Search results for: Cesium bismuth dimolybdate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24

Search results for: Cesium bismuth dimolybdate

24 Inventive Synthesis and Characterization of a Cesium Molybdate Compound: CsBi(MoO4)2

Authors: F. Kurtuluş, G. Çelik Gül

Abstract:

Cesium molybdates with general formula CsMIII(MoO4)2, where MIII = Bi, Dy, Pr, Er, exhibit rich polymorphism, and crystallize in a layered structure. These properties cause intensive studies on cesium molybdates. CsBi(MoO4)2 was synthesized by microwave method by using cerium sulphate, bismuth oxide and molybdenum (VI) oxide in an appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differantial thermal analysis (TG/DTA).

Keywords: Cesium bismuth dimolybdate, microwave synthesis, powder x-ray diffraction, rare earth dimolybdates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
23 First-Principles Investigation of the Structural and Electronic Properties of Mg1-xBixO

Authors: G. P. Abdel Rahim, M. María Guadalupe Moreno Armenta, Jairo Arbey Rodriguez

Abstract:

We investigated the structure and electronic properties of the compound Mg1-xBixO with varying concentrations of 0, ¼, ½, and ¾ x bismuth in the the cesium chloride (CsCl), zinc-blende (ZnS), nickel arsenide (NiAs) NaCl (rock-salt) and WZ (wurtzite) phases. We calculated. The calculations were performed using the first-principles pseudo-potential method within the framework of spin density functional theory (DFT).

Keywords: DFT, Mg1-xBixO, pseudo-potential, rock-salt and wurtzite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
22 Gamma Irradiation Effect on Structural and Optical Properties of Bismuth-Boro-Tellurite Glasses

Authors: A. Azuraida, M. K. Halimah, C. A. C. Azurahanim, M. Ishak

Abstract:

The changes of the optical and structural properties of Bismuth-Boro-Tellurite glasses pre and post gamma irradiation were studied. Six glass samples, with different composition [(TeO2)0.7 (B2O3)0.3]1-x (Bi2O3)x prepared by melt quenching method were irradiated with 25kGy gamma radiation at room temperature. The Fourier Transform Infrared Spectroscopy (FTIR) was used to explore the structural bonding in the prepared glass samples due to exposure, while UV-VIS Spectrophotometer was used to evaluate the changes in the optical properties before and after irradiation. Gamma irradiation causes profound changes in the peak intensity as shown by FTIR spectra which is due to the breaking of the network bonding. Before gamma irradiation, the optical band gap, Eg value decreased from 2.44 eV to 2.15 eV with the addition of Bismuth content. The value kept decreasing (from 2.18 eV to 2.00 eV) following exposure to gamma radiation due to the increase of non-bridging oxygen (NBO) and the increase of defect in the glass. In conclusion, the glass with high content of Bi2O3 (0.30Bi) give smallest Eg and show less changes in FTIR spectra after gamma irradiation which indicate that this glass is more resistant to gamma radiation compared to other glasses.

Keywords: Boro-Tellurite, bismuth, gamma radiation, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
21 The Effectiveness of Bismuth Addition to Retard the Intermetallic Compound Formation

Authors: I. Siti Rabiatull Aisha, A. Ourdjini, O. Saliza Azlina

Abstract:

The aim of this paper is to study the effectiveness of bismuth addition in the solder alloy to retard the intermetallic compound formation and growth. In this study, three categories of solders such as Sn-4Ag-xCu (x = 0.5, 0.7, 1.0) and Sn-4Ag-0.5Cu-xBi (x = 0.1, 0.2, 0.4) were used. Ni/Au surface finish substrates were dipped into the molten solder at a temperature of 180-190 oC and allowed to cool at room temperature. The intermetallic compound (IMCs) were subjected to the characterization in terms of composition and morphology. The IMC phases were identified by energy dispersive x-ray (EDX), whereas the optical microscope and scanning electron microscopy (SEM) were used to observe microstructure evolution of the solder joint. The results clearly showed that copper concentration dependency was high during the reflow stage. Besides, only Ni3Sn4 and Ni3Sn2 were detected for all copper concentrations. The addition of Bi was found to have no significant effect on the type of IMCs formed, but yet the grain became further refined.

Keywords: Bismuth addition, intermetallic compound, composition, morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
20 Fabrication of Cesium Iodide Columns by Rapid Heating Method

Authors: Chien-Wan Hun, Shao-Fu Chang, Chien-Chon Chen, Ker-Jer Huang

Abstract:

This study presents how to use a high-efficiency process for producing cesium iodide (CsI) crystal columns by rapid heating method. In the past, the heating rate of the resistance wire heating furnace was relatively slow and excessive iodine and CsI vapors were therefore generated during heating. Because much iodine and CsI vapors are produced during heating process, the composition of CsI crystal columns is not correct. In order to enhance the heating rate, making CsI material in the heating process can quickly reach the melting point temperature. This study replaced the traditional type of external resistance heating furnace with halogen-type quartz heater, and then, CsI material can quickly reach the melting point. Eventually, CsI melt can solidify in the anodic aluminum template forming CsI crystal columns.

Keywords: Cesium iodide, high efficiency, vapor, rapid heating, crystal column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
19 Effect of Composition on Work Hardening Coefficient of Bismuth-Lead Binary Alloy

Authors: K. A. Mistry, I. B. Patel, A. H. Prajapati

Abstract:

In the present work, the alloy of Bismuth-lead is prepared on the basis of percentage of molecular weight 9:1, 5:5 and 1:9 ratios and grown by Zone- Refining Technique under a vacuum atmosphere. The EDAX of these samples are done and the results are reported. Micro hardness test has been used as an alternative test for measuring material’s tensile properties. The effect of temperature and load on the hardness of the grown alloy has been studied. Further the comparative studies of work hardening coefficients are reported.

Keywords: EDAX, hardening coefficient, Micro hardness, Bi-Pb alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
18 Photocatalytic Degradation of Organic Pollutant Reacting with Tungstates: Role of Microstructure and Size Effect on Oxidation Kinetics

Authors: A. Taoufyq, B. Bakiz, A. Benlhachemi, L. Patout, D. V. Chokouadeua, F. Guinneton, G. Nolibe, A. Lyoussi, J-R. Gavarri

Abstract:

The aim of this study was to investigate the photocatalytic activity of polycrystalline phases of bismuth tungstate of formula Bi2WO6. Polycrystalline samples were elaborated using a coprecipitation technique followed by a calcination process at different temperatures (300, 400, 600 and 900°C). The obtained polycrystalline phases have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Crystal cell parameters and cell volume depend on elaboration temperature. High-resolution electron microscopy images and image simulations, associated with X-ray diffraction data, allowed confirming the lattices and space groups Pca21. The photocatalytic activity of the as-prepared samples was studied by irradiating aqueous solutions of Rhodamine B, associated with Bi2WO6 additives having variable crystallite sizes. The photocatalytic activity of such bismuth tungstates increased as the crystallite sizes decreased. The high specific area of the photocatalytic particles obtained at 300°C seems to condition the degradation kinetics of RhB.

Keywords: Bismuth tungstate, crystallite sizes, electron microscopy, photocatalytic activity, X-ray diffraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
17 Structural and Electrochemical Characterization of Columnar-Structured Mn-Doped Bi26Mo10O69-d Electrolytes

Authors: Maria V. Morozova, Zoya A. Mikhaylovskaya, Elena S. Buyanova, Sofia A. Petrova, Ksenia V. Arishina, Robert G. Zaharov

Abstract:

The present work is devoted to the investigation of two series of doped bismuth molybdates: Bi26-2xMn2xMo10O69-d and Bi26Mo10-2yMn2yO69-d. Complex oxides were synthesized by conventional solid state technology and by co-precipitation method. The products were identified by powder diffraction. The powders and ceramic samples were examined by means of densitometry, laser diffraction, and electron microscopic methods. Porosity of the ceramic materials was estimated using the hydrostatic method. The electrical conductivity measurements were carried out using impedance spectroscopy method.

Keywords: Bismuth molybdate, columnar structures, impedance spectroscopy, oxygen ionic conductors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
16 The TiO2 Refraction Film for CsI Scintillator

Authors: C. C. Chen, C. W. Hun, C. J. Wang, C. Y. Chen, J. S. Lin, K. J. Huang

Abstract:

Cesium iodide (CsI) melt was injected into anodic aluminum oxide (AAO) template and was solidified to CsI column. The controllable AAO channel size (10~500 nm) can makes CsI column size from 10 to 500 nm in diameter. In order to have a shorter light irradiate from each singe CsI column top to bottom the AAO template was coated a TiO2 nano-film. The TiO2 film acts a refraction film and makes X-ray has a shorter irradiation path in the CsI crystal making a stronger the photo-electron signal. When the incidence light irradiate from air (R=1.0) to CsI’s first surface (R=1.84) the first refraction happen, the first refraction continue into TiO2 film (R=2.88) and produces the low angle of the second refraction. Then the second refraction continue into AAO wall (R=1.78) and produces the third refraction after refractions between CsI and AAO wall (R=1.78) produce the fourth refraction. The incidence light through TiO2 filmand the first surface of CsI then arrive to the second surface of CsI. Therefore, the TiO2 film can has shorter refraction path of incidence light and increase the photo-electron conversion efficiency.

Keywords: Cesium iodide, AAO, TiO2, Refraction, X-ray.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
15 PMF, Cesium and Rubidium Nanoparticles Induce Apoptosis in A549 Cells

Authors: Faten. A. Khorshid, Gehan. A. Raouf, Salem. M. El-Hamidy, Gehan. S. Al-amri, Nourah. A. Alotaibi, Taha A. Kumosani

Abstract:

Cancer becomes one of the leading cause of death in many countries over the world. Fourier-transform infrared (FTIR) spectra of human lung cancer cells (A549) treated with PMF (natural product extracted from PM 701) for different time intervals were examined. Second derivative and difference method were taken in comparison studies. Cesium (Cs) and Rubidium (Rb) nanoparticles in PMF were detected by Energy Dispersive X-ray attached to Scanning Electron Microscope SEM-EDX. Characteristic changes in protein secondary structure, lipid profile and changes in the intensities of DNA bands were identified in treated A549 cells spectra. A characteristic internucleosomal ladder of DNA fragmentation was also observed after 30 min of treatment. Moreover, the pH values were significantly increases upon treatment due to the presence of Cs and Rb nanoparticles in the PMF fraction. These results support the previous findings that PMF is selective anticancer agent and can produce apoptosis to A549 cells.

Keywords: Apoptosis, FTIR spectroscopy, pH therapy, Scanning Electron Microscope- Energy Dispersive X-ray (SEMEDX).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4331
14 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety

Authors: Mohamad Saab, Sidi Souvi

Abstract:

In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.

Keywords: ASTEC, Accident Source Term Evaluation Code, quantum chemical methods, severe nuclear accident, thermochemical database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
13 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase

Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia

Abstract:

Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.

Keywords: Bismuth-based superconductor, critical current density, phase formation, Sr(BO2)2 doping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755
12 Honey Contamination in the Republic of Kazakhstan

Authors: B. Sadepovich Maikanov, Z. Shabanbayevich Adilbekov, R. Husainovna Mustafina, L. Tyulegenovna Auteleyeva

Abstract:

This study involves detailed information about contaminants of honey in the Republic of Kazakhstan. The requirements of the technical regulation ‘Requirements to safety of honey and bee products’ and GOST 19792-2001 were taken into account in this research. Contamination of honey by antibiotics wqs determined by the IEA (immune-enzyme analysis), Ridder analyzer and Tecna produced test systems. Voltammetry (TaLab device) was used to define contamination by salts of heavy metals and gamma-beta spectrometry, ‘Progress BG’ system, with preliminary ashing of the sample of honey was used to define radioactive contamination. This article pointed out that residues of chloramphenicol were detected in 24% of investigated products, in 22% of them –streptomycin, in 7.3% - sulfanilamide, in 2.4% - tylosin, and in 12% - combined contamination was noted. Geographically, the greatest degree of contamination of honey with antibiotics occurs in the Northern Kazakhstan – 54.4%, and Southern Kazakhstan - 50%, and the lowest in Central and Eastern Kazakhstan with 30% and 25%, respectively. Generally, pollution by heavy metals is within acceptable limits, but the contamination from lead is highest in the Akmola region. The level of radioactive cesium and strontium is also within acceptable concentrations. The highest radioactivity in terms of cesium was observed in the East Kazakhstan region - 49.00±10 Bq/kg, in Akmola, North Kazakhstan and Almaty - 12.00±5, 11.05±3 and 19.0±8 Bq/kg, respectively, while the norm is 100 Bq/kg. In terms of strontium, the radioactivity in the East Kazakhstan region is 25.03±15 Bq/kg, while in Akmola, North Kazakhstan and Almaty regions it is 12.00±3, 10.2±4 and 1.0±2 Bq/kg, respectively, with the norm of 80 Bq/kg. This accumulation is mainly associated with the environmental degradation, feeding and treating of bees. Moreover, in the process of collecting nectar, external substances can penetrate honey. Overall, this research determines factors and reasons of honey contamination.

Keywords: Antibiotics, contamination of honey, honey, radionuclides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
11 Formation of Volatile Iodine from Cesium Iodide Aerosols: A DFT Study

Authors: Houssam Hijazi, Laurent Cantrel, Jean-François Paul

Abstract:

Periodic DFT calculations were performed to study the chemistry of CsI particles and the possible release of volatile iodine from CsI surfaces for nuclear safety interest. The results show that water adsorbs at low temperature associatively on the (011) surface of CsI, while water desorbs at higher temperatures. On the other hand, removing iodine species from the surface requires oxidizing the surface one time for each removed iodide atom. The activation energy of removing I2 from the surface in the presence of two OH is 1,2 eV.

Keywords: Aerosols, CsI, reactivity, DFT, water adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
10 Thermoelectric Generators as Alternative Source for Electric Power

Authors: L. C. Ding, Bradley. G. Orr, K. Rahaoui, S. Truza, A. Date, A. Akbarzadeh

Abstract:

The research on thermoelectric has been a blooming field of research for the latest decade, owing to large amount of heat source available to be harvested, being eco-friendly and static in operation. This paper provides the performance of thermoelectric generator (TEG) with bulk material of bismuth telluride, Bi2Te3. Later, the performance of the TEGs is evaluated by considering attaching the TEGs on a plastic (polyethylene sheet) in contrast to the common method of attaching the TEGs on the metal surface.

Keywords: Electric power, heat transfer, renewable energy, thermoelectric generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
9 Synthesis, Structure and Functional Characteristics of Solid Electrolytes Based on Lanthanum Niobates

Authors: Maria V. Morozova, Yulia V. Emelyanova, Anastasia A. Levina, Elena S. Buyanova, Zoya A. Mikhaylovskaya, Sofia A. Petrova

Abstract:

The solid solutions of lanthanum niobates substituted by yttrium, bismuth and tungsten were synthesized. The structure of the solid solutions is either LaNbO4-based monoclinic or BiNbO4-based triclinic. The series where niobium is substituted by tungsten on B site reveals phase-modulated structure. The values of cell parameters decrease with increasing the dopant concentration for all samples except the tungsten series although the latter show higher total conductivity.

Keywords: Impedance spectroscopy, LaNbO4, lanthanum ortho-niobates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
8 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah

Abstract:

Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Keywords: MFI membrane, nanocomposite, Ceramic hollow fibre, CO2, Ion-exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
7 Design and Development of Ferroelectric Material for Microstrip Patch Array Antenna

Authors: F.H.Wee, F. Malek

Abstract:

This paper presents the utilizing of ferroelectric material on antenna application. There are two different ferroelectric had been used on the proposed antennas which include of Barium Strontium Titanate (BST) and Bismuth Titanate (BiT), suitable for Access Points operating in the WLAN IEEE 802.11 b/g and WiMAX IEEE 802.16 within the range of 2.3 GHz to 2.5 GHz application. BST, which had been tested to own a dielectric constant of εr = 15 while BiT has a dielectric constant that higher than BST which is εr = 21 and both materials are in rectangular shaped. The influence of various parameters on antenna characteristics were investigated extensively using commercial electromagnetic simulations software by Communication Simulation Technology (CST). From theoretical analysis and simulation results, it was demonstrated that ferroelectric material used have not only improved the directive emission but also enhanced the radiation efficiency.

Keywords: Ferroelectric material, WLAN, WiMAX, dielectric constant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
6 An Automated High Pressure Differential Thermal Analysis System for Phase Transformation Studies

Authors: T. K. Mondal, N C Shivaprakash

Abstract:

A piston cylinder based high pressure differential thermal analyzer system is developed to investigate phase transformations, melting, glass transitions, crystallization behavior of inorganic materials, glassy systems etc., at ambient to 4 GPa and at room temperature to 1073 K. The pressure is calibrated by the phase transition of bismuth and ytterbium and temperature is calibrated by using thermocouple data chart. The system developed is calibrated using benzoic acid, ammonium nitrate and it has a pressure and temperature control of ± 8.9 x 10 -4 GPa , ± 2 K respectively. The phase transition of Asx Te100-x chalcogenides, ferrous oxide and strontium boride are studied using the indigenously developed system.

Keywords: double stage crystallization, Phase transition, Quasi hydrostatic, Rigidity percolation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
5 Properties of the CsPbBr3 Quantum Dots Treated by O3 Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, V. Nádaždy, M. Omastová, E. Majková

Abstract:

In this paper, we discuss the preparation and impact of post-treatment procedures, including purification, passivation, and ligand exchange, on the formation and stability of halide perovskite quantum dots (PQDs). CsPbBr3 quantum dots were synthesized via the conventional hot-injection method using cesium oleate, PbBr2, and oleylamine (OAm) & oleic acid (OA) and didodecyldimethylammonium bromide (DDAB) as ligands. Characterization by scanning transmission electron microscopy (STEM) confirms the QDs' cubic shape and monodispersity with an average size of 10-14 nm. The photoluminescent (PL) properties of perovskite quantum dots/CH3NH3PbI3 perovskite (PQDs/MAPI)  bilayers with OAm&OA and DDAB ligands spin coated on Indium Tin Oxide (ITO) substrate were explored. The impact of ligand type and oxygen plasma treatment on linear optical behaviour and PQDs/MAPI interface formation in ITO/PQDs/MAPI perovskite structures was examined. The obtained results have direct implications for selection of suitable ligands and processes for photovoltaic applications and enhancing their stability.

Keywords: Perovskite quantum dots, ligand exchange, photoluminescence, O3 plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104
4 Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher

Abstract:

This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.

Keywords: Physicochemical characterization of MFI, Ceramic hollow fibre, CO2, Ion-exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
3 The MUST ADS Concept

Authors: J-B. Clavel, N. Thiollière, B. Mouginot

Abstract:

The presented work is motivated by a French law regarding nuclear waste management. A new conceptual Accelerator Driven System (ADS) designed for the Minor Actinides (MA) transmutation has been assessed by numerical simulation. The MUltiple Spallation Target (MUST) ADS combines high thermal power (up to 1.4 GWth) and high specific power. A 30 mA and 1 GeV proton beam is divided into three secondary beams transmitted on three liquid lead-bismuth spallation targets. Neutron and thermalhydraulic simulations have been performed with the code MURE, based on the Monte-Carlo transport code MCNPX. A methodology has been developed to define characteristic of the MUST ADS concept according to a specific transmutation scenario. The reference scenario is based on a MA flux (neptunium, americium and curium) providing from European Fast Reactor (EPR) and a plutonium multireprocessing strategy is accounted for. The MUST ADS reference concept is a sodium cooled fast reactor. The MA fuel at equilibrium is mixed with MgO inert matrix to limit the core reactivity and improve the fuel thermal conductivity. The fuel is irradiated over five years. Five years of cooling and two years for the fuel fabrication are taken into account. The MUST ADS reference concept burns about 50% of the initial MA inventory during a complete cycle. In term of mass, up to 570 kg/year are transmuted in one concept. The methodology to design the MUST ADS and to calculate fuel composition at equilibrium is precisely described in the paper. A detailed fuel evolution analysis is performed and the reference scenario is compared to a scenario where only americium transmutation is performed.

Keywords: Accelerator Driven System, double strata scenario, minor actinides, MUST, transmutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
2 Experimental Analyses of Thermoelectric Generator Behavior Using Two Types of Thermoelectric Modules for Marine Application

Authors: A. Nour Eddine, D. Chalet, L. Aixala, P. Chessé, X. Faure, N. Hatat

Abstract:

Thermal power technology such as the TEG (Thermo-Electric Generator) arouses significant attention worldwide for waste heat recovery. Despite the potential benefits of marine application due to the permanent heat sink from sea water, no significant studies on this application were to be found. In this study, a test rig has been designed and built to test the performance of the TEG on engine operating points. The TEG device is built from commercially available materials for the sake of possible economical application. Two types of commercial TEM (thermo electric module) have been studied separately on the test rig. The engine data were extracted from a commercial Diesel engine since it shares the same principle in terms of engine efficiency and exhaust with the marine Diesel engine. An open circuit water cooling system is used to replicate the sea water cold source. The characterization tests showed that the silicium-germanium alloys TEM proved a remarkable reliability on all engine operating points, with no significant deterioration of performance even under sever variation in the hot source conditions. The performance of the bismuth-telluride alloys was 100% better than the first type of TEM but it showed a deterioration in power generation when the air temperature exceeds 300 °C. The temperature distribution on the heat exchange surfaces revealed no useful combination of these two types of TEM with this tube length, since the surface temperature difference between both ends is no more than 10 °C. This study exposed the perspective of use of TEG technology for marine engine exhaust heat recovery. Although the results suggested non-sufficient power generation from the low cost commercial TEM used, it provides valuable information about TEG device optimization, including the design of heat exchanger and the types of thermo-electric materials.

Keywords: Internal combustion engine application, Seebeck, thermo-electricity, waste heat recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
1 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application

Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian

Abstract:

The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.

Keywords: Hole transporting layer, lead-free, perovskite Solar cell, SCAPS-1D, Sn-Ge based material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814