Search results for: Differential scanning calorimetry.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1150

Search results for: Differential scanning calorimetry.

910 Direct Block Backward Differentiation Formulas for Solving Second Order Ordinary Differential Equations

Authors: Zarina Bibi Ibrahim, Mohamed Suleiman, Khairil Iskandar Othman

Abstract:

In this paper, a direct method based on variable step size Block Backward Differentiation Formula which is referred as BBDF2 for solving second order Ordinary Differential Equations (ODEs) is developed. The advantages of the BBDF2 method over the corresponding sequential variable step variable order Backward Differentiation Formula (BDFVS) when used to solve the same problem as a first order system are pointed out. Numerical results are given to validate the method.

Keywords: Backward Differentiation Formula, block, secondorder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
909 Nonlinear Static Analysis of Laminated Composite Hollow Beams with Super-Elliptic Cross-Sections

Authors: G. Akgun, I. Algul, H. Kurtaran

Abstract:

In this paper geometrically nonlinear static behavior of laminated composite hollow super-elliptic beams is investigated using generalized differential quadrature method. Super-elliptic beam can have both oval and elliptic cross-sections by adjusting parameters in super-ellipse formulation (also known as Lamé curves). Equilibrium equations of super-elliptic beam are obtained using the virtual work principle. Geometric nonlinearity is taken into account using von-Kármán nonlinear strain-displacement relations. Spatial derivatives in strains are expressed with the generalized differential quadrature method. Transverse shear effect is considered through the first-order shear deformation theory. Static equilibrium equations are solved using Newton-Raphson method. Several composite super-elliptic beam problems are solved with the proposed method. Effects of layer orientations of composite material, boundary conditions, ovality and ellipticity on bending behavior are investigated.

Keywords: Generalized differential quadrature, geometric nonlinearity, laminated composite, super-elliptic cross-section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
908 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature

Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard

Abstract:

The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.

Keywords: Tau method, semi-infinite, nonlinear ODE, rational Chebyshev, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
907 Biomechanical Properties of Hen's Eggshell: Experimental Study and Numerical Modeling

Authors: A. Darvizeh, H. Rajabi, S. Fatahtooei Nejad, A. Khaheshi, P. Haghdoust

Abstract:

In this article, biomechanical aspects of hen-s eggshell as a natural ceramic structure are studied. The images, taken by a scanning electron microscope (SEM), are used to investigate the microscopic aspects of the egg. It is observed that eggshell has a three-layered microstructure with different morphological and structural characteristics. Studies on the eggshell membrane (ESM) as a prosperous tissue suggest that it is placed to prevent the penetration of microorganisms into the egg. Finally, numerical models of the egg are presented to study the stress distribution and its deformation under different loading conditions. The effects of two different types of loading (hydrostatic and point loadings) on two different shell models (with constant and variable thicknesses) are investigated in detail.

Keywords: Eggshell, biomechanical properties, Scanning electron microscope, Numerical Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
906 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers

Authors: H. Ozbasaran

Abstract:

IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers.

Keywords: Cantilever, IPN, IPE, lateral torsional buckling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4268
905 Synthesizing CuFe2O4 Spinel Powders by a Combustion-Like Process for Solid Oxide Fuel Cell Interconnect Coatings

Authors: S. N. Hosseini, M. H. Enayati, F. Karimzadeh, N. M. Sammes

Abstract:

The synthesis of CuFe2O4 spinel powders by an optimized combustion-like process followed by calcination is described herein. The samples were characterized using X-ray diffraction (XRD), differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), dilatometry and 4-probe DC methods. Different glycine to nitrate (G/N) ratios of 1 (fuel-deficient), 1.48 (stoichiometric) and 2 (fuel-rich) were employed. Calcining the asprepared powders at 800 and 1000°C for 5 hours showed that the G/N ratio of 2 results in the formation of the desired copper spinel single phase at both calcination temperatures. For G/N=1, formation of CuFe2O4 takes place in three steps. First, iron and copper nitrates decompose to iron oxide and pure copper. Then, copper transforms to copper oxide and finally, copper and iron oxides react with each other to form a copper ferrite spinel phase. The electrical conductivity and the coefficient of thermal expansion of the sintered pelletized samples were 2 S.cm-1 (800°C) and 11×10-6 °C-1 (25-800°C), respectively.

Keywords: SOFC interconnect coatings, Copper ferrite, Spinels, Electrical conductivity, Glycine–nitrate process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2440
904 Design of a Chaotic Trajectory Generator Algorithm for Mobile Robots

Authors: J. J. Cetina-Denis, R. M. López-Gutiérrez, R. Ramírez-Ramírez, C. Cruz-Hernández

Abstract:

This work addresses the problem of designing an algorithm capable of generating chaotic trajectories for mobile robots. Particularly, the chaotic behavior is induced in the linear and angular velocities of a Khepera III differential mobile robot by infusing them with the states of the H´enon chaotic map. A possible application, using the properties of chaotic systems, is patrolling a work area. In this work, numerical and experimental results are reported and analyzed. In addition, two quantitative numerical tests are applied in order to measure how chaotic the generated trajectories really are.

Keywords: Chaos, chaotic trajectories, differential mobile robot, Henons map, Khepera III robot, patrolling applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668
903 An Expectation of the Rate of Inflation According to Inflation-Unemployment Interaction in Croatia

Authors: Zdravka Aljinović, Snježana Pivac, Boško Šego

Abstract:

According to the interaction of inflation and unemployment, expectation of the rate of inflation in Croatia is estimated. The interaction between inflation and unemployment is shown by model based on three first-order differential i.e. difference equations: Phillips relation, adaptive expectations equation and monetary-policy equation. The resulting equation is second order differential i.e. difference equation which describes the time path of inflation. The data of the rate of inflation and the rate of unemployment are used for parameters estimation. On the basis of the estimated time paths, the stability and convergence analysis is done for the rate of inflation.

Keywords: Differencing, inflation, time path, unemployment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
902 Laplace Transformation on Ordered Linear Space of Generalized Functions

Authors: K. V. Geetha, N. R. Mangalambal

Abstract:

Aim. We have introduced the notion of order to multinormed spaces and countable union spaces and their duals. The topology of bounded convergence is assigned to the dual spaces. The aim of this paper is to develop the theory of ordered topological linear spaces La,b, L(w, z), the dual spaces of ordered multinormed spaces La,b, ordered countable union spaces L(w, z), with the topology of bounded convergence assigned to the dual spaces. We apply Laplace transformation to the ordered linear space of Laplace transformable generalized functions. We ultimately aim at finding solutions to nonhomogeneous nth order linear differential equations with constant coefficients in terms of generalized functions and comparing different solutions evolved out of different initial conditions. Method. The above aim is achieved by • Defining the spaces La,b, L(w, z). • Assigning an order relation on these spaces by identifying a positive cone on them and studying the properties of the cone. • Defining an order relation on the dual spaces La,b, L(w, z) of La,b, L(w, z) and assigning a topology to these dual spaces which makes the order dual and the topological dual the same. • Defining the adjoint of a continuous map on these spaces and studying its behaviour when the topology of bounded convergence is assigned to the dual spaces. • Applying the two-sided Laplace Transformation on the ordered linear space of generalized functions W and studying some properties of the transformation which are used in solving differential equations. Result. The above techniques are applied to solve non-homogeneous n-th order linear differential equations with constant coefficients in terms of generalized functions and to compare different solutions of the differential equation.

Keywords: Laplace transformable generalized function, positive cone, topology of bounded convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
901 A Nonconforming Mixed Finite Element Method for Semilinear Pseudo-Hyperbolic Partial Integro-Differential Equations

Authors: Jingbo Yang, Hong Li, Yang Liu, Siriguleng He

Abstract:

In this paper, a nonconforming mixed finite element method is studied for semilinear pseudo-hyperbolic partial integrodifferential equations. By use of the interpolation technique instead of the generalized elliptic projection, the optimal error estimates of the corresponding unknown function are given.

Keywords: Pseudo-hyperbolic partial integro-differential equations, Nonconforming mixed element method, Semilinear, Error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
900 On the Modeling and State Estimation for Dynamic Power System

Authors: A. Thabet, M. Boutayeb, M. N. Abdelkrim

Abstract:

This paper investigates a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation (DAE) models using the extended Kalman filter. The method involves the use of a transformation from a DAE to ordinary differential equation (ODE). A relevant dynamic power system model using decoupled techniques will be proposed. The estimation technique consists of a state estimator based on the EKF technique as well as the local stability analysis. High performances are illustrated through a simulation study applied on IEEE 13 buses test system.

Keywords: Power system, Dynamic decoupled model, Extended Kalman Filter, Convergence analysis, Time computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2688
899 An Analytical Method for Solving General Riccati Equation

Authors: Y. Pala, M. O. Ertas

Abstract:

In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.

Keywords: Riccati Equation, ordinary differential equation, nonlinear differential equation, analytical solution, proper solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
898 Ordinary Differential Equations with Inverted Functions

Authors: Thomas Kampke

Abstract:

Equations with differentials relating to the inverse of an unknown function rather than to the unknown function itself are solved exactly for some special cases and numerically for the general case. Invertibility combined with differentiability over connected domains forces solutions always to be monotone. Numerical function inversion is key to all solution algorithms which either are of a forward type or a fixed point type considering whole approximate solution functions in each iteration. The given considerations are restricted to ordinary differential equations with inverted functions (ODEIs) of first order. Forward type computations, if applicable, admit consistency of order one and, under an additional accuracy condition, convergence of order one.

Keywords: Euler method, fixed points, golden section, multi-step procedures, Runge Kutta methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
897 Controller Design of Discrete Systems by Order Reduction Technique Employing Differential Evolution Optimization Algorithm

Authors: J. S. Yadav, N. P. Patidar, J. Singhai

Abstract:

One of the main objectives of order reduction is to design a controller of lower order which can effectively control the original high order system so that the overall system is of lower order and easy to understand. In this paper, a simple method is presented for controller design of a higher order discrete system. First the original higher order discrete system in reduced to a lower order model. Then a Proportional Integral Derivative (PID) controller is designed for lower order model. An error minimization technique is employed for both order reduction and controller design. For the error minimization purpose, Differential Evolution (DE) optimization algorithm has been employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the desired response and actual response pertaining to a unit step input. Finally the designed PID controller is connected to the original higher order discrete system to get the desired specification. The validity of the proposed method is illustrated through a numerical example.

Keywords: Discrete System, Model Order Reduction, PIDController, Integral Squared Error, Differential Evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
896 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations

Authors: Gilbert Makanda, Roelf Sypkens

Abstract:

A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.

Keywords: Differential equations, knowledge acquisition, least squares nonlinear, dynamical systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
895 Seven step Adams Type Block Method With Continuous Coefficient For Periodic Ordinary Differential Equation

Authors: Olusheye Akinfenwa

Abstract:

We consider the development of an eight order Adam-s type method, with A-stability property discussed by expressing them as a one-step method in higher dimension. This makes it suitable for solving variety of initial-value problems. The main method and additional methods are obtained from the same continuous scheme derived via interpolation and collocation procedures. The methods are then applied in block form as simultaneous numerical integrators over non-overlapping intervals. Numerical results obtained using the proposed block form reveals that it is highly competitive with existing methods in the literature.

Keywords: Block Adam's type Method; Periodic Ordinary Differential Equation; Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
894 Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs

Authors: K. N. Dinesh Babu, P. K. Gargava

Abstract:

Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.

Keywords: Differential protection, intelligent electronic device (IED), 2nd harmonic, inrush inhibit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
893 A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes

Authors: Amir T. Payandeh Najafabadi

Abstract:

This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equation). Application of our findings has been given through a simulation study.

Keywords: Ruin probability, compound Poisson processes, mixture exponential (hyperexponential) distribution, heavy-tailed distributions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
892 Optimized Vector Quantization for Bayer Color Filter Array

Authors: M. Lakshmi, J. Senthil Kumar

Abstract:

Digital cameras to reduce cost, use an image sensor to capture color images. Color Filter Array (CFA) in digital cameras permits only one of the three primary (red-green-blue) colors to be sensed in a pixel and interpolates the two missing components through a method named demosaicking. Captured data is interpolated into a full color image and compressed in applications. Color interpolation before compression leads to data redundancy. This paper proposes a new Vector Quantization (VQ) technique to construct a VQ codebook with Differential Evolution (DE) Algorithm. The new technique is compared to conventional Linde- Buzo-Gray (LBG) method.

Keywords: Color Filter Array (CFA), Biorthogonal Wavelet, Vector Quantization (VQ), Differential Evolution (DE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
891 Stability of Fractional Differential Equation

Authors: Rabha W. Ibrahim

Abstract:

We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders. Lane-Emden equation has been widely used to describe a variety of phenomena in physics and astrophysics, including aspects of stellar structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,and thermionic currents. However, ordinary Lane-Emden equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractalmedium, numerous generalizations of Lane-Emden equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Lane-Emden equation. This gives rise to the fractional Lane-Emden equation with a single index. Recently, a new type of Lane-Emden equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskiis fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space. Ulam-Hyers stability for iterative Cauchy fractional differential equation is defined and studied.

Keywords: Fractional calculus, fractional differential equation, Lane-Emden equation, Riemann-Liouville fractional operators, Volterra integral equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3654
890 Solving the Economic Dispatch Problem using Novel Particle Swarm Optimization

Authors: S. Khamsawang, S. Jiriwibhakorn

Abstract:

This paper proposes an improved approach based on conventional particle swarm optimization (PSO) for solving an economic dispatch(ED) problem with considering the generator constraints. The mutation operators of the differential evolution (DE) are used for improving diversity exploration of PSO, which called particle swarm optimization with mutation operators (PSOM). The mutation operators are activated if velocity values of PSO nearly to zero or violated from the boundaries. Four scenarios of mutation operators are implemented for PSOM. The simulation results of all scenarios of the PSOM outperform over the PSO and other existing approaches which appeared in literatures.

Keywords: Novel particle swarm optimization, Economic dispatch problem, Mutation operator, Prohibited operating zones, Differential Evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254
889 Scanning Device for Sampling the Spatial Distribution of the E-field

Authors: Juan Blas, Alfonso Bahillo, Santiago Mazuelas, David Bullido, Patricia Fernandez, Ruben M. Lorenzo, Evaristo J. Abril

Abstract:

This paper presents a low cost automatic system for sampling the electric field in a limited area. The scanning area is a flat surface parallel to the ground at a selected height. We discuss in detail the hardware, software and all the arrangements involved in the system operation. In order to show the system performance we include a campaign of narrow band measurements with 6017 sample points in the surroundings of a cellular base station. A commercial isotropic antenna with three orthogonal axes was used as sampling device. The results are analyzed in terms of its space average, standard deviation and statistical distribution.

Keywords: measurement device, propagation, spatial sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
888 Transverse Vibration of Non-Homogeneous Rectangular Plates of Variable Thickness Using GDQ

Authors: R. Saini, R. Lal

Abstract:

The effect of non-homogeneity on the free transverse vibration of thin rectangular plates of bilinearly varying thickness has been analyzed using generalized differential quadrature (GDQ) method. The non-homogeneity of the plate material is assumed to arise due to linear variations in Young’s modulus and density of the plate material with the in-plane coordinates x and y. Numerical results have been computed for fully clamped and fully simply supported boundary conditions. The solution procedure by means of GDQ method has been implemented in a MATLAB code. The effect of various plate parameters has been investigated for the first three modes of vibration. A comparison of results with those available in literature has been presented.

Keywords: Bilinear thickness, generalized differential quadrature (GDQ), non-homogeneous, Rectangular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
887 Surface Plasmon Polariton Excitation by a Phase Shift Grating

Authors: T. Nakada, Y. Nakagawa, M. Haraguchi, T. Okamotoi, M. Flockert, T. Isu, G. Shinomiya

Abstract:

We focus on the excitation and propagation properties of surface plasmon polariton (SPP). We have developed a SPP excitation device in combination with a grating structures fabricated by using the scanning probe lithography. Perturbation approach was used to investigate the coupling properties of SPP with a spatial harmonic wave supported by a metallic grating. A phase shift grating SPP coupler has been fabricated and the optical property was evaluated by the Fraunhofer diffraction formula. We have been experimentally confirmed the induced stop band by diffraction measurement. We have also observed the wavenumber shift of the resonance condition of SPP owing to effect of a phase shift.

Keywords: Surface Plasmon Polariton, phase shift grating, scanning probe lithography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
886 RBF- based Meshless Method for Free Vibration Analysis of Laminated Composite Plates

Authors: Jeeoot Singh, Sandeep Singh, K. K. Shukla

Abstract:

The governing differential equations of laminated plate utilizing trigonometric shear deformation theory are derived using energy approach. The governing differential equations discretized by different radial basis functions are used to predict the free vibration behavior of symmetric laminated composite plates. Effect of orthotropy and span to thickness ratio on frequency parameter of simply supported laminated plate is presented. Numerical results show the accuracy and good convergence of radial basis functions.

Keywords: Composite plates, Meshfree method, free vibration, Shear deformation, RBFs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
885 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method

Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi

Abstract:

Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.

Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
884 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

Authors: Babak Safaei, A. M. Fattahi

Abstract:

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long- (10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Keywords: Nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
883 An Automated High Pressure Differential Thermal Analysis System for Phase Transformation Studies

Authors: T. K. Mondal, N C Shivaprakash

Abstract:

A piston cylinder based high pressure differential thermal analyzer system is developed to investigate phase transformations, melting, glass transitions, crystallization behavior of inorganic materials, glassy systems etc., at ambient to 4 GPa and at room temperature to 1073 K. The pressure is calibrated by the phase transition of bismuth and ytterbium and temperature is calibrated by using thermocouple data chart. The system developed is calibrated using benzoic acid, ammonium nitrate and it has a pressure and temperature control of ± 8.9 x 10 -4 GPa , ± 2 K respectively. The phase transition of Asx Te100-x chalcogenides, ferrous oxide and strontium boride are studied using the indigenously developed system.

Keywords: double stage crystallization, Phase transition, Quasi hydrostatic, Rigidity percolation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
882 Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

Keywords: Dual solutions, heat transfer, mixed convection, stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
881 An Analytical Method to Analysis of Foam Drainage Problem

Authors: A. Nikkar, M. Mighani

Abstract:

In this study, a new reliable technique use to handle the foam drainage equation. This new method is resulted from VIM by a simple modification that is Reconstruction of Variational Iteration Method (RVIM). The drainage of liquid foams involves the interplay of gravity, surface tension, and viscous forces. Foaming occurs in many distillation and absorption processes. Results are compared with those of Adomian’s decomposition method (ADM).The comparisons show that the Reconstruction of Variational Iteration Method is very effective and overcome the difficulty of traditional methods and quite accurate to systems of non-linear partial differential equations.

Keywords: Reconstruction of Variational Iteration Method (RVIM), Foam drainage, nonlinear partial differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769