Search results for: Cement replacement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 493

Search results for: Cement replacement

433 A Multiple Linear Regression Model to Predict the Price of Cement in Nigeria

Authors: Kenneth M. Oba

Abstract:

This study investigated factors affecting the price of cement in Nigeria, and developed a mathematical model that can predict future cement prices. Cement is key in the Nigerian construction industry. The changes in price caused by certain factors could affect economic and infrastructural development; hence there is need for proper proactive planning. Secondary data were collected from published information on cement between 2014 and 2019. In addition, questionnaires were sent to some domestic cement retailers in Port Harcourt in Nigeria, to obtain the actual prices of cement between the same periods. The study revealed that the most critical factors affecting the price of cement in Nigeria are inflation rate, population growth rate, and Gross Domestic Product (GDP) growth rate. With the use of data from United Nations, International Monetary Fund, and Central Bank of Nigeria databases, amongst others, a Multiple Linear Regression model was formulated. The model was used to predict the price of cement for 2020-2025. The model was then tested with 95% confidence level, using a two-tailed t-test and an F-test, resulting in an R2 of 0.8428 and R2 (adj.) of 0.6069. The results of the tests and the correlation factors confirm the model to be fit and adequate. This study will equip researchers and stakeholders in the construction industry with information for planning, monitoring, and management of present and future construction projects that involve the use of cement.

Keywords: Cement price, multiple linear regression model, Nigerian Construction Industry, price prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
432 A Novel Approach to Optimal Cutting Tool Replacement

Authors: Cem Karacal, Sohyung Cho, William Yu

Abstract:

In metal cutting industries, mathematical/statistical models are typically used to predict tool replacement time. These off-line methods usually result in less than optimum replacement time thereby either wasting resources or causing quality problems. The few online real-time methods proposed use indirect measurement techniques and are prone to similar errors. Our idea is based on identifying the optimal replacement time using an electronic nose to detect the airborne compounds released when the tool wear reaches to a chemical substrate doped into tool material during the fabrication. The study investigates the feasibility of the idea, possible doping materials and methods along with data stream mining techniques for detection and monitoring different phases of tool wear.

Keywords: Tool condition monitoring, cutting tool replacement, data stream mining, e-Nose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
431 Identification of Nonlinear Predictor and Simulator Models of a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique

Authors: Masoud Sadeghian, Alireza Fatehi

Abstract:

One of the most important parts of a cement factory is the cement rotary kiln which plays a key role in quality and quantity of produced cement. In this part, the physical exertion and bilateral movement of air and materials, together with chemical reactions take place. Thus, this system has immensely complex and nonlinear dynamic equations. These equations have not worked out yet. Only in exceptional case; however, a large number of the involved parameter were crossed out and an approximation model was presented instead. This issue caused many problems for designing a cement rotary kiln controller. In this paper, we presented nonlinear predictor and simulator models for a real cement rotary kiln by using nonlinear identification technique on the Locally Linear Neuro- Fuzzy (LLNF) model. For the first time, a simulator model as well as a predictor one with a precise fifteen minute prediction horizon for a cement rotary kiln is presented. These models are trained by LOLIMOT algorithm which is an incremental tree-structure algorithm. At the end, the characteristics of these models are expressed. Furthermore, we presented the pros and cons of these models. The data collected from White Saveh Cement Company is used for modeling.

Keywords: Cement rotary kiln, nonlinear identification, Locally Linear Neuro-Fuzzy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
430 Effect of Nanofibers on the Behavior of Cement Mortar and Concrete

Authors: Mostafa Osman, Ata El-kareim Shoeib

Abstract:

The main objective of this paper is study the influence of carbon nano-tubes fibers and nano silica fibers on the characteristic compressive strength and flexural strength on concrete and cement mortar. Twelve tested specimens were tested with square section its dimensions (4040 160) mm, divided into four groups. The first and second group studied the effect of carbon nano-tubes (CNTs) fibers with different percentage equal to 0.0, 0.11%, 0.22%, and 0.33% by weight of cement and effect of nano-silica (nS) fibers with different percentages equal to 0.0, 1.0%, 2.0%, and 3.0% by weight of cement on the cement mortar. The third and fourth groups studied the effect of CNTs fiber with different percentage equal to 0.0%, 0.11%, and 0.22% by weight of cement, and effect of nS fibers with different percentages were equal to 0.0%, 1.0%, and 2.0% by weight of cement on the concrete. The compressive strength and flexural strength at 7, 28, and 90 days is determined. From analysis of tested results concluded that the nano-fibers is more effective when used with cement mortar more than used with concrete because of increasing the surface area, decreasing the pore and the collection of nano-fibers. And also by adding nano-fibers the improvement of flexural strength of concrete and cement mortar is more than improvement of compressive strength.

Keywords: Carbon nano-tubes fibers, nano-silica (nS) fibers, compressive strength, flexural.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2666
429 Utilization of Industrial Byproducts in Concrete Applications by Adopting Grey Taguchi Method for Optimization

Authors: V. K. Bansal, M. Kumar, P. P. Bansal, A. Batish

Abstract:

This paper presents the results of an experimental investigation carried out to evaluate the effects of partial replacement of cement and fine aggregate with industrial waste by-products on concrete strength properties. The Grey Taguchi approach has been used to optimize the mix proportions for desired properties. In this research work, a ternary combination of industrial waste by-products has been used. The experiments have been designed using Taguchi's L9 orthogonal array with four factors having three levels each. The cement was partially replaced by ladle furnace slag (LFS), fly ash (FA) and copper slag (CS) at 10%, 25% and 40% level and fine aggregate (sand) was partially replaced with electric arc furnace slag (EAFS), iron slag (IS) and glass powder (GP) at 20%, 30% and 40% level. Three water to binder ratios, fixed at 0.40, 0.44 and 0.48, were used, and the curing age was fixed at 7, 28 and 90 days. Thus, a series of nine experiments was conducted on the specimens for water to binder ratios of 0.40, 0.44 and 0.48 at 7, 28 and 90 days of the water curing regime. It is evident from the investigations that Grey Taguchi approach for optimization helps in identifying the factors affecting the final outcomes, i.e. compressive strength and split tensile strength of concrete. For the materials and a range of parameters used in this research, the present study has established optimum mixes in terms of strength properties. The best possible levels of mix proportions were determined for maximization through compressive and splitting tensile strength. To verify the results, the optimal mix was produced and tested. The mixture results in higher compressive strength and split tensile strength than other mixes. The compressive strength and split tensile strength of optimal mixtures are also compared with the control concrete mixtures. The results show that compressive strength and split tensile strength of concrete made with partial replacement of cement and fine aggregate is more than control concrete at all ages and w/c ratios. Based on the overall observations, it can be recommended that industrial waste by-products in ternary combinations can effectively be utilized as partial replacements of cement and fine aggregates in all concrete applications.

Keywords: Analysis of variance, ANOVA, compressive strength, concrete, grey Taguchi method, industrial by-products, split tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
428 Study on Compressive Strength and Setting Times of Fly Ash Concrete after Slump Recovery Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

Fresh concrete has one of dynamic properties known as slump. Slump of concrete is design to compatible with placing method. Due to hydration reaction of cement, the slump of concrete is loss through time. Therefore, delayed concrete probably get reject because slump is unacceptable. In order to recover the slump of delayed concrete the second dose of superplasticizer (naphthalene based type F) is added into the system, the slump recovery can be done as long as the concrete is not setting. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting times and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting times of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.

Keywords: Compressive strength, Fly ash concrete, Second dose of superplasticizer, Slump recovery, Setting times.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
427 Effectiveness of Natural Zeolite in Mitigating Alkali Silica Reaction Expansions

Authors: Esma Gizem Daskiran, Mehmet Mustafa Daskiran

Abstract:

This paper investigates the effectiveness of two natural zeolites in reducing expansion of concrete due to alkali-silica reaction. These natural zeolites have different reactive silica content. Three aggregates; two natural sands and one crushed stone aggregate were used while preparing mortar bars in accordance with accelerated mortar bar test method, ASTM C1260. Performances of natural zeolites are compared by examining the expansions due to alkali silica reaction. Natural zeolites added to the mixtures at 10% and 20% replacement levels by weight of cement. Natural zeolite with high reactive silica content had better performance on reducing expansions due to ASR. In this research, using high reactive zeolite at 20% replacement levels was effective in mitigating expansions.

Keywords: Alkali silica reaction, natural zeolite, durability, expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
426 Solving the Quadratic Assignment Problems by a Genetic Algorithm with a New Replacement Strategy

Authors: Yongzhong Wu, Ping Ji

Abstract:

This paper proposes a genetic algorithm based on a new replacement strategy to solve the quadratic assignment problems, which are NP-hard. The new replacement strategy aims to improve the performance of the genetic algorithm through well balancing the convergence of the searching process and the diversity of the population. In order to test the performance of the algorithm, the instances in QAPLIB, a quadratic assignment problem library, are tried and the results are compared with those reported in the literature. The performance of the genetic algorithm is promising. The significance is that this genetic algorithm is generic. It does not rely on problem-specific genetic operators, and may be easily applied to various types of combinatorial problems.

Keywords: Quadratic assignment problem, Genetic algorithm, Replacement strategy, QAPLIB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691
425 Mechanical Properties of Hybrid Cement Based Mortars Containing Two Biopolymers

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco-Torgal

Abstract:

The use of bio-based admixtures on construction materials is a recent trend that is gaining momentum. However, to our knowledge, no studies have been reported concerning the use of biopolymers on hybrid cement based mortars. This paper reports experimental results regarding the study of the influence of mix design of 43 hybrid cement mortars containing two different biopolymers on its mechanical performance. The results show that the use of the biopolymer carrageenan is much more effective than the biopolymer xanthan concerning the increase in compressive strength. An optimum biopolymer content was found.

Keywords: Waste reuse, fly ash, waste glass, hybrid cement, biopolymers, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
424 Simulation of a Sustainable Cement Supply Chain; Proposal Model Review

Authors: Tarek Elhasia, Bernd Noche, Lima Zhao

Abstract:

In recent years, sustainable supply chain management (SSCM) has been widely researched in academic domain. However, due to the traditional operational role and the complexity of supply chain management in the cement industry, a relatively small amount of research has been conducted on cement supply chain simulation integrated with sustainability criteria. This paper analyses the cement supply chain operations using the Push-Pull supply chain frameworks, the Life Cycle Assessment (LCA) methodology; and proposal integration approach, proposes three supply chain scenarios based on Make-To-Stock (MTS), Pack-To-Order (PTO) and Grind- To-Order (GTO) strategies. A Discrete-Event Simulation (DES) model of SSCM is constructed using Arena software to implement the three-target scenarios. We conclude with the simulation results that (GTO) is the optimal supply chain strategy that demonstrates the best economic, ecological and social performance in the cement industry.

Keywords: Cement industry, simulation, supply chain management (SCM), sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6896
423 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste

Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh

Abstract:

The outstanding mechanical properties of Carbon  nanotubes (CNTs) have generated great interest for their potential as  reinforcements in high performance cementitious composites. The  main challenge in research is the proper dispersion of carbon  nanotubes in the cement matrix. The present work discusses the role  of dispersion of multiwalled carbon nanotubes (MWCNTs) on the  compressive strength characteristics of hydrated Portland IS 1489  cement paste. Cement-MWCNT composites with different mixing  techniques were prepared by adding 0.2% (by weight) of MWCNTs  to Portland IS 1489 cement. Rectangle specimens of size  approximately 40mm × 40mm ×160mm were prepared and curing of  samples was done for 7, 14, 28 and 35days. An appreciable increase  in compressive strength with both techniques; mixture of MWCNTs  with cement in powder form and mixture of MWCNTs with cement  in hydrated form 7 to 28 days of curing time for all the samples was  observed.

 

Keywords: Carbon Nanotubes, Portland Cement, Composite, Compressive Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3087
422 Optimum Replacement Policies for Kuwait Passenger Transport Company Busses: Case Study

Authors: Hilal A. Abdelwali, Elsayed E.M. Ellaimony, Ahmad E.M. Murad, Jasem M.S. Al-Rajhi

Abstract:

Due to the excess of a vehicle operation through its life, some elements may face failure and deteriorate with time. This leads us to carry out maintenance, repair, tune up or full overhaul. After a certain period, the vehicle elements deteriorations increase with time which causes a very high increase of doing the maintenance operations and their costs. However, the logic decision at this point is to replace the current vehicle by a new one with minimum failure and maximum income. The importance of studying vehicle replacement problems come from the increase of stopping days due to many deteriorations in the vehicle parts. These deteriorations increase year after year causing an increase of operating costs and decrease the vehicle income. Vehicle replacement aims to determine the optimum time to keep, maintain, overhaul, renew and replace vehicles. This leads to an improvement in vehicle income, total operating costs, maintenance cost, fuel and oil costs, ton-kilometers, vehicle and engine performance, vehicle noise, vibration, and pollution. The aim of this paper is to find the optimum replacement policies of Kuwait Passenger Transport Company (KPTCP) fleet of busses. The objective of these policies is to maximize the busses pure profits. The dynamic programming (D.P.) technique is used to generate the busses optimal replacement policies

Keywords: Replacement Problem, Automotive Replacement, Dynamic Programming, Equipment Replacement, K.P.T.C.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
421 Effect on Surface Temperature Reduction of Asphalt Pavements with Cement–Based Materials Containing Ceramic Waste Powder

Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, O. Takahashi, S. Tsukuma

Abstract:

The heat island phenomenon becomes one of the environmental problems. As countermeasures in the field of road engineering, cool pavements such as water retaining pavements and solar radiation reflective pavements have been developed to reduce the surface temperature of asphalt pavements in the hot summer climate in Japan. The authors have studied on the water retaining pavements with cement–based grouting materials. The cement–based grouting materials consist of cement, ceramic waste powder, and natural zeolite. The ceramic waste powder is collected through the recycling process of electric porcelain insulators. In this study, mixing ratio between the ceramic waste powder and the natural zeolite and a type of cement for the cement–based grouting materials is investigated to measure the surface temperature of asphalt pavements in the outdoor. All of the developed cement–based grouting materials were confirmed to effectively reduce the surface temperature of the asphalt pavements. Especially, the cement–based grouting material using the ultra–rapid hardening cement with the mixing ratio of 0.7:0.3 between the ceramic waste powder and the natural zeolite reduced mostly the surface temperature by 20 °C and more.

Keywords: Ceramic waste powder, natural zeolite, road surface temperature, water retaining pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
420 Resistance to Sulfuric Acid Attacks of Self-Consolidating Concrete: Effect Metakaolin and Various Cements Types

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

Due to their fluidity and simplicity of use, self-compacting concretes (SCCs) have undeniable advantages. In recent years, the role of metakaolin as a one of pozzolanic materials in concrete has been considered by researchers. It can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three type of Portland cement and metakaolin on fresh state, compressive strength and sulfuric acid attacks in self- consolidating concrete at early age up to 90 days of curing in lime water. Six concrete mixtures were prepared with three types of different cement as Portland cement type II, Portland Slag Cement (PSC), Pozzolanic Portland Cement (PPC) and 15% substitution of metakaolin by every cement. The results show that the metakaolin admixture increases the viscosity and the demand amount of superplasticizer. According to the compressive strength results, the highest value of compressive strength was achieved for PSC and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for PPC and containing 15% metakaolin. According to this study, the total substitution of PSC and PPC by Portland cement type II is beneficial to the increasing in the chemical resistance of the SCC with respect to the sulfuric acid attack. On the other hand, this increase is more noticeable by the use of 15% of metakaolin. Therefore, it can be concluded that metakaolin has a positive effect on the chemical resistance of SCC containing of Portland cement type II, PSC, and PPC.

Keywords: SCC, metakaolin, cement type, durability, compressive strength, sulfuric acid attacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
419 A Study of Replacement Policies for Warranty Products with Different Failure Rate

Authors: Wen Liang Chang

Abstract:

This paper provides a replacement policy for warranty products with different failure rate from the consumer-s viewpoint. Assume that the product is replaced once within a finite planning horizon, and the failure rate of the second product is lower than the failure rate of the first product. Within warranty period (WP), the failed product is corrected by minimal repair without any cost to the consumers. After WP, the failed product is repaired with a fixed repair cost to the consumers. However, each failure incurs a fixed downtime cost to the consumers over a finite planning horizon. In this paper, we derive the model of the expected total disbursement cost within a finite planning horizon and some properties of the optimal replacement policy under some reasonable conditions are obtained. Finally, numerical examples are given to illustrate the features of the optimal replacement policy under various maintenance costs.

Keywords: Planning horizon, Free-repair warranty, Minimal repair, Replacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
418 Effects of Crushed Waste Aggregate from the Manufacture of Clay Bricks on Rendering Cement Mortar Performance

Authors: Benmalek M. Larbi, R. Harbi, S. Boukor

Abstract:

This paper reports an experimental work that aimed to investigate the effects of clay brick waste, as part of fine aggregate, on rendering mortar performance. The brick, in crushed form, was from a local brick manufacturer that was rejected due to being of-standard. It was used to replace 33.33 %, 50 %, 66.66 % and 100 % by weight of the quarry sand in mortar. Effects of the brick replacement on the mortar key properties intended for wall plastering were investigated; these are workability, compressive strength, flexural strength, linear shrinkage, water absorption by total immersion and by capillary suction. The results showed that as the brick replacement level increased, the mortar workability reduced. The linear shrinkage increases over time and decreases with the introduction of brick waste. The compressive and flexural strengths decrease with the increase of brick waste because of their great water absorption.

Keywords: Clay brick waste, mortar, properties, quarry sand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
417 Optimization of Transportation Cost of Plaster of Paris Cement

Authors: K. M. Oba

Abstract:

The transportation modelling technique was adopted in the solution of the problem of transportation of Plaster of Paris (POP) cement from three supply locations (construction materials markets) to three demand locations (construction sites) in Port Harcourt. The study was carried out for 40 kg bags of POP cement fully loaded on 600 bags per truck from the three selected construction materials markets in Port Harcourt. The costs of transporting the POP cement were determined and subjected to the North-West Corner, Least Cost, and Vogel’s approximation methods to determine the initial feasible solution. Of the three results, the Least Cost Method turned out to have the lowest cost. Using the Stepping Stone Method, the optimum shipping cost was finally attained after two successive iterations. The optimum shipping cost was calculated to be $1,690 or ₦1,774,500 as of October 2023. As a result of this study, the application of transportation modelling can boost the effective management of the transportation of POP cement in construction projects.

Keywords: Cost of POP cement, management of transportation, optimization of shipping cost, Plaster of Paris, transportation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 112
416 The Flexural Strength of Fiber-Reinforced Polymer Cement Mortars Using UM Resin

Authors: Min Ho Kwon, Woo Young Jung, Hyun Su Seo

Abstract:

A polymer cement mortar (PCM) has been widely used  as the material of repair and restoration work for concrete structure;  however a PCM usually induces an environmental pollutant.  Therefore, there is a need to develop PCM which is less impact to  environments. Usually, UM resin is known to be harmless to the  environment. Accordingly, in this paper, the properties of the PCM  using UM resin were studied. The general cement mortar and UM  resin were mixed in the specified ratio. A certain percentage of PVA  fibers, steel fibers and mixed fibers (PVA fiber and steel fiber) were  added to enhance the flexural strength. The flexural tests were  performed in order to investigate the flexural strength of each PCM.  Experimental results showed that the strength of proposed PCM using  UM resin is improved when they are compared with general cement  mortar.

 

Keywords: Polymer cement mortar (PCM), UM resin, Compressive strength, PVA fiber, Steel fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3238
415 Some Mechanical Properties of Cement Stabilized Malaysian Soft Clay

Authors: Meei-Hoan Ho, Chee-Ming Chan

Abstract:

Soft clays are defined as cohesive soil whose water content is higher than its liquid limits. Thus, soil-cement mixing is adopted to improve the ground conditions by enhancing the strength and deformation characteristics of the soft clays. For the above mentioned reasons, a series of laboratory tests were carried out to study some fundamental mechanical properties of cement stabilized soft clay. The test specimens were prepared by varying the portion of ordinary Portland cement to the soft clay sample retrieved from the test site of RECESS (Research Centre for Soft Soil). Comparisons were made for both homogeneous and columnar system specimens by relating the effects of cement stabilized clay of for 0, 5 and 10 % cement and curing for 3, 28 and 56 days. The mechanical properties examined included one-dimensional compressibility and undrained shear strength. For the mechanical properties, both homogeneous and columnar system specimens were prepared to examine the effect of different cement contents and curing periods on the stabilized soil. The one-dimensional compressibility test was conducted using an oedometer, while a direct shear box was used for measuring the undrained shear strength. The higher the value of cement content, the greater is the enhancement of the yield stress and the decrease of compression index. The value of cement content in a specimen is a more active parameter than the curing period.

Keywords: Soft soil, Oedometer, Direct shear box, Cementstabilisedcolumn.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3190
414 Comparative Sulphate Resistance of Pozzolanic Cement Mortars

Authors: Mahmud Abba Tahir

Abstract:

This is report on experiment out to compare the sulphate resistance of sand mortar made with five different pozzolanic cement. The pozzolanic cement were prepared by blending powered burnt bricks from the Adamawa, Makurdi, Kano, Kaduna and Niger bricks factories with ordinary Portland cement in the ratio 1:4. Sand –pozzolanic cement mortars of mix ratio 1:6 and 1:3 with water-cement ratio of 0.65 and 0.40 respectively were used to prepare cubes and bars specimens. 150 mortar cubes of size 70mm x 70mm x 70mm and 35 mortar bars of 15mm x 15mm x 100mm dimensions were cast and cured for 28 days. The cured specimens then immersed in the solutions of K2SO4, (NH4)2SO4 and water for 28 days and then tested. The compressive strengths of cubes in water increased by 34% while those in the sulphate solutions decreased. Strength decreases of the cubes, cracking and warping of bars immersed in K2SO4 were less than those in (NH4)2SO4. Specimens made with Niger and Makurdi pulverized burnt bricks experienced less effect of the sulphates and can therefore be used as pozzolan in mortar and concrete to resist sulphate.

Keywords: Burnt bricks powder, comparative, pozzolanic cement, sulphates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
413 Effect of Cement-kiln Dust Pollution on The Vegetation in The Western Mediterranean Desert of Egypt

Authors: Amal, M. Fakhry, M. M. Migahid

Abstract:

This study investigated the ecological effects of particulate pollution from a cement factory on the vegetation in the western Mediterranean coastal desert of Egypt. Variations in vegetation, soil chemical characters, and some responses of Atriplex halimus, as a dominant species in the study area, were investigated in some sites located in different directions from the cement factory between Burg El-Arab in the east and El-Hammam in the west. The results showed an obvious decrease in vegetation diversity, in response to cement-kiln dust pollution, that accompanied by a high dominance attributed to the high contribution of Atriplex halimus. Annual species were found to be more sensitive to cement dust pollution as they all failed to persist in highly disturbed sites. It is remarkable that cover and phytomass of Atriplex halimus were increased greatly in response to cement dust pollution, and this was accompanied by a reduction in the mature seeds and leaf-area of the plant. The few seeds of the affected individuals seemed to be more fertile and attained higher germination percentages and exhibited hardening against drought stress.

Keywords: Atriplex halimus, Alpha diversity, Cement dustpollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
412 Relation between Properties of Internally Cured Concrete and Water Cement Ratio

Authors: T. Manzur, S. Iffat, M. A. Noor

Abstract:

In this paper, relationship between different properties of IC concrete and water cement ratio, obtained from a comprehensive experiment conducted on IC using local materials (Burnt clay chips- BC) is presented. In addition, saturated SAP was used as an IC material in some cases. Relationships have been developed through regression analysis. The focus of this analysis is on developing relationship between a dependent variable and an independent variable. Different percent replacements of BC and water cement ratios were used. Compressive strength, modulus of elasticity, water permeability and chloride permeability were tested and variations of these parameters were analyzed with respect to water cement ratio.

Keywords: Compressive strength, concrete, curing, lightweight, aggregate, superabsorbent polymer, internal curing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
411 Effect of Local Steel Slag as a Coarse Aggregate on Properties of Fly Ash Based-Geopolymer Concrete

Authors: O. M. Omar, A. M. Heniegal, G. D. Abd Elhameed, H. A. Mohamadien

Abstract:

Local steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. Using local steel slag waste as a hundred substitutes of crashed stone in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of crashed stone. This paper reports the experimental study to investigate the influence of a hundred replacement of crashed stone as a coarse aggregate with local steel slag, on the fresh and hardened geopolymer concrete properties. The investigation includes traditional testing of hardening concrete, for selected mixes of cement and geopolymer concrete. It was found that local steel slag as a coarse aggregate enhanced the slump test of the fresh state of cement and geopolymer concretes. Nevertheless, the unit weight of concretes was affected. Meanwhile, the good performance was observed when fly ash used as geopolymer concrete based.

Keywords: Geopolymer, molarity, steel slag, sodium hydroxide, sodium silicate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
410 Some Characteristics and Identification of Fungi Contaminated by Alkomos Cement Factory

Authors: Abdulmajeed Bashir Mlitan, Ethan Hack

Abstract:

Soil samples were collected from and around Alkomos cement factory, Alkomos town, Libya. Soil physiochemical properties were determined. In addition, olive leaves were scanned for their fungal content. This work can conclude that the results obtained for the examined physiochemical characteristics of soil in the area studied prove that cement dust from the Alkomos cement factory in Libya has had a significant impact on the soil. The affected soil properties are pH and total calcium content. These characteristics were found to be higher than those in similar soils from the same area. The increment of soil pH in the same area may be a result of precipitation of cement dust over the years. Different responses were found in each season and each site. For instance, the dominance of fungi of soil and leaves was lowest at 100 m from the factory and the evenness and diversity increased at this site compared to the control area and 250 m from the factory.

Keywords: Pollution, Soil Microbial, Alkomos, Libya.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
409 A Composite Developed from a Methyl Methacrylate and Embedded Eppawala Hydroxyapatite for Orthopedics

Authors: H. K. G. K. D. K. Hapuhinna, R. D. Gunaratne, H. M. J. C. Pitawala

Abstract:

This study aimed to find out chemical and structural suitability of synthesized eppawala hydroxyapatite composite as bone cement, by comparing and contrasting it with human bone as well as commercially available bone cement, which is currently used in orthopedic surgeries. Therefore, a mixture of commercially available bone cement and its liquid monomer, commercially available methyl methacrylate (MMA) and a mixture of solid state synthesized eppawala hydroxyapatite powder with commercially available MMA were prepared as the direct substitution for bone cement. Then physical and chemical properties including composition, crystallinity, presence of functional groups, thermal stability, surface morphology, and microstructural features were examined compared to human bone. Results show that there is a close similarity between synthesized product and human bone and it has exhibited high thermal stability, good crystalline and porous properties than the commercial product. Finally, the study concluded that synthesized hydroxyapatite composite can be used directly as a substitution for commercial bone cement.

Keywords: Hydroxyapatite, bone cement, methyl methacrylate, orthopedics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573
408 Possibilities of Utilization Zeolite in Concrete

Authors: M. Sedlmajer, J. Zach, J. Hroudová, P. Rovnaníková

Abstract:

There are several possibilities of reducing the required amount of cement in concrete production. Natural zeolite is one of the raw materials which can partly substitute Portland cement. The effort to reduce the amount of Portland cement used in concrete production is brings both economical as well as ecological benefits. The paper presents the properties of concrete containing natural zeolite as an active admixture in the concrete which partly substitutes Portland cement. The properties discussed here bring information about the basic mechanical properties and frost resistance of concrete containing zeolite. The properties of concretes with the admixture of zeolite are compared with a reference concrete with no content of zeolite. The properties of the individual concretes are observed for 360 days.

Keywords: Concrete, zeolite, compressive strength, modulus of elasticity, durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885
407 Chromium-Leaching Study of Cements in Various Environments

Authors: Adriana Estokova, Lenka Palascakova, Martina Kovalcikova

Abstract:

Cement is a basic material used for building construction. Chromium as an indelible non-volatile trace element of raw materials occurs in cement clinker in the trivalent or hexavalent form. Hexavalent form of chromium is harmful and allergenic having very high water solubility and thus can easily come into contact with the human skin. The paper is aimed at analyzing the content of total chromium in Portland cements and leaching rate of hexavalent chromium in various leachants: Deionized water, Britton-Robinson buffer, used to simulate the natural environment, and hydrochloric acid (HCl). The concentration of total chromium in Portland cement samples was in a range from 173.2 to 218.5 mg/kg. The content of dissolved hexavalent chromium ranged 0.23-3.19, 2.0-5.78 and 8.88-16.25 mg/kg in deionized water, Britton-Robinson solution and hydrochloric acid, respectively. The calculated leachable fraction of Cr(VI) from cement samples was observed in the range 0.1--7.58 %.

Keywords: Cement, hexavalent chromium, leaching, total chromium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
406 Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System

Authors: O. Belalia Douma, B. Boukhatem, M. Ghrici

Abstract:

Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Fuzzy Inference System (FIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, superplasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.

Keywords: Self-compacting concrete, fly ash, strength prediction, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2810
405 Incessant Collapse of Buildings in Nigeria: The Possible Role of the Use of Inappropriate Cement Grade/Strength Class

Authors: Kazeem K. Adewole, Joy-Felicia O. Oladejo, Wasiu O. Ajagbe

Abstract:

The use of low quality concrete has been identified as one of the main causes of the incessant collapse of buildings in Nigeria. Emphasis has been on the use of poor quality aggregates, poor workmanship and the use of lean concrete mix with low cement quantity as the reasons for the low quality of concrete used for building construction in Nigeria. Surveys conducted revealed that in the construction of most privately owned buildings where concrete trial mixes and concrete compressive strength quality assurance tests are not conducted, concretes used for building constructions are produced using the 1:2:4 mix ratio irrespective of the cement grade/strength class. In this paper, the possible role of the use of inappropriate cement grade/strength class as a cause of the incessant collapse of building in Nigeria is investigated. Investigation revealed that the compressive strengths of concrete cubes produced with Portland-limestone cement grade 32.5 using 1:2:4 and 1:1.5:3 mix ratios are less than the 25MPa and 30MPa cube strengths generally recommended for building superstructures and foundations respectively. Conversely, the compressive strengths of concrete cubes produced with Portland-limestone cement grade 42.5 using 1:2:4 and 1:1.5:3 mix ratios exceed the 25MPa and 30MPa generally recommended for building superstructures and foundations respectively. Thus, it can be concluded that the use of inappropriate cement grade (Portland-limestone cement grade 32.5), particularly for the construction of building foundations is a potential cause of the incessant collapse of buildings in Nigeria. It is recommended that the Standards Organisation of Nigeria should embark on creating awareness for Nigerians, particularly, the home owners and the roadside craftsmen that Portland-limestone cement grade 32.5 should not be used for the construction of building load-carrying members, particularly, building foundations in order to reduce the incessant incidence of collapsed building.

Keywords: Cement grades, Concrete strength class, Collapsed building, Concrete mix ratio, Portland-limestone cement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3646
404 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials

Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin

Abstract:

Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.

Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017