Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30458
Synthesis, Structure and Functional Characteristics of Solid Electrolytes Based on Lanthanum Niobates

Authors: Maria V. Morozova, Yulia V. Emelyanova, Anastasia A. Levina, Elena S. Buyanova, Zoya A. Mikhaylovskaya, Sofia A. Petrova


The solid solutions of lanthanum niobates substituted by yttrium, bismuth and tungsten were synthesized. The structure of the solid solutions is either LaNbO4-based monoclinic or BiNbO4-based triclinic. The series where niobium is substituted by tungsten on B site reveals phase-modulated structure. The values of cell parameters decrease with increasing the dopant concentration for all samples except the tungsten series although the latter show higher total conductivity.

Keywords: Impedance spectroscopy, LaNbO4, lanthanum ortho-niobates

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076


[1] M. Huse, T. Norby, R. Haugsrud, “Effects of A and B site acceptor doping on hydration and proton mobility of LaNbO4” Int. J. Hydr. En., vol. 37. no. 9, pp. 8004–8016, May 2012.
[2] A.D. Brandao, J. Gracio, G.C. Mather, V.V. Kharton, D.P. Fagg, “B-site substitutions in LaNb1−xMxO4−δ materials in the search for potential proton conductors (M=Ga, Ge, Si, B, Ti, Zr, P, Al)” J. Sol. State Chem. vol. 184. no 4, pp. 863-870, Apr. 2011.
[3] S. Wachowski, A. Mielewczyk-Gryn, M. Gazda, “Effect of isovalent substitution on microstructure and phase transition of LaNb1−xMxO4 (M=Sb, V or Ta; x=0.05–0.3)” J. Sol. State Chem. vol. 219, pp. 201-209, Nov. 2014.
[4] R. Haugsrud, T. Norby, “Proton conduction in rare-earth ortho-niobates and ortho-tantalates”, Nat. Mater., vol. 5, pp.193-196, Feb. 2006.
[5] G.C. Mather, C.A.J. Fisher, M.S. Islam, “Defects, dopants, and protons in LaNbO4”, Chem. Mater., vol. 22, pp. 5912-5917, Oct. 2010.
[6] S.J. Skinner, Y. Kang, “X-ray diffraction studies and phase transformations of CeNbO4+δ using in situ techniques”, Sol. State Sci, vol. 5, pp. 1475–1479, Nov.-Dec. 2003.
[7] C. Solis, J.M. Serra, “Adjusting the conduction properties of La0.995Ca0.005NbO4−δ by doping for proton conducting fuel cells electrode operation”, Sol. State Ion., vol. 190, pp.38-45, May 2011.
[8] M.A. Laguna-Bercero, R.D. Bayliss, S.J. Skinner “LaNb0.84W0.16O4.08 as a novel electrolyte for high temperature fuel cell and solid oxide electrolysis applications” Sol. State Ion., vol. 262, pp. 298-302, Sept. 2014.
[9] Diffrac Plus: Topas Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187, Karlsruhe, Germany. 2006.
[10] C. Li, R.D. Bayliss, S.J. Skinner, “Crystal structure and potential interstitial oxide ion conductivity of LnNbO4 and LnNb0.92W0.08O4.04 (Ln = La, Pr, Nd)”, Sol. State Ion., vol. 262, pp. 530–535, Sept. 2014.
[11] R.D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides”, Acta Cryst., vol. 32, iss. 5, pp. 751-767, Sept. 1976.
[12] P. Sarin, R.W.Hughes, D R. Lowry, Z.D. Apostolov, W.M. Kriven, “High-Temperature Properties and Ferroelastic Phase Transitions in Rare-Earth Niobates (LnNbO4)” J. Am. Ceram. Soc., vol. 97, no 10, pp. 3307–3319, May 2014.