Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30127
Design of a Chaotic Trajectory Generator Algorithm for Mobile Robots

Authors: J. J. Cetina-Denis, R. M. López-Gutiérrez, R. Ramírez-Ramírez, C. Cruz-Hernández

Abstract:

This work addresses the problem of designing an algorithm capable of generating chaotic trajectories for mobile robots. Particularly, the chaotic behavior is induced in the linear and angular velocities of a Khepera III differential mobile robot by infusing them with the states of the H´enon chaotic map. A possible application, using the properties of chaotic systems, is patrolling a work area. In this work, numerical and experimental results are reported and analyzed. In addition, two quantitative numerical tests are applied in order to measure how chaotic the generated trajectories really are.

Keywords: Chaos, chaotic trajectories, differential mobile robot, Henons map, Khepera III robot, patrolling applications.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1477954

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283

References:


[1] L. Li, H. Peng, J. Kurths, Y. Yang and H. Schellnhuber, Chaos-order transition in foraging behavior of ants. Proceedings of the National Academy of Sciences of the United States of North America, 11(23), p. 83928397, 2014.
[2] Y. Nakamura and A. Sekiguchi, The Chaotic Mobile Robot. IEEE Transactions on Robotics and Automation, p. 898904, 2001.
[3] L. Martins–Filho and E. Macau, Kinematic control of mobile robots. ABCM Symposium Series in Mechatronics, Volumen 2, p. 258264, 2006.
[4] Volos, Kyprianidis and Stouboulos. A chaotic path planning generator for autonomous mobile robots. Robotics and Autonomous Systems, 60(4), p. 651656, 2012.
[5] D. Curiac and C. Volosencu A 2D chaotic path planning for mobile robots accomplishing boundary surveillance missions in adversarial conditions. Communications in Nonlinear Science and Numerical Simulation, 19(10), p. 36173627, 2014.
[6] M. Hnon, A Two-Dimensional Mapping with a Strange Atractor. Comm. Math. Phys., 50(1), pp. 69-77, 1976.
[7] N. Torres, Caos en sistemas biol´ogicos. Matematicalia: Revista Digital de Divulgacin Matem´atica de la Real Sociedad Matem´atica Espa˜nola, 1(3), 2005.
[8] A. Besicovitch, On linear sets of points of fractional dimension, Mathematische Annalen, 101(1): p.161193, 1929.
[9] P. Suster and A. Jadlovsk´a, A. Neural tracking trajectory of the mobile robot Khepera II internal model control structure. International Conference Process, Czech Republic, Kouty nad Desnou, 2010
[10] G. A. Gottwald and I. Melbourne, A new test for chaos in deterministic systems. Proceedings of the Royal Society of London A. Mathematical, Physical and Engineering Sciences. The Royal Society, Vol. 460, pp. 603611, 2004.
[11] B. B. Mandelbrot, The fractal geometry of nature, Vol. 173. Macmillan, 1983
[12] K. Foroutan–Pour, P. Dutilleul, and D. Smith, Advances in the implementation of the box-counting method of fractal dimension estimation. Applied Mathematics and Computation, 105(2): 195210. 1999.