τ

k∗(t, s)dsdt

+ αNλ

∫ τ1

0

∫ t

t−τ

k∗(t, s)dsdt

≤ −λ+Nλα

∫ 2π

0

∫ t

t−τ

k∗(t, s)dsdt

= λ(−1 +Nα

∫ 2π

0

∫ t

t−τ

k∗(t, s)dsdt) ≤ 0,

this is contradiction to v(τ1) > 0 . Summarizing the two cases
above, we can get max

t∈[0,2π]
v(t) = v(τ1) ≤ 0, hence v(t) ≤ 0.

Lemma 1.3 Suppose E,E0,M,N and k

are all same to lemma 2 , β, γ ∈ E, if

(1 +
1

e2πMα− 1
)N

∫ 2π

0

∫ t

t−τ

k∗(t, s)dsdt < 1, then for all

η ∈ [β, γ] = {x ∈ E : β(t) ≤ x(t) ≤ γ(t), ∀t ∈ [−τ, 2π]} ,
the following boundary value problem⎧⎪⎪⎨

⎪⎪⎩
u′(t) = f(t, η, ηt) −M(u− η)

−N

∫ t

t−τ

k(t, s)[u(s) − η(s)]ds,

αu(0) = u(2π), α > 1,

(3)

has a unique solution in E
⋂
E0 .

proof: Let σ(t) = f(t, η, ηt) + Mη + N

∫ t

t−τ

k(t, s)η(s)ds,

first we show that problem (3) is equivalent to the following
integral equation’s solution :

u(t) =

1
e2Mπα− 1

∫ 2π

0

(σ(s) −N

∫ s

s−τ

k(s, ξ)u(ξ)dξ)eM(s−t)ds

+
∫ t

0

(σ(s) −N

∫ s

s−τ

k(s, ξ)u(ξ)dξ)eM(s−t)ds. (4)

According to equation (3), u′(s) =

f(s, η, ηs) −M(u− η) −N

∫ s

s−τ

k(s, ξ)[u(ξ) − η(ξ)]dξ

= σ(s) −Mu(s) −N

∫ s

s−τ

k(s, ξ)u(ξ)dξ, so

u′(s) +Mu(s) = σ(s) −N

∫ s

s−τ

k(s, ξ)u(ξ)dξ, which imply

that

eMs(u′(s) + Mu(s)) = eMs(σ(s) − N

∫ s

s−τ

k(s, ξ)u(ξ)dξ),

i.e.

(eMsu(s))
′

= eMs(σ(s) −N

∫ s

s−τ

k(s, ξ)u(ξ)dξ),

by taking integral from 0 to t, we can get

eMtu(t) − u(0) =
∫ t

0

eMs(σ(s) − N

∫ s

s−τ

k(s, ξ)u(ξ)dξ)ds,

let t = 2π , we can get e2Mπu(2π) − u(0) =∫ 2π

0

eMs(σ(s) −N

∫ s

s−τ

k(s, ξ)u(ξ)dξ)ds , by virtue of

u(2π) = αu(0), we can get (αe2Mπ − 1)u(0) =

∫ 2π

0

eMs(σ(s) −N

∫ s

s−τ

k(s, ξ)u(ξ)dξ)ds, so u(0) =

1
αe2Mπ − 1

(
∫ 2π

0

eMs(σ(s) − N

∫ s

s−τ

k(s, ξ)u(ξ)dξ)ds)

and eMtu(t) =
∫ t

0

eMs(σ(s) − N

∫ s

s−τ

k(s, ξ)u(ξ)dξ)ds +

1
αe2Mπ − 1

(
∫ 2π

0

eMs(σ(s) −N

∫ s

s−τ

k(s, ξ)u(ξ)dξ)ds),

which imply that (4) hold.
The operator A is defined by (Au)(t)=⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
e2Mπα− 1

∫ 2π

0

(σ(s) −N

∫ s

s−τ

k(s, ξ)u(ξ)dξ)eM(s−t)ds

+
∫ t

0

(σ(s) −N

∫ s

s−τ

k(s, ξ)u(ξ)dξ)eM(s−t)ds, t ∈ [0, 2π],

(Au)(0), t ∈ [−τ, 0], (5)
therefore |Au −Av| =

|
1

e2Mπα− 1

∫ 2π

0

(N
∫ s

s−τ

k(s, ξ)(u(ξ) − v(ξ))dξ)eM(s−t)ds

+
∫ t

0

(N
∫ s

s−τ

k(s, ξ)(u(ξ) − v(ξ))dξ)eM(s−t)ds|

≤ (1 +
1

e2πMα− 1
)N

∫ 2π

0

∫ t

t−τ

k∗(t, s)dsdt) | u− v |

<| u− v |, t ∈ [0, 2π].
So A is a contraction mapping , by lemma 1.2 we can see
lemma 1.3 holds.

lemma 1.4 Let β, γ ∈ E
⋂
E0, β(t) < γ(t), t ∈ [−τ, 2π],

suppose the following conditions are satisfied:
(H0) : β

′

≤ f(t, β, βt), αβ(0) ≤ β(2π); γ
′

≥ f(t, γ, γt),
αγ(0) ≥ γ(2π),
(H1) : for all v(t) and u(t), assume β(t) ≤ v(t) ≤ u(t) ≤
γ(t), t ∈ [0, 2π], f(t, u, ut) − f(t, v, vt) ≥ −M(u − v) −

N

∫ t

t−τ

k(t, s)(u − v)ds, where M,N, k are same to lemma

1.2,

(H2) : (1 +
1

e2πMα− 1
)N

∫ 2π

0

∫ t

t−τ

k∗(t, s)dsdt +

αN

∫ 2π

0

∫ t

t−τ

k∗(t, s)dsdt < 1,

for all η ∈ [β, γ], we define A : Aη = u ( where u is a unique
solution for (4), the Operator A has the following properties
(1)β ≤ Aβ, γ ≥ Aγ; (2)A is increasing in [β, γ].

Proof : (1) Let β1 = Aβ,m = β−β1, then m
′

= β
′

−β
′

1 ≤

−Mm− N

∫ t

t−τ

k(t, s)m(s)ds, αm(0) ≤ m(2π), by lemma

1.2, we can see m ≤ 0 , i.e. β ≤ Aβ. Similarly we can get
γ ≥ Aγ.

(2) For all η1, η2 ∈ [β, γ], η1 < η2, let ui = Aηi, (i = 1, 2)
m = u1 − u2, by (H1) we can get m

′

=

f(t, η1, η1t)−M(u1− η1)−N

∫ t

t−τ

k(t, s)(u1(s)− η1(s))ds

−f(t, η2, η2t)+M(u2−η2)+N
∫ t

t−τ

k(t, s)(u2(s)−η2(s))ds

= −Mm+ [f(t, η1, η1t) − f(t, η2, η2t)] +M(η1 − η2)

−N

∫ t

t−τ

k(t, s)m(s)ds+N

∫ t

t−τ

k(t, s)(η1 − η2)ds
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≤ −Mm−N

∫ t

t−τ

k(t, s)m(s)ds,

considering αm(0) = m(2π), by lemma 1.2 , we can get
m ≤ 0, so A is increasing in [β, γ].

II. CONCLUSION

Theorem2.1 If conditions in lemma 1.4 are all satisfied,
then there exist monotone sequence {βn} and {γn}, β0 =
β, γ0 = γ, which lim

n→∞

βn(t) = ρ(t), lim
n→∞

γn(t) = r(t) .
Moreover, they are convergence to the maximal and minimal
solution of (1) in [0, 2π] uniformly , i.e. ρ, r ∈ E

⋂
E0, ρ(θ) =

ρ(0), r(θ) = r(0), θ ∈ [−τ, 0], ρ, r are all solutions of equation
(1), and for any solution x(t), we have ρ(t) ≤ x(t) ≤ r(t), t ∈
[0, 2π].

Proof: According to lemma 1.3 , for ∀η ∈ [β, γ], equation
(4) has a unique solution u ∈ E

⋂
E0, by lemma 1.4 , there ex-

ist monotone sequence {βn} and {γn} generated by mapping
Aη = u, where βn+1 = Aβn, γn+1 = Aγn, (β0 = β, γ0 = γ)
such that in [−τ, 2π], β ≤ β1 ≤ β2 ≤ ... ≤ βn ≤ γn ≤
γn−1 ≤ ...γ2 ≤ γ1 ≤ γ, βn, γn ∈ E

⋂
E0, n = 0, 1, 2, ... ,

and in [0, 2π] we have

⎧⎪⎪⎨
⎪⎪⎩

β′

n = f(t, βn−1, βn−1,t) −M(βn − βn−1)

−N

∫ t

t−τ

k(t, s)[βn(s) − βn−1(s)]ds,

αβn(0) = βn(2π), α > 1,

(6)

⎧⎪⎪⎨
⎪⎪⎩

γ
′

n = f(t, γn−1, γn−1,t) −M(γn − γn−1)

−N

∫ t

t−τ

k(t, s)[γn(s) − γn−1(s)]ds,

αγn(0) = γn(2π), α > 1,

(7)

by virtue of βn ∈ [β, γ] and the continuity of f , we know
that {f(t, βn−1, βn−1,t)} is bounded uniformly in [0, 2π], so
by equation (6), it is easy to see β

′

n is bounded uniformly
in [0, 2π], so βn is bounded uniformly and equicontinuous
on [0, 2π], consequently according to Ascoli-Arzela theo-
rem, there exists a subsequence {βni

} in [0, 2π] which is
convergence uniformly, by the monotonicity , there exists
ρ ∈ C[0, 2π] such that lim

n→∞

βn(t) = ρ(t) hold uniformly in

[0, 2π], because βn ∈ E0 , we can extend ρ to be a continuous
function in [−τ.2π] such that ρ(θ) = ρ(0), θ ∈ [−τ, 0] , It
follow from equation (6) that ρ is a solution of equation (1).

According to γn ∈ [β, γ] and equation (7) , similarly we
can prove there exist r(t) ∈ E0, r(θ) = r(0), θ ∈ [−τ, 0] such
that r(t) is a solution of equation (1).

By using mathematical induction method , it follows from
lemma 1.2 which for any solution of equation (1), we all have
βn(t) ≤ x(t) ≤ γn(t), t ∈ [0, 2π], let n → ∞, so ρ(t) ≤
x(t) ≤ r(t), t ∈ [0, 2π] , i.e. ρ, r is minimal and maximal
solution of equation (1) respectively.
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