Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
PMF, Cesium and Rubidium Nanoparticles Induce Apoptosis in A549 Cells
Authors: Faten. A. Khorshid, Gehan. A. Raouf, Salem. M. El-Hamidy, Gehan. S. Al-amri, Nourah. A. Alotaibi, Taha A. Kumosani
Abstract:
Cancer becomes one of the leading cause of death in many countries over the world. Fourier-transform infrared (FTIR) spectra of human lung cancer cells (A549) treated with PMF (natural product extracted from PM 701) for different time intervals were examined. Second derivative and difference method were taken in comparison studies. Cesium (Cs) and Rubidium (Rb) nanoparticles in PMF were detected by Energy Dispersive X-ray attached to Scanning Electron Microscope SEM-EDX. Characteristic changes in protein secondary structure, lipid profile and changes in the intensities of DNA bands were identified in treated A549 cells spectra. A characteristic internucleosomal ladder of DNA fragmentation was also observed after 30 min of treatment. Moreover, the pH values were significantly increases upon treatment due to the presence of Cs and Rb nanoparticles in the PMF fraction. These results support the previous findings that PMF is selective anticancer agent and can produce apoptosis to A549 cells.Keywords: Apoptosis, FTIR spectroscopy, pH therapy, Scanning Electron Microscope- Energy Dispersive X-ray (SEMEDX).
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1329122
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4338References:
[1] F. Paolo, J. K. Larry, J. G. David, P. Jason, H. Terry, T. Felicia, H. Naomi, S. Saul, A. W. Scott, "Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer," TREND Biotechnology, vol., 25, no. 4, pp. 145-152 ,2007.
[2] C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, "Chemistry and properties of nanocrystals of different shapes," Chem. Rev. vol., 105, pp. 1025-1102, 2005.
[3] E. Katz, I. Willner, "Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications," Angew. Chem. Int. Ed. Vol., 43, pp. 6042, 2004.
[4] N. L. Rosi, C. A. Mirkin, "Nanostructures in Biodiagnostics," Chem Rev. vol., 105, 1547, 2005.
[5] O. V. Salata, "Applications of nanoparticles in biology and medicine," J. Nanobiotech. Vol., 2, pp. 3 2003.
[6] G. M. Whitesides, "The 'right' size in nanobiotechnology," Nat. Biotech. . vol., 21, pp. 1161, 2003.
[7] K. J. Prashant, H. Ivan, M. A. El-Sayed, "Au nanoparticles target cancer.," Nanotoday, vol., 2, pp. 18-29, 2007.
[8] A. Jemal, T. Murray, E. Ward, A. Samuels, R. C. Tiwari, A. Ghafoor, E. J. Feuer, and M. J. Thun, "Cancer Statistics," CA. Cancer J. Clin. Vol., 55, pp. 2005.
[9] F. A. Khorshid, S. S. Moshref, N. Heffny, "An ideal selective anticancer agent in vitro, I- Tissue culture study of human lung cancer cells A549," JKAU- Medical Sciences, vol., 12, pp. 3-18, 2005.
[10] S. S. Moshref, F. A. Khorshid, Y. Jamal, "The effect of PM 701 on mice leukemic Cells:I - Tissue culture study of L1210 (in vitro) II - In vivo study on mice," JKAU- Medical Sciences . vol., 13 no. 1, pp. 3-19 2006.
[11] F. A. Khorshid, S. S. Moshref , "In vitro anticancer agent, I - Tissue culture study of human lung cancer cells A549 II - Tissue culture study of mice leukemia cells L1210," International Journal of Cancer Research, vol., 2, no. 4, pp. 330-344, 2006.
[12] S. S. Moshref," PM701 a highly selective anti cancerous agent against L1210 leukemic cells: II - In vivo clinical and histopathological study," JKAU- Medical Sciences, vol., 14, no. 1, pp. 85-99, 2007.
[13] F.A. Khorshid, "Potential anticancer natural product against human lung cancer cells," Trends Med, Res. , vol., 4 , no. 1, pp. 9-15, 2009.
[14] G. A. Raouf , F. A. Khorshid , T. Kumosani, "FT-IR Spectroscopy as a Tool for Identification of Apoptosis-Induced Structural Changes in A549 Cells Dry Samples Treated with PM 701," Int.J. Nano and Biomaterials, vol., 2, no. 1/2/3/4/5, pp. 396-408,2009.
[15] F. A. Khorshid, A. M. Osman, E. Abdel-Sattar, "Cytotoxic activity of bioactive fractions from PM 701," EJEAFChe, vol., 8, no. 11, pp. 1091- 1098, 2009
[16] D. Naumann, D. Helm, Labischinski, "Microbiological characterization by FT-IR spectroscopy," Nature , vol., 351, pp. 81-2, 1991.
[17] M. Diem, S. Boydston-White, & L. Chiriboga, "Infrared spectroscopy of cells and tissues: shining light on a noval subject," Appl. Spectrosc., vol., 53, 148A-161A ,1999.
[18] H. Fabian, D. Chapman, H. Mantsch, "In Infrared Spectroscopy of Biomolecules," Mantsch, H. H., Chapman, D., Eds., Wiley-Liss: New York, pp 341-352, 1996.
[19] Schulz, C. P., L. Kan-Zhi, B. J. James, H. M. Henry, "Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes," J. Mol. Struc., vol., 408, no. 40, pp. 253-256, 1997.
[20] M. J. Baker, E Gazi, M.D. Brown, J.H. Shanks, P. Gardner, N.W. Clarke, "FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer," British J. Cancer , vol., 99, pp. 1859-1866, 2008.
[21] P. Lasch, D. Naumann, "FT-IR microspectroscopic imaging of human carcinoma thin sections based on pattern recognition techniques," Cell. Mol. Biol. vol., 44, no. 1, pp. 189-202,1998.
[22] L. McIntosh, M. Jackson, H. Mantsch, M. Stranc, D. Pilavdzic, A. Crowson, "Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components," J. Invest. Dermat. , vol., 112, pp. 951-956, 1999.
[23] J. Kneipp, P. Lasch, E. Baldauf, M. Beekes, D. Naumann, "Detection of pathological molecular alterations in scrapie-infected hamster brain by fourier transform infrared (FT-IR) spectroscopy" Biophys. Acta., vol., 1501, no. 2-3, pp. 189-99, 2000.
[24] N. P. Roeges, "A Guide to complete |interpretation of Infrared Spectra of Organic Structures," Wiley, Chichester, UK, 1994.
[25] H. H. Mantsch, D. Chapman, "Infrared Spectroscopy of Biomolecules" Wiley-Liss, New York; 1996.
[26] K. Brandenburg, U. Seydel, "Infrared Spectroscopy of Glycolipids," Chem. Phys. Lipids , vol., 96, pp. 23, 1998.
[27] I. David, G. Royston, "Metabolic finferprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy," Analyst, vol., 131, pp. 875-885, 2006.
[28] Y. Huilu, T. Zhanhua, A. Min, P. Lixin, W. Guiwen, H. Bijuan, L. Yong-qing, "Raman spectroscopic analysis of apoptosis of single human gastric cancer cells" Vibrational Spectroscopy," Vib. Spectrosc., vol.50, pp.193-197, 2009.
[29] I. Giaever, C. R. Keese, IEEE Transactions on Biomedical Engineering BME-33 (2 ), pp. 242-247, 1986.
[30] G. L. Paul, D. S. Robert, "Cancer grading by Fourier transform infrared spectroscopy," vol., 4, pp. 37-46, 1998.
[31] S. A. Montpetit, I. T. Fitch, P. T. O'Donnell, "A simple automated instrument for DNA extraction in forensic casework," J. Forensic Sci., vol., 3, no. 555-63, 2005.
[32] M. Jackson, M.G. Sowa, H. H. Mantsch, "Infrared spectroscopy: a new frontier in medicine," Biophys. Chem., vol., 68, 109-125, 1997.
[33] P. T. Wong, R. K. Wong, T.A. Caputo, T. A. Godwin, B. Rigas, "Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis," Proc. Natl Acad. Sci., USA vol., 88, pp. 10988-10992, 1991.
[34] H. H. Mantsh, "Apoptosis-induced structural changes in leukemia cells identified by IR spectroscopy," J. Mol. Str., vol., 565-566, pp. 299- 304, 2001.
[35] K-Z Liu, Li Jia,, S. M. Kelsey, A. C. Newland, H. H. "Mantsch, Quantitative determination of apoptosis on leukemia cells by infrared spectroscop," Apoptosis, vol., 6, pp. 269-278, 2001.
[36] B. Rigas, & P. T. Wong, "Human colon adenocarcinoma cell lines display infrared spectroscopic features of malignant colon tissues," Cancer Res., vol., 52, pp. 84-88, 1992.
[37] E. Benedetti, E. Bramanti, F. Papineschi, & I. Rossi, "Determination of the relative amount of nucleic aion of the relative amount of nucleic acids in leukemic and normal lymphocytes by means of FT-IR microscopy" Appl. Spectrosc., vol., 51, pp. 792-797, 1999.
[38] S. Boydston-White, T. Gopen, S. Houser, J. Bargonetti, & M. Diem, "Infrared spectroscopy of human tissue. V. Infrared spectroscopic studies of myeloid leukemia (ML-1) cells at different phases of the cell cycle" Biospectroscopy, vol., 5, pp. 219-227, 1999.
[39] N. H. Hoi-Ying, C. M. Michael, A. B. Eleanor, B. Kathy, R. M. Wayne, "IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectroscopy," Biopoly. Biospectrosc., vol., 57, pp. 329-335, 2000.
[40] H. L. Casal, H. H. Mantsch, Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochem. Biophys. Acta 779 (1984) 381-401.
[41] N. Jamin, L. Miller, J. M. Fridman, W. H. Dumas and J. L. Teillaud, "Chemical heterogeneity in cell death: combined synchrotron IR and fluorescence microscopy studies of single apoptotic and necrotic cells," Biopoly. Biospectrosc., vol., 72, pp. 366-373, 2003.
[42] R. Mittler, "In when cells die: A comprehensive evaluation of apoptosis and programmed cell death," Lockshin,R., Zakeri Z., Tilly J., Eds.; Wiley-Liss: New York, pp. 147-174, 1998.
[43] R. Birge, E. Fajardo, B. Hempstead, "In when cells die: A comprehensive evaluation of apoptosis and programmed cell death," Lockshin,R., Zakeri Z., Tilly J., Eds.; Wiley-Liss: New York, pp. 347- 384, 1998.
[44] A. El-Shahawy, N. M. Elsawi, W. S. Baker, F. A. Khorshid, N. S. Geweely, "Spectral analysis, molecular orbital calculations and antimicrobial activity of PMF- G fraction extracted from PM-701" Int. J. Pharm. Bio. Sci. , vol., 1, no. 2, 2010.
[45] K. Matsuzaki, "Magainins as paradigm for the mode of action of pore forming polypeptides" Biochem.Biophys. Acta., vol., 1376, pp. 391-400, 1998b.
[46] Y. Shai, "Mechanisms of the binding, insertion and destabilization of phospholipids bilayer membrane by ╬▒-helical antimicrobial and cell nonselective membrane-lytic peptides" Biochem. Biophys. Acta, vol., 1462, pp. 55-70, 1999.
[47] M. Zasloff, "Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial c DNA sequence of a precursor" Proc. Natl., Acad. Sci. USA, vol., 84, pp. 5449-5453, 1987.
[48] K. Matsuzaki, O. Murase, N. Fujii, K. Miyajima, "Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore" Biochemistry, vol., 34, pp. 6521-6526, 1995.
[49] G.. A. Raouf , F. A. Khorshid, S.. M. El-Hamidy, G.. S. Al-amri, N. A. Alotaibi, T. Dakhakhni," PMF nano-shells and Quantum dots for cancer therapy," unpublished paper.
[50] M. Brian, R. Melissa, D. Max, and R. W. Bayden, "Mie-Type Scattering and non-Beer-Lambert Absorption Behavior of Human Cells in infrared Microspectroscopy, " Biophysical J., vol., 88, pp. 3635-3640, 2005.
[51] K.A. Brewer, "Mechanism of carcinogenesis: Comments on therapy" J. Int. Acad. Prev. Med. , vol., 5, pp. 29-53, 1979.
[52] H. E. Sartori, "Cesium therapy in cancer patients," Pharm. Biochem. & Behavior, vol., 21, pp. 11-13, 1984.