\r\nalgorithm capable of generating chaotic trajectories for mobile robots.

\r\nParticularly, the chaotic behavior is induced in the linear and angular

\r\nvelocities of a Khepera III differential mobile robot by infusing them

\r\nwith the states of the H´enon chaotic map. A possible application,

\r\nusing the properties of chaotic systems, is patrolling a work area.

\r\nIn this work, numerical and experimental results are reported and

\r\nanalyzed. In addition, two quantitative numerical tests are applied in

\r\norder to measure how chaotic the generated trajectories really are.","references":"[1] L. Li, H. Peng, J. Kurths, Y. Yang and H. Schellnhuber, Chaos-order\r\ntransition in foraging behavior of ants. Proceedings of the National\r\nAcademy of Sciences of the United States of North America, 11(23), p.\r\n83928397, 2014.\r\n[2] Y. Nakamura and A. Sekiguchi, The Chaotic Mobile Robot. IEEE\r\nTransactions on Robotics and Automation, p. 898904, 2001.\r\n[3] L. Martins\u2013Filho and E. Macau, Kinematic control of mobile robots.\r\nABCM Symposium Series in Mechatronics, Volumen 2, p. 258264,\r\n2006.\r\n[4] Volos, Kyprianidis and Stouboulos. A chaotic path planning generator\r\nfor autonomous mobile robots. Robotics and Autonomous Systems,\r\n60(4), p. 651656, 2012.\r\n[5] D. Curiac and C. Volosencu A 2D chaotic path planning for mobile\r\nrobots accomplishing boundary surveillance missions in adversarial\r\nconditions. Communications in Nonlinear Science and Numerical\r\nSimulation, 19(10), p. 36173627, 2014.\r\n[6] M. Hnon, A Two-Dimensional Mapping with a Strange Atractor. Comm.\r\nMath. Phys., 50(1), pp. 69-77, 1976.\r\n[7] N. Torres, Caos en sistemas biol\u00b4ogicos. Matematicalia: Revista Digital\r\nde Divulgacin Matem\u00b4atica de la Real Sociedad Matem\u00b4atica Espa\u02dcnola,\r\n1(3), 2005.\r\n[8] A. Besicovitch, On linear sets of points of fractional dimension,\r\nMathematische Annalen, 101(1): p.161193, 1929.\r\n[9] P. Suster and A. Jadlovsk\u00b4a, A. Neural tracking trajectory of the\r\nmobile robot Khepera II internal model control structure. International\r\nConference Process, Czech Republic, Kouty nad Desnou, 2010\r\n[10] G. A. Gottwald and I. Melbourne, A new test for chaos in deterministic\r\nsystems. Proceedings of the Royal Society of London A. Mathematical,\r\nPhysical and Engineering Sciences. The Royal Society, Vol. 460, pp.\r\n603611, 2004.\r\n[11] B. B. Mandelbrot, The fractal geometry of nature, Vol. 173. Macmillan,\r\n1983\r\n[12] K. Foroutan\u2013Pour, P. Dutilleul, and D. Smith, Advances in the\r\nimplementation of the box-counting method of fractal dimension\r\nestimation. Applied Mathematics and Computation, 105(2): 195210.\r\n1999.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 143, 2018"}