Search results for: Darcy's equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1128

Search results for: Darcy's equation

1128 Derivation of Darcy’s Law using Homogenization Method

Authors: Kannanut Chamsri

Abstract:

Darcy’s Law is a well-known constitutive equation describing the flow of a fluid through a porous medium. The equation shows a relationship between the superficial or Darcy velocity and the pressure gradient which was first experimentally observed by Henry Darcy in 1855-1856. In this study, we apply homogenization method to Stokes equation in order to derive Darcy’s Law. The process of deriving the equation is complicated, especially in multidimensional domain. Thus, for the sake of simplicity, we use the indicial notation as well as the homogenization. This combination provides a smooth, simple and easy technique to derive Darcy’s Law.

Keywords: Darcy’s Law, Homogenization method, Indicial notation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5018
1127 Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation

Authors: Xin Luo, Jin Huang, Chuan-Long Wang

Abstract:

The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy-s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h3), where h is the mesh size. Based on these analysis, extrapolation methods can be introduced to achieve a higher convergence rate O (h5). An a posterior asymptotic error representation is derived in order to construct self-adaptive algorithms. Finally, the numerical experiments show the efficiency of our methods.

Keywords: Darcy's equation, anisotropic, mechanical quadrature methods, extrapolation methods, a posteriori error estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
1126 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media

Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.

Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
1125 Study of Explicit Finite Difference Method in One Dimensional System

Authors: Azizollah Khormali, Seyyed Shahab Tabatabaee Moradi, Dmitry Petrakov

Abstract:

One of the most important parameters in petroleum reservoirs is the pressure distribution along the reservoir, as the pressure varies with the time and location. A popular method to determine the pressure distribution in a reservoir in the unsteady state regime of flow is applying Darcy’s equation and solving this equation numerically. The numerical simulation of reservoirs is based on these numerical solutions of different partial differential equations (PDEs) representing the multiphase flow of fluids. Pressure profile has obtained in a one dimensional system solving Darcy’s equation explicitly. Changes of pressure profile in three situations are investigated in this work. These situations include section length changes, step time changes and time approach to infinity. The effects of these changes in pressure profile are shown and discussed in the paper.

Keywords: Explicit solution, Numerical simulation, Petroleum reservoir, Pressure distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4203
1124 Porous Effect on Heat Transfer of Non Uniform Velocity Inlet Flow Using LBM

Authors: A. Hasanpour, M. Farhadi, K.Sedighi, H.R.Ashorynejad

Abstract:

A numerical study of flow in a horizontally channel partially filled with a porous screen with non-uniform inlet has been performed by lattice Boltzmann method (LBM). The flow in porous layer has been simulated by the Brinkman-Forchheimer model. Numerical solutions have been obtained for variable porosity models and the effects of Darcy number and porosity have been studied in detail. It is found that the flow stabilization is reliant on the Darcy number. Also the results show that the stabilization of flow field and heat transfer is depended to Darcy number. Distribution of stream field becomes more stable by decreasing Darcy number. Results illustrate that the effect of variable porosity is significant just in the region of the solid boundary. In addition, difference between constant and variable porosity models is decreased by decreasing the Darcy number.

Keywords: Lattice Boltzmann Method, Porous Media, Variable Porosity, Flow Stabilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
1123 A Study of Thermal Convection in Two Porous Layers Governed by Brinkman's Model in Upper Layer and Darcy's Model in Lower Layer

Authors: M. S. Al-Qurashi

Abstract:

This work examines thermal convection in two porous layers. Flow in the upper layer is governed by Brinkman-s equations model and in the lower layer is governed by Darcy-s model. Legendre polynomials are used to obtain numerical solution when the lower layer is heated from below.

Keywords: Brinkman's law, Darcy's law, porous layers, Legendre polynomials, the Oberbeck-Boussineq approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
1122 Free Convective Heat Transfer in an Enclosure Filled with Porous Media with and without Insulated Moving Wall

Authors: Laith Jaafer Habeeb

Abstract:

The present work is concerned with the free convective two dimensional flow and heat transfer, in isotropic fluid filled porous rectangular enclosure with differentially heated walls for steady state incompressible flow have been investigated for non- Darcy flow model. Effects of Darcy number (0.0001 £Da£ 10), Rayleigh number (10 £Ra£ 5000), and aspect ratio (0.25 £AR£ 4), for a range of porosity (0.4 £e£ 0.9) with and without moving lower wall have been studied. The cavity was insulated at the lower and upper surfaces. The right and left heated surfaces allows convective transport through the porous medium, generating a thermal stratification and flow circulations. It was found that the Darcy number, Rayleigh number, aspect ratio, and porosity considerably influenced characteristics of flow and heat transfer mechanisms. The results obtained are discussed in terms of the Nusselt number, vectors, contours, and isotherms.

Keywords: Numerical study, moving-wall cavity flow, saturated porous medium, different Darcy and Rayleigh numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
1121 Effect of Buoyancy Ratio on Non-Darcy Mixed Convection in a Vertical Channel: A Thermal Non-equilibrium Approach

Authors: Manish K. Khandelwal, P. Bera, A. Chakrabarti

Abstract:

This article presents a numerical study of the doublediffusive mixed convection in a vertical channel filled with porous medium by using non-equilibrium model. The flow is assumed fully developed, uni-directional and steady state. The controlling parameters are thermal Rayleigh number (RaT ), Darcy number (Da), Forchheimer number (F), buoyancy ratio (N), inter phase heat transfer coefficient (H), and porosity scaled thermal conductivity ratio (γ). The Brinkman-extended non-Darcy model is considered. The governing equations are solved by spectral collocation method. The main emphasize is given on flow profiles as well as heat and solute transfer rates, when two diffusive components in terms of buoyancy ratio are in favor (against) of each other and solid matrix and fluid are thermally non-equilibrium. The results show that, for aiding flow (RaT = 1000), the heat transfer rate of fluid (Nuf ) increases upto a certain value of H, beyond that decreases smoothly and converges to a constant, whereas in case of opposing flow (RaT = -1000), the result is same for N = 0 and 1. The variation of Nuf in (N, Nuf )-plane shows sinusoidal pattern for RaT = -1000. For both cases (aiding and opposing) the flow destabilize on increasing N by inviting point of inflection or flow separation on the velocity profile. Overall, the buoyancy force have significant impact on the non-Darcy mixed convection under LTNE conditions.

Keywords: buoyancy ratio, mixed convection, non-Darcy model, thermal non-equilibrium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
1120 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t

Authors: Ahmet Tekcan, Betül Gezer, Osman Bizim

Abstract:

Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.

Keywords: Pell equation, Diophantine equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
1119 Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux

Authors: D Bhargavi, J. Sharath Kumar Reddy

Abstract:

The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, Da, Peclet number, Pe, Brinkman number, Br and a porous fraction γp on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.

Keywords: Porous material, channel partially filled with a porous material, axial conduction, viscous dissipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
1118 Modeling Non-Darcy Natural Convection Flow of a Micropolar Dusty Fluid with Convective Boundary Condition

Authors: F. M. Hady, A. Mahdy, R. A. Mohamed, Omima A. Abo Zaid

Abstract:

A numerical approach of the effectiveness of numerous parameters on magnetohydrodynamic (MHD) natural convection heat and mass transfer problem of a dusty micropolar fluid in a non-Darcy porous regime is prepared in the current paper. In addition, a convective boundary condition is scrutinized into the micropolar dusty fluid model. The governing boundary layer equations are converted utilizing similarity transformations to a system of dimensionless equations to be convenient for numerical treatment. The resulting equations for fluid phase and dust phases of momentum, angular momentum, energy, and concentration with the appropriate boundary conditions are solved numerically applying the Runge-Kutta method of fourth-order. In accordance with the numerical study, it is obtained that the magnitude of the velocity of both fluid phase and particle phase reduces with an increasing magnetic parameter, the mass concentration of the dust particles, and Forchheimer number. While rises due to an increment in convective parameter and Darcy number. Also, the results refer that high values of the magnetic parameter, convective parameter, and Forchheimer number support the temperature distributions. However, deterioration occurs as the mass concentration of the dust particles and Darcy number increases. The angular velocity behavior is described by progress when studying the effect of the magnetic parameter and microrotation parameter.

Keywords: Micropolar dusty fluid, convective heating, natural convection, MHD, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
1117 The Proof of Two Conjectures Related to Pell-s Equation x2 −Dy2 = ± 4

Authors: Armend Sh. Shabani

Abstract:

Let D ≠ 1 be a positive non-square integer. In this paper are given the proofs for two conjectures related to Pell-s equation x2 -Dy2 = ± 4, proposed by A. Tekcan.

Keywords: Pell's equation, solutions of Pell's equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
1116 MHD Mixed Convection in a Vertical Porous Channel

Authors: B. Fersadou, H. Kahalerras

Abstract:

This work deals with the problem of MHD mixed convection in a completely porous and differentially heated vertical channel. The model of Darcy-Brinkman-Forchheimer with the Boussinesq approximation is adopted and the governing equations are solved by the finite volume method. The effects of magnetic field and buoyancy force intensities are given by the Hartmann and Richardson numbers respectively, as well as the Joule heating represented by Eckert number on the velocity and temperature fields, are examined. The main results show an augmentation of heat transfer rate with the decrease of Darcy number and the increase of Ri and Ha when Joule heating is neglected.

Keywords: Heat sources, magnetic field, mixed convection, porous channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
1115 An Analytical Method for Solving General Riccati Equation

Authors: Y. Pala, M. O. Ertas

Abstract:

In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.

Keywords: Riccati Equation, ordinary differential equation, nonlinear differential equation, analytical solution, proper solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
1114 The Pell Equation x2 − Py2 = Q

Authors: Ahmet Tekcan, Arzu Özkoç, Canan Kocapınar, Hatice Alkan

Abstract:

Let p be a prime number such that p ≡ 1(mod 4), say p = 1+4k for a positive integer k. Let P = 2k + 1 and Q = k2. In this paper, we consider the integer solutions of the Pell equation x2-Py2 = Q over Z and also over finite fields Fp. Also we deduce some relations on the integer solutions (xn, yn) of it.

Keywords: Pell equation, solutions of Pell equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
1113 HPM Solution of Momentum Equation for Darcy-Brinkman Model in a Parallel Plates Channel Subjected to Lorentz Force

Authors: Asghar Shirazpour, Seyed Moein Rassoulinejad Mousavi, Hamid Reza Seyf

Abstract:

In this paper an analytical solution is presented for fully developed flow in a parallel plates channel under the action of Lorentz force, by use of Homotopy Perturbation Method (HPM). The analytical results are compared with exact solution and an excellent agreement has been observed between them for both Couette and Poiseuille flows. Moreover, the effects of key parameters have been studied on the dimensionless velocity profile.

Keywords: Lorentz Force, Porous Media, Homotopy Perturbation method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
1112 Entropy Generation for Natural Convection in a Darcy – Brinkman Porous Cavity

Authors: Ali Mchirgui, Nejib Hidouri, Mourad Magherbi, Ammar Ben Brahim

Abstract:

The paper provides a numerical investigation of the entropy generation analysis due to natural convection in an inclined square porous cavity. The coupled equations of mass, momentum, energy and species conservation are solved using the Control Volume Finite-Element Method. Effect of medium permeability and inclination angle on entropy generation is analysed. It was found that according to the Darcy number and the porous thermal Raleigh number values, the entropy generation could be mainly due to heat transfer or to fluid friction irreversibility and that entropy generation reaches extremum values for specific inclination angles.

Keywords: Porous media, entropy generation, convection, numerical method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606
1111 The Diophantine Equation y2 − 2yx − 3 = 0 and Corresponding Curves over Fp

Authors: Ahmet Tekcan, Arzu Özkoç, Hatice Alkan

Abstract:

In this work, we consider the number of integer solutions of Diophantine equation D : y2 - 2yx - 3 = 0 over Z and also over finite fields Fp for primes p ≥ 5. Later we determine the number of rational points on curves Ep : y2 = Pp(x) = yp 1 + yp 2 over Fp, where y1 and y2 are the roots of D. Also we give a formula for the sum of x- and y-coordinates of all rational points (x, y) on Ep over Fp.

Keywords: Diophantine equation, Pell equation, quadratic form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
1110 Unsteady Natural Convection in a Square Cavity Partially Filled with Porous Media Using a Thermal Non-Equilibrium Model

Authors: Ammar Alsabery, Habibis Saleh, Norazam Arbin, Ishak Hashim

Abstract:

Unsteady natural convection and heat transfer in a square cavity partially filled with porous media using a thermal non-equilibrium model is studied in this paper. The left vertical wall is maintained at a constant hot temperature Th and the right vertical wall is maintained at a constant cold temperature Tc, while the horizontal walls are adiabatic. The governing equations are obtained by applying the Darcy model and Boussinesq approximation. COMSOL’s finite element method is used to solve the non-dimensional governing equations together with specified boundary conditions. The governing parameters of this study are the Rayleigh number (Ra = 10^5, and Ra = 10^6 ), Darcy namber (Da = 10^−2, and Da = 10^−3), the modified thermal conductivity ratio (10^−1 ≤ γ ≤ 10^4), the inter-phase heat transfer coefficien (10^−1 ≤ H ≤ 10^3) and the time dependent (0.001 ≤ τ ≤ 0.2). The results presented for values of the governing parameters in terms of streamlines in both fluid/porous-layer, isotherms of fluid in fluid/porous-layer, isotherms of solid in porous layer, and average Nusselt number.

Keywords: Unsteady natural convection, Thermal non-equilibrium model, Darcy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2751
1109 Solution of The KdV Equation with Asymptotic Degeneracy

Authors: Tapas Kumar Sinha, Joseph Mathew

Abstract:

Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).

Keywords: KdV equation, Asymptotic Degeneracy, Solitons, Inverse Scattering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
1108 Free Convection in a Darcy Thermally Stratified Porous Medium That Embeds a Vertical Wall of Constant Heat Flux and Concentration

Authors: Maria Neagu

Abstract:

This paper presents the heat and mass driven natural convection succession in a Darcy thermally stratified porous medium that embeds a vertical semi-infinite impermeable wall of constant heat flux and concentration. The scale analysis of the system determines the two possible maps of the heat and mass driven natural convection sequence along the wall as a function of the process parameters. These results are verified using the finite differences method applied to the conservation equations.

Keywords: Finite difference method, natural convection, porous medium, scale analysis, thermal stratification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1107 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method

Authors: Said Laachir, Aziz Laaribi

Abstract:

The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.

Keywords: Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3003
1106 Study of Cahn-Hilliard Equation to Simulate Phase Separation

Authors: Nara Guimarães, Marcelo Aquino Martorano, Douglas Gouvêa

Abstract:

An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.

Keywords: Cahn-Hilliard equation, miscibility gap, phase separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
1105 Transient Population Dynamics of Phase Singularities in 2D Beeler-Reuter Model

Authors: Hidetoshi Konno, Akio Suzuki

Abstract:

The paper presented a transient population dynamics of phase singularities in 2D Beeler-Reuter model. Two stochastic modelings are examined: (i) the Master equation approach with the transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii) the nonlinear Langevin equation approach with a multiplicative noise. The exact general solution of the Master equation with arbitrary time-dependent transition rate is given. Then, the exact solution of the mean field equation for the nonlinear Langevin equation is also given. It is demonstrated that transient population dynamics is successfully identified by the generalized Logistic equation with fractional higher order nonlinear term. It is also demonstrated the necessity of introducing time-dependent transition rate in the master equation approach to incorporate the effect of nonlinearity.

Keywords: Transient population dynamics, Phase singularity, Birth-death process, Non-stationary Master equation, nonlinear Langevin equation, generalized Logistic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
1104 Traveling Wave Solutions for the Sawada-Kotera-Kadomtsev-Petviashivili Equation and the Bogoyavlensky-Konoplechenko Equation by (G'/G)- Expansion Method

Authors: Nisha Goyal, R.K. Gupta

Abstract:

This paper presents a new function expansion method for finding traveling wave solutions of a nonlinear equations and calls it the G G -expansion method, given by Wang et al recently. As an application of this new method, we study the well-known Sawada-Kotera-Kadomtsev-Petviashivili equation and Bogoyavlensky-Konoplechenko equation. With two new expansions, general types of soliton solutions and periodic solutions for these two equations are obtained.

Keywords: Sawada-Kotera-Kadomtsev-Petviashivili equation, Bogoyavlensky-Konoplechenko equation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
1103 Stability of Fractional Differential Equation

Authors: Rabha W. Ibrahim

Abstract:

We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders. Lane-Emden equation has been widely used to describe a variety of phenomena in physics and astrophysics, including aspects of stellar structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,and thermionic currents. However, ordinary Lane-Emden equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractalmedium, numerous generalizations of Lane-Emden equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Lane-Emden equation. This gives rise to the fractional Lane-Emden equation with a single index. Recently, a new type of Lane-Emden equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskiis fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space. Ulam-Hyers stability for iterative Cauchy fractional differential equation is defined and studied.

Keywords: Fractional calculus, fractional differential equation, Lane-Emden equation, Riemann-Liouville fractional operators, Volterra integral equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3715
1102 Free Convection in a MHD Porous Cavity with using Lattice Boltzmann Method

Authors: H.A. Ashorynejad, M. Farhadi, K.Sedighi, A.Hasanpour

Abstract:

We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.

Keywords: Lattice Boltzmann method , Natural convection , Magnetohydrodynamic , Porous medium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
1101 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method

Authors: Anjali Verma, Ram Jiwari, Jitender Kumar

Abstract:

This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.

Keywords: Shallow water wave equation, Exact solutions, (G'/G) expansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
1100 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet

Authors: A. Abdedou, K. Bouhadef

Abstract:

The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.

Keywords: Forced convection, oriented confined jet, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
1099 Existence of Iterative Cauchy Fractional Differential Equation

Authors: Rabha W. Ibrahim

Abstract:

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

Keywords: Fractional calculus, fractional differential equation, Cauchy equation, Riemann-Liouville fractional operators, Volterra integral equation, non-expansive mapping, iterative differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684