Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30458
Synthesis, Structure and Functional Characteristics of Solid Electrolytes Based on Lanthanum Niobates

Authors: Maria V. Morozova, Yulia V. Emelyanova, Anastasia A. Levina, Elena S. Buyanova, Zoya A. Mikhaylovskaya, Sofia A. Petrova

Abstract:

The solid solutions of lanthanum niobates substituted by yttrium, bismuth and tungsten were synthesized. The structure of the solid solutions is either LaNbO4-based monoclinic or BiNbO4-based triclinic. The series where niobium is substituted by tungsten on B site reveals phase-modulated structure. The values of cell parameters decrease with increasing the dopant concentration for all samples except the tungsten series although the latter show higher total conductivity.

Keywords: Impedance spectroscopy, LaNbO4, lanthanum ortho-niobates

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1111540

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076

References:


[1] M. Huse, T. Norby, R. Haugsrud, “Effects of A and B site acceptor doping on hydration and proton mobility of LaNbO4” Int. J. Hydr. En., vol. 37. no. 9, pp. 8004–8016, May 2012.
[2] A.D. Brandao, J. Gracio, G.C. Mather, V.V. Kharton, D.P. Fagg, “B-site substitutions in LaNb1−xMxO4−δ materials in the search for potential proton conductors (M=Ga, Ge, Si, B, Ti, Zr, P, Al)” J. Sol. State Chem. vol. 184. no 4, pp. 863-870, Apr. 2011.
[3] S. Wachowski, A. Mielewczyk-Gryn, M. Gazda, “Effect of isovalent substitution on microstructure and phase transition of LaNb1−xMxO4 (M=Sb, V or Ta; x=0.05–0.3)” J. Sol. State Chem. vol. 219, pp. 201-209, Nov. 2014.
[4] R. Haugsrud, T. Norby, “Proton conduction in rare-earth ortho-niobates and ortho-tantalates”, Nat. Mater., vol. 5, pp.193-196, Feb. 2006.
[5] G.C. Mather, C.A.J. Fisher, M.S. Islam, “Defects, dopants, and protons in LaNbO4”, Chem. Mater., vol. 22, pp. 5912-5917, Oct. 2010.
[6] S.J. Skinner, Y. Kang, “X-ray diffraction studies and phase transformations of CeNbO4+δ using in situ techniques”, Sol. State Sci, vol. 5, pp. 1475–1479, Nov.-Dec. 2003.
[7] C. Solis, J.M. Serra, “Adjusting the conduction properties of La0.995Ca0.005NbO4−δ by doping for proton conducting fuel cells electrode operation”, Sol. State Ion., vol. 190, pp.38-45, May 2011.
[8] M.A. Laguna-Bercero, R.D. Bayliss, S.J. Skinner “LaNb0.84W0.16O4.08 as a novel electrolyte for high temperature fuel cell and solid oxide electrolysis applications” Sol. State Ion., vol. 262, pp. 298-302, Sept. 2014.
[9] Diffrac Plus: Topas Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187, Karlsruhe, Germany. 2006.
[10] C. Li, R.D. Bayliss, S.J. Skinner, “Crystal structure and potential interstitial oxide ion conductivity of LnNbO4 and LnNb0.92W0.08O4.04 (Ln = La, Pr, Nd)”, Sol. State Ion., vol. 262, pp. 530–535, Sept. 2014.
[11] R.D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides”, Acta Cryst., vol. 32, iss. 5, pp. 751-767, Sept. 1976.
[12] P. Sarin, R.W.Hughes, D R. Lowry, Z.D. Apostolov, W.M. Kriven, “High-Temperature Properties and Ferroelastic Phase Transitions in Rare-Earth Niobates (LnNbO4)” J. Am. Ceram. Soc., vol. 97, no 10, pp. 3307–3319, May 2014.