Search results for: Circular Hole
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 404

Search results for: Circular Hole

344 Designing a Low Speed Wind Tunnel for Investigating Effects of Blockage Ratio on Heat Transfer of a Non-Circular Tube

Authors: Arash Mirabdolah Lavasani, Taher Maarefdoost

Abstract:

Effect of blockage ratio on heat transfer from non-circular tube is studied experimentally. For doing this experiment a suction type low speed wind tunnel with test section dimension of 14×14×40 and velocity in rage of 7-20 m/s was designed. The blockage ratios varied between 1.5 to 7 and Reynolds number based on equivalent diameter varies in range of 7.5×103 to 17.5×103. The results show that by increasing blockage ratio from 1.5 to 7, drag coefficient of the cam shaped tube decreased about 55 percent. By increasing Reynolds number, Nusselt number of the cam shaped tube increases about 40 to 48 percent in all ranges of blockage ratios.

Keywords: Wind tunnel, non-circular tube, blockage ratio, experimental heat transfer, cross-flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
343 Simulation of Lid Cavity Flow in Rectangular, Half-Circular and Beer Bucket Shapes using Quasi-Molecular Modeling

Authors: S. Kulsri, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

We developed a new method based on quasimolecular modeling to simulate the cavity flow in three cavity shapes: rectangular, half-circular and bucket beer in cgs units. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a cavity flow was simulated, the instantaneous velocity vector fields were obtained by using an inverse distance weighted interpolation method. In all three cavity shapes, fluid motion was rotated counter-clockwise. The velocity vector fields of the three cavity shapes showed a primary vortex located near the upstream corners at time t ~ 0.500 s, t ~ 0.450 s and t ~ 0.350 s, respectively. The configurational kinetic energy of the cavities increased as time increased until the kinetic energy reached a maximum at time t ~ 0.02 s and, then, the kinetic energy decreased as time increased. The rectangular cavity system showed the lowest kinetic energy, while the half-circular cavity system showed the highest kinetic energy. The kinetic energy of rectangular, beer bucket and half-circular cavities fluctuated about stable average values 35.62 x 103, 38.04 x 103 and 40.80 x 103 ergs/particle, respectively. This indicated that the half-circular shapes were the most suitable shape for a shrimp pond because the water in shrimp pond flows best when we compared with rectangular and beer bucket shape.

Keywords: Quasi-molecular modelling, particle modelling, lid driven cavity flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
342 Application of Generalized NAUT B-Spline Curveon Circular Domain to Generate Circle Involute

Authors: Ashok Ganguly, Pranjali Arondekar

Abstract:

In the present paper, we use generalized B-Spline curve in trigonometric form on circular domain, to capture the transcendental nature of circle involute curve and uncertainty characteristic of design. The required involute curve get generated within the given tolerance limit and is useful in gear design.

Keywords: Bézier, Circle Involute, NAUT B-Spline, Spur Gear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
341 Stress Analysis of the Ceramics Heads with Different Sizes under the Destruction Tests

Authors: V. Fuis, P. Janicek, T. Navrat

Abstract:

The global solved problem is the calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalised ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). A special destruction device for heads destruction was designed and the solved local problem is the modification of this destructive device based on the analysis of tensile stress in the head for two different values of the depth of the conical hole in the head. The goal of device modification is a shift of the location with extreme value of σ1max from the region of head’s hole bottom to its opening. This modification will increase the credibility of the obtained material properties of bioceramics, which will be determined from a set of head destructions using the Weibull weakest link theory.

Keywords: Ceramic heads, depth of the conical hole, destruction test, material parameters, principal stress, total hip joint endoprosthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
340 The Algorithm to Solve the Extend General Malfatti’s Problem in a Convex Circular Triangle

Authors: Ching-Shoei Chiang

Abstract:

The Malfatti’s problem solves the problem of fitting three circles into a right triangle such that these three circles are tangent to each other, and each circle is also tangent to a pair of the triangle’s sides. This problem has been extended to any triangle (called general Malfatti’s problem). Furthermore, the problem has been extended to have 1 + 2 + … + n circles inside the triangle with special tangency properties among circles and triangle sides; it is called the extended general Malfatti’s problem. In the extended general Malfatti’s problem, call it Tri(Tn), where Tn is the triangle number, there are closed-form solutions for the Tri(T₁) (inscribed circle) problem and Tri(T₂) (3 Malfatti’s circles) problem. These problems become more complex when n is greater than 2. In solving the Tri(Tn) problem, n > 2, algorithms have been proposed to solve these problems numerically. With a similar idea, this paper proposed an algorithm to find the radii of circles with the same tangency properties. Instead of the boundary of the triangle being a straight line, we use a convex circular arc as the boundary and try to find Tn circles inside this convex circular triangle with the same tangency properties among circles and boundary as in Tri(Tn) problems. We call these problems the Carc(Tn) problems. The algorithm is a mO(Tn) algorithm, where m is the number of iterations in the loop. It takes less than 1000 iterations and less than 1 second for the Carc(T16) problem, which finds 136 circles inside a convex circular triangle with specified tangency properties. This algorithm gives a solution for circle packing problem inside convex circular triangle with arbitrarily-sized circles. Many applications concerning circle packing may come from the result of the algorithm, such as logo design, architecture design, etc.

Keywords: Circle packing, computer-aided geometric design, geometric constraint solver, Malfatti’s problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50
339 Single Feed Circularly Polarized Poly Fractal Antenna for Wireless Applications

Authors: V. V. Reddy, N. V. S. N. Sarma

Abstract:

A circularly polarized fractal boundary microstrip antenna is presented. The sides of a square patch along x- axis, yaxis are replaced with Minkowski and Koch curves correspondingly. By using the fractal curves as edges, asymmetry in the structure is created to excite two orthogonal modes for circular polarization (CP) operation. The indentation factors of the fractal curves are optimized for pure CP. The simulated results of the novel polyfractal antenna are demonstrated.

Keywords: Circular polarization, Fractal, Koch, Minkowski.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464
338 Analytical Evaluation on Hysteresis Performance of Circular Shear Panel Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

The idea of adding metallic energy dissipaters to a structure to absorb a large part of the seismic energy began four decades ago. There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of both stiffened and non stiffened circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. Diameter-to-thickness ratio is employed as main parameter to investigate the hysteresis performance of stiffened and unstiffened circular shear panel. Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. Hence, the hysteresis behavior is identified, specimens which deform without strength degradation so it will be used as passive energy dissipating device in civil engineering structures.

Keywords: Circular shear panel damper, FE analysis, Hysteretic behavior, Large deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
337 Effect of Mean Stress on Fatigue Crack Growth Behavior of Stainless Steel 304L

Authors: M. Benachour, N. Benachour

Abstract:

Stainless steel has been employed in many engineering applications ranging from pharmaceutical equipment to piping in the nuclear reactors and storage to chemical products. In this attempt, simulation of fatigue crack growth based on experimental results of austenitic stainless steel 304L was presented using AFGROW code when NASGRO mode laws adopted. Double through crack at hole specimen is used in this investigation under constant amplitude loading. Effect of mean stress is highlighted. Results show that fatigue crack growth rate (FCGR) and fatigue life were affected by maximum applied load and dimension of hole. An equivalent of Paris law for this material was estimated.

Keywords: Fatigue crack, stainless steel, mean stress, amplitudeloading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3112
336 Axisymmetric Vibrations of Layered Cylindrical Shells with Cracks

Authors: Larissa Roots

Abstract:

Vibrations of circular cylindrical shells made of layered composite materials are considered. The shells are weakened by circumferential cracks. The influence of circumferential cracks with constant depth on the vibration of the shell is prescribed with the aid of a matrix of local flexibility coupled with the coefficient of the stress intensity known in the linear elastic fracture mechanics. Numerical results are presented for the case of the shell with one circular crack.

Keywords: Layered shell, axisymmetric vibration, crack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
335 Investigation of Self-Similarity Solution for Wake Flow of a Cylinder

Authors: A. B. Khoshnevis, F. Zeydabadi, F. Sokhanvar

Abstract:

The data measurement of mean velocity has been taken for the wake of single circular cylinder with three different diameters for two different velocities. The effects of change in diameter and in velocity are studied in self-similar coordinate system. The spatial variations of velocity defect and that of the half-width have been investigated. The results are compared with those published by H.Schlichting. In the normalized coordinates, it is also observed that all cases except for the first station are self-similar. By attention to self-similarity profiles of mean velocity, it is observed for all the cases at the each station curves tend to zero at a same point.

Keywords: Self-similarity, wake of single circular cylinder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345
334 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: Border of the universe, causality violation, perfect isolation, quantum jumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185
333 A Novel Approach for Coin Identification using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms

Authors: J. Prakash, K. Rajesh

Abstract:

In this paper we present a new method for coin identification. The proposed method adopts a hybrid scheme using Eigenvalues of covariance matrix, Circular Hough Transform (CHT) and Bresenham-s circle algorithm. The statistical and geometrical properties of the small and large Eigenvalues of the covariance matrix of a set of edge pixels over a connected region of support are explored for the purpose of circular object detection. Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain only a small number of non-zero elements, they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of the circumference pixels is identified using Raster scan algorithm which uses geometrical symmetry property. After finding circular objects, the proposed method uses the texture on the surface of the coins called texton, which are unique properties of coins, refers to the fundamental micro structure in generic natural images. This method has been tested on several real world images including coin and non-coin images. The performance is also evaluated based on the noise withstanding capability.

Keywords: Circular Hough Transform, Coin detection, Covariance matrix, Eigenvalues, Raster scan Algorithm, Texton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
332 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T

Authors: M. N. Islam, B. Boswell, Y. R. Ginting

Abstract:

The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.

Keywords: Circularity, diameter error, drilling canned cycle, Pareto ANOVA, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1106
331 Free Vibration Analysis of Smart FGM Plates

Authors: F.Ebrahimi, A.Rastgo

Abstract:

Analytical investigation of the free vibration behavior of circular functionally graded (FG) plates integrated with two uniformly distributed actuator layers made of piezoelectric (PZT4) material on the top and bottom surfaces of the circular FG plate based on the classical plate theory (CPT) is presented in this paper. The material properties of the functionally graded substrate plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents and the distribution of electric potential field along the thickness direction of piezoelectric layers is simulated by a quadratic function. The differential equations of motion are solved analytically for clamped edge boundary condition of the plate. The detailed mathematical derivations are presented and Numerical investigations are performed for FG plates with two surface-bonded piezoelectric layers. Emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. The results are verified by those obtained from threedimensional finite element analyses.

Keywords: Circular plate, CPT, Functionally graded, Piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
330 Large Vibration Amplitudes of Circular Functionally Graded Thin Plates Resting on Winkler Elastic Foundations

Authors: El Kaak, Rachid, El Bikri, Khalid, Benamar, Rhali

Abstract:

This paper describes a study of geometrically nonlinear free vibration of thin circular functionally graded (CFGP) plates resting on Winkler elastic foundations. The material properties of the functionally graded composites examined here are assumed to be graded smoothly and continuously through the direction of the plate thickness according to a power law and are estimated using the rule of mixture. The theoretical model is based on the classical Plate theory and the Von-Kármán geometrical nonlinearity assumptions. An homogenization procedure (HP) is developed to reduce the problem considered here to that of isotropic homogeneous circular plates resting on Winkler foundation. Hamilton-s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear fundamental frequency has also been analysed.

Keywords: Functionally graded materials, nonlinear vibrations, Winkler foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
329 Finite Element Modeling of two-dimensional Nanoscale Structures with Surface Effects

Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding

Abstract:

Nanomaterials have attracted considerable attention during the last two decades, due to their unusual electrical, mechanical and other physical properties as compared with their bulky counterparts. The mechanical properties of nanostructured materials show strong size dependency, which has been explained within the framework of continuum mechanics by including the effects of surface stress. The size-dependent deformations of two-dimensional nanosized structures with surface effects are investigated in the paper by the finite element method. Truss element is used to evaluate the contribution of surface stress to the total potential energy and the Gurtin and Murdoch surface stress model is implemented with ANSYS through its user programmable features. The proposed approach is used to investigate size-dependent stress concentration around a nanosized circular hole and the size-dependent effective moduli of nanoporous materials. Numerical results are compared with available analytical results to validate the proposed modeling approach.

Keywords: Nanomaterials, finite element method, sizedependency, surface stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735
328 Exploiting Non Circularity for Angle Estimation in Bistatic MIMO Radar Systems

Authors: Ebregbe David, Deng Weibo

Abstract:

The traditional second order statistics approach of using only the hermitian covariance for non circular signals, does not take advantage of the information contained in the complementary covariance of these signals. Radar systems often use non circular signals such as Binary Phase Shift Keying (BPSK) signals. Their noncicular property can be exploited together with the dual centrosymmetry of the bistatic MIMO radar system to improve angle estimation performance. We construct an augmented matrix from the received data vectors using both the positive definite hermitian covariance matrix and the complementary covariance matrix. The Unitary ESPRIT technique is then applied to the signal subspace of the augmented covariance matrix for automatically paired Direction-of-arrival (DOA) and Direction-of-Departure (DOD) angle estimates. The number of targets that can be detected is twice that obtainable with the conventional ESPRIT approach. Simulation results show the effectiveness of this method in terms of increase in resolution and the number of targets that can be detected.

Keywords: Bistatic MIMO Radar, Unitary Esprit, Non circular signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
327 Performance Evaluation of a Millimeter-Wave Phased Array Antenna Using Circularly Polarized Elements

Authors: Rawad Asfour, Salam Khamas, Edward A. Ball

Abstract:

This paper is focused on the design of an mm-wave phased array. To date, linear polarization is adapted in the reported designs of phased arrays. However, linear polarization faces several well-known challenges. As such, an advanced design for phased array antennas is required that offers circularly polarized (CP) radiation. A feasible solution for achieving CP phased array antennas is proposed using open-circular loop antennas. To this end, a 3-element circular loop phased array antenna is designed to operate at 28 GHz. In addition, the array ability to control the direction of the main lobe is investigated. The results show that the highest achievable field of view (FOV) is 100°, i.e. 50° to the left and 50° to the right-hand side directions. The results are achieved with a CP bandwidth of 15%. Furthermore, the results demonstrate that a high broadside gain of circa 11 dBi can be achieved for the steered beam. Besides, radiation efficiency of 97% can also be achieved based on the proposed design.

Keywords: loop antenna, phased array, beam steering, wide bandwidth, circular polarization, CST

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
326 Investigation of Flow Characteristics on Upstream and Downstream of Orifice Using Computational Fluid Dynamics

Authors: War War Min Swe, Aung Myat Thu, Khin Cho Thet, Zaw Moe Htet, Thuzar Mon

Abstract:

The main parameter of the orifice hole diameter was designed according to the range of throttle diameter ratio which gave the required discharge coefficient. The discharge coefficient is determined by difference diameter ratios. The value of discharge coefficient is 0.958 occurred at throttle diameter ratio 0.5. The throttle hole diameter is 80 mm. The flow analysis is done numerically using ANSYS 17.0, computational fluid dynamics. The flow velocity was analyzed in the upstream and downstream of the orifice meter. The downstream velocity of non-standard orifice meter is 2.5% greater than that of standard orifice meter. The differential pressure is 515.379 Pa in standard orifice.

Keywords: CFD-CFX, discharge coefficients, flow characteristics, inclined.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
325 Stress Ratio and Notch Effect on Fatigue Crack Initiation and Propagation in 2024 Al-alloy

Authors: N. Benachour, A. Hadjoui, M. Benachour, M. Benguediab

Abstract:

This study reports an empirical investigation of fatigue crack initiation and propagation in 2024 T351 aluminium alloy using constant amplitude loading. In initiation stage, local strain approach at the notch was used and in stable propagation stage NASGRO model was applied. In this investigation, the flat plate of double through crack at hole is used. Based on experimental results (AFGROW Database), effect of stress ratio, R, is highlights on fatigue initiation life (FIL) and fatigue crack growth rate (FCGR). The increasing of dimension of hole characterizing the notch effect decrease the fatigue life.

Keywords: Fatigue crack growth, initiation life, Al-Alloy, stressratio, notch effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3206
324 Circular Raft Footings Strengthened by Stone Columns under Dynamic Harmonic Loads

Authors: R. Ziaie Moayed, A. Mahigir

Abstract:

Stone column technique has been successfully employed to improve the load-settlement characteristics of foundations. A series of finite element numerical analyses of harmonic dynamic loading have been conducted on strengthened raft footing to study the effects of single and group stone columns on settlement of circular footings. The settlement of circular raft footing that improved by single and group of stone columns are studied under harmonic dynamic loading. This loading is caused by heavy machinery foundations. A detailed numerical investigation on behavior of single column and group of stone columns is carried out by varying parameters like weight of machinery, loading frequency and period. The result implies that presence of single and group of stone columns enhanced dynamic behavior of the footing so that the maximum and residual settlement of footing significantly decreased. 

Keywords: Finite element analysis, harmonic loading, settlement, stone column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 969
323 Numerical Analysis of Flow past Circular Cylinder with Triangular and Rectangular Wake Splitter

Authors: Pavan Badami, Vivek Shrivastava, Saravanan V., Nandeesh Hiremath, K. N. Seetharamu

Abstract:

In the present work flow past circular cylinder and cylinder with rectangular and triangular wake splitter is studied to improve aerodynamic parameters. The Comparison of drag coefficient is tabulated for bare cylinder, cylinder with rectangular and triangular wake splitters. Flow past circular cylinder and cylinder with triangular and rectangular wake splitter is performed at Reynoldsnumber 5, 20, 40, 50,80, 100.An incompressible PISO finite volume code employing a non-staggered grid arrangement is used, a second order upwind scheme is used for convective terms. The time discretization is implicit and a Second order Crank-Nicholson scheme is employed. Length of wake splitter in both configurations is taken to be equal to diameter of cylinder. Wake length is found to be less with rectangular wake splitter when compared to bare cylinder and cylinder with triangular wake splitter. Coefficient of drag is found to be less for triangular wake splitter when compared to bare cylinder & cylinder with rectangular wake splitter.

Keywords: Coefficient of drag and pressure, CFDFLUENT, Triangular and rectangular wake splitter, wake length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3589
322 Perfect Plastic Deformation of a Circular Thin Bronze Plate due to the Growth and Collapse of a Vapour Bubble

Authors: M.T. Shervani-Tabar, M. Rezaee, E. Madadi Kandjani

Abstract:

Dynamics of a vapour bubble generated due to a high local energy input near a circular thin bronze plate in the absence of the buoyancy forces is numerically investigated in this paper. The bubble is generated near a thin bronze plate and during the growth and collapse of the bubble, it deforms the nearby plate. The Boundary Integral Equation Method is employed for numerical simulation of the problem. The fluid is assumed to be incompressible, irrotational and inviscid and the surface tension on the bubble boundary is neglected. Therefore the fluid flow around the vapour bubble can be assumed as a potential flow. Furthermore, the thin bronze plate is assumed to have perfectly plastic behaviour. Results show that the displacement of the circular thin bronze plate has considerable effect on the dynamics of its nearby vapour bubble. It is found that by decreasing the thickness of the thin bronze plate, the growth and collapse rate of the bubble becomes higher and consequently the lifetime of the bubble becomes shorter.

Keywords: Vapour Bubble, Thin Bronze Plate, Boundary Integral Equation Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
321 Numerical Study of Flow around Flat Tube between Parallel Walls

Authors: Hamidreza Bayat, Arash Mirabdolah Lavasani, Meysam Bolhasani, Sajad Moosavi

Abstract:

Flow around a flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube and it is varied in range of 100 to 300. Equations are solved by using finite volume method and results are presented in form of drag and lift coefficient. Results show that drag coefficient of flat tube is up to 66% lower than circular tube with equivalent diameter. In addition, by increasing l/D from 1 to 2, the drag coefficient of flat tube is decreased about 14-27%.

Keywords: Laminar flow, flat-tube, drag coefficient, cross-flow, heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
320 Development and Structural Performance Evaluation on Slit Circular Shear Panel Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of slit circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. The main parameters considered are: diameter-to-thickness (D/t) ratio and slit length-to-width ratio (l/w). Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. The susceptible location at which the possible crack is initiated is also identified for selected specimens using rupture index.

Keywords: Slit circular shear panel damper, Hysteresis Characteristics, Slip length-to-width ratio, D/t ratio, FE analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
319 The Light Response Characteristics of Oxide-Based Thin Film Transistors

Authors: Soo-Yeon Lee, Seung-Min Song, Moon-Kyu Song, Woo-Geun Lee, Kap-Soo Yoon, Jang-Yeon Kwon, Min-Koo Han

Abstract:

We fabricated the inverted-staggered etch stopper structure oxide-based TFT and investigated the characteristics of oxide TFT under the 400 nm wavelength light illumination. When 400 nm light was illuminated, the threshold voltage (Vth) decreased and subthreshold slope (SS) increased at forward sweep, while Vth and SS were not altered when larger wavelength lights, such as 650 nm, 550 nm and 450 nm, were illuminated. At reverse sweep, the transfer curve barely changed even under 400 nm light. Our experimental results support that photo-induced hole carriers are captured by donor-like interface trap and it caused the decrease of Vth and increase of SS. We investigated the interface trap density increases proportionally to the photo-induced hole concentration at active layer.

Keywords: thin film transistor, oxide-based semiconductor, lightresponse

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
318 An Analysis of Collapse Mechanism of Thin- Walled Circular Tubes Subjected to Bending

Authors: Somya Poonaya, Chawalit Thinvongpituk, Umphisak Teeboonma

Abstract:

Circular tubes have been widely used as structural members in engineering application. Therefore, its collapse behavior has been studied for many decades, focusing on its energy absorption characteristics. In order to predict the collapse behavior of members, one could rely on the use of finite element codes or experiments. These tools are helpful and high accuracy but costly and require extensive running time. Therefore, an approximating model of tubes collapse mechanism is an alternative for early step of design. This paper is also aimed to develop a closed-form solution of thin-walled circular tube subjected to bending. It has extended the Elchalakani et al.-s model (Int. J. Mech. Sci.2002; 44:1117-1143) to include the rate of energy dissipation of rolling hinge in the circumferential direction. The 3-D geometrical collapse mechanism was analyzed by adding the oblique hinge lines along the longitudinal tube within the length of plastically deforming zone. The model was based on the principal of energy rate conservation. Therefore, the rates of internal energy dissipation were calculated for each hinge lines which are defined in term of velocity field. Inextensional deformation and perfect plastic material behavior was assumed in the derivation of deformation energy rate. The analytical result was compared with experimental result. The experiment was conducted with a number of tubes having various D/t ratios. Good agreement between analytical and experiment was achieved.

Keywords: Bending, Circular tube, Energy, Mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3451
317 Large Vibration Amplitude of Circular Functionally Graded Plates Resting on Pasternak Foundations

Authors: El Kaak Rachid, El Bikri Khalid, Benamar Rhali

Abstract:

In the present study, the problem of geometrically nonlinear free vibrations of functionally graded circular plates (FGCP) resting on Pasternak elastic foundation with immovable ends was studied. The material properties of the functionally graded composites examined were assumed to be graded in the thickness direction and estimated through the rule of mixture. The theoretical model is based on the classical Plate theory and the Von Kármán geometrical nonlinearity assumptions. Hamilton’s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters, which are found to be in a good agreement with the published results dealing with the problem of functionally graded plates. On the other hand, the influence of the foundation parameters on the nonlinear frequency to the linear frequency ratio of the FGCP has been studied. The effect of the linear and shearing foundations is to decrease the frequency ratio, where it increases with the effect of the nonlinear foundation stiffness. 

Keywords: Non-linear vibrations, Circular plates, Pasternak foundation, functionally graded materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
316 Analysis of the Secondary Stationary Flow Around an Oscillating Circular Cylinder

Authors: Artem Nuriev, Olga Zaitseva

Abstract:

This paper is devoted to the study of a viscous incompressible flow around a circular cylinder performing harmonic oscillations, especially the steady streaming phenomenon. The research methodology is based on the asymptotic explanation method combined with the computational bifurcation analysis. The research approach develops Schlichting and Wang decomposition method. Present studies allow to identify several regimes of the secondary streaming with different flow structures. The results of the research are in good agreement with experimental and numerical simulation data.

Keywords: Oscillating cylinder, Secondary Streaming, Flow Regimes, Asymptotic and Bifurcation Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
315 Pressure Relief in Prosthetic Sockets through Hole Implementation Using Different Materials

Authors: Gabi N. Nehme

Abstract:

Below-knee amputees commonly experience asymmetrical gait patterns. It is generally believed that ischemia is related to the formation of pressure sores due to uneven distribution of forces. Micro-vascular responses can reveal local malnutrition. Changes in local skin blood supply under various external loading conditions have been studied for a number of years. Radionuclide clearance, photo-plethysmography, trans-cutaneous oxygen tension along with other studies showed that the blood supply would be influenced by the epidermal forces, and the rate and the amount of blood supply would decrease with increased epidermal loads being shear forces or normal forces. Several cases of socket designs were investigated using Finite Element Model (FEM) and Design of Experiment (DOE) to increase flexibility and minimize the pressure at the limb/socket interface using ultra high molecular weight polyethylene (UHMWPE) and polyamide 6 (PA6) or Duraform. The pressure reliefs at designated areas where reducing thickness is involved are seen to be critical in determination of amputees’ comfort and are very important to clinical applications. Implementing a hole between the Patellar Tendon (PT) and Distal Tibia (DT) would decrease stiffness and increase prosthesis range of motion where flexibility is needed. In addition, displacement and prosthetic energy storage increased without compromising mechanical efficiency and prosthetic design integrity.

Keywords: Patellar tendon, distal tibia, prosthetic socket, relief areas, hole implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759