WASET
	%0 Journal Article
	%A Gabi N. Nehme
	%D 2015
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 105, 2015
	%T Pressure Relief in Prosthetic Sockets through Hole Implementation Using Different Materials
	%U https://publications.waset.org/pdf/10002284
	%V 105
	%X Below-knee amputees commonly experience
asymmetrical gait patterns. It is generally believed that ischemia is
related to the formation of pressure sores due to uneven distribution
of forces. Micro-vascular responses can reveal local malnutrition.
Changes in local skin blood supply under various external loading
conditions have been studied for a number of years. Radionuclide
clearance, photo-plethysmography, trans-cutaneous oxygen tension
along with other studies showed that the blood supply would be
influenced by the epidermal forces, and the rate and the amount of
blood supply would decrease with increased epidermal loads being
shear forces or normal forces. Several cases of socket designs were
investigated using Finite Element Model (FEM) and Design of
Experiment (DOE) to increase flexibility and minimize the pressure
at the limb/socket interface using ultra high molecular weight
polyethylene (UHMWPE) and polyamide 6 (PA6) or Duraform. The
pressure reliefs at designated areas where reducing thickness is
involved are seen to be critical in determination of amputees’ comfort
and are very important to clinical applications. Implementing a hole
between the Patellar Tendon (PT) and Distal Tibia (DT) would
decrease stiffness and increase prosthesis range of motion where
flexibility is needed. In addition, displacement and prosthetic energy
storage increased without compromising mechanical efficiency and
prosthetic design integrity.
	%P 1118 - 1122