Search results for: Carbon fiber reinforced polymer (CFRP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1837

Search results for: Carbon fiber reinforced polymer (CFRP)

1627 Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets

Authors: Shahriar Shahbazpanahi, Alaleh Kamgar

Abstract:

So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks.

Keywords: Crack, FRP, shear, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
1626 Surface Roughness Prediction Model for Grinding of Composite Laminate Using Factorial Design

Authors: P. Chockalingam, C. K. Kok, T. R. Vijayaram

Abstract:

Glass fiber reinforced polymer (GFRP) laminates have been widely used because of their unique mechanical and physical properties such as high specific strength, stiffness and corrosive resistance. Accordingly, the demand for precise grinding of composites has been increasing enormously. Grinding is the one of the obligatory methods for fabricating products with composite materials and it is usually the final operation in the assembly of structural laminates. In this experimental study, an attempt has been made to develop an empirical model to predict the surface roughness of ground GFRP composite laminate with respect to the influencing grinding parameters by factorial design approach of design of experiments (DOE). The significance of grinding parameters and their three factor interaction effects on grinding of GFRP composite have been analyzed in detail. An empirical equation has been developed to attain minimum surface roughness in GFRP laminate grinding.

Keywords: GFRP Laminates, Grinding, Surface Roughness, Factorial Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
1625 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

Authors: Babak Safaei, A. M. Fattahi

Abstract:

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long- (10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Keywords: Nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
1624 Separation Characteristics of Dissolved Gases from Water Concurrently Variable Mixed with Exhalations for the Hollow Fiber Membrane

Authors: Pil Woo Heo

Abstract:

Water contains dissolved oxygen that a fish needs to breathe. It is important to increase the amounts of separation of dissolved oxygen from water for diverse applications using the separation system. In this paper, a separation system of dissolved gases from water concurrently variable mixed with the exhalations using a compressor is proposed. This system takes use of exhalations to increase the amounts of separation of dissolved oxygen from water. A compressor with variable off-time and on-time is used to control the exhalations mixed with inlet water. Exhalations contain some portion of carbon dioxide, oxygen, and nitrogen. Separation of dissolved gases containing dissolved oxygen is enhanced by using exhalations. The amounts of separation and the compositions of carbon dioxide and oxygen are measured. Higher amounts of separation can make the size of the separation device smaller, and then, application areas are diversified.

Keywords: Concurrently, variable mixed, exhalations, separation, hollow fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067
1623 Crack Opening Investigation in Fiberconcrete

Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs

Abstract:

This work had three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. On the obtained forcedisplacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiberconcrete prisms (with dimensions 10x10x40cm) subjected to 4-point bending. After testing was analyzed main crack. At the third stage elaborated prediction model for the fiberconcrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack. Experimental and theoretical (modeling) data were compared.

Keywords: Fiberconcrete, pull-out, fiber channel, layered fiberconcrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
1622 Relining of Domestic Piping System with Rubber Filled Epoxy and Reinforced Polyester Composites

Authors: Parastou Kharazmi, Folke Björk

Abstract:

Pipe failure and leakage is a problematic issue and the traditional solution of replacing the pipes is costly and time consuming. Rehabilitation by relining materials based on polymer composites is an alternative solution towards the degradation problem of the old piping. This paper provides a brief summary of advances in technology, methods and materials for relining as well as a summary of the degradation analyses of the two main composite materials used for relining, rubber filled epoxy and reinforced polyester baltoflake when they are exposed in deionized water and elevated temperature up to 80°C for a duration of 2-14 months in the laboratory.

Keywords: Composite, Epoxy, Polyester, Pipes, Relining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
1621 Bias Optimization of Mach-Zehnder Modulator Considering RF Gain on OFDM Radio-Over-Fiber System

Authors: Ghazi Al Sukkar, Yazid Khattabi, Shifen Zhong

Abstract:

Most of the recent wireless LANs, broadband access networks, and digital broadcasting use Orthogonal Frequency Division Multiplexing techniques. In addition, the increasing demand of Data and Internet makes fiber optics an important technology, as fiber optics has many characteristics that make it the best solution for transferring huge frames of Data from a point to another. Radio over fiber is the place where high quality RF is converted to optical signals over single mode fiber. Optimum values for the bias level and the switching voltage for Mach-Zehnder modulator are important for the performance of radio over fiber links. In this paper, we propose a method to optimize the two parameters simultaneously; the bias and the switching voltage point of the external modulator of a radio over fiber system considering RF gain. Simulation results show the optimum gain value under these two parameters.

Keywords: OFDM, Mach Zehnder Bias Voltage, switching voltage, radio-over-fiber, RF gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
1620 Prediction of Henry's Constant in Polymer Solutions using the Peng-Robinson Equation of State

Authors: Somayeh Tourani, Alireza Behvandi

Abstract:

The peng-Robinson (PR), a cubic equation of state (EoS), is extended to polymers by using a single set of energy (A1, A2, A3) and co-volume (b) parameters per polymer fitted to experimental volume data. Excellent results for the volumetric behavior of the 11 polymer up to 2000 bar pressure are obtained. The EoS is applied to the correlation and prediction of Henry constants in polymer solutions comprising three polymer and many nonpolar and polar solvents, including supercritical gases. The correlation achieved with two adjustable parameter is satisfactory compared with the experimental data. As a result, the present work provides a simple and useful model for the prediction of Henry's constant for polymer containing systems including those containing polar, nonpolar and supercritical fluids.

Keywords: Equation of state, Henry's constant, Peng-Robinson, polymer solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
1619 How Does Improving the Existing DSL Infrastructure Influence the Expansion of Fiber Technology?

Authors: P. Winzer, E. Massarczyk

Abstract:

Experts, enterprises and operators expect that the bandwidth request will increase up to rates of 100 to 1,000 Mbps within several years. Therefore the most important question is which technology shall satisfy the future consumer broadband demands. Currently the consensus is, that the fiber technology has the best technical characteristics to achieve such the high bandwidth rates. But fiber technology is so far very cost-intensive and resource consuming. To avoid these investments, operators are concentrating to upgrade the existing copper and hybrid fiber coax infrastructures. This work presents a comparison of the copper and fiber technologies including an overview about the current German broadband market. Both technologies are reviewed in the terms of demand, willingness to pay and economic efficiency in connection with the technical characteristics.

Keywords: Broadband customer demand, fiber development, G.fast, Vectoring, willingness to payfor broadband services

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
1618 Compact Tunable 10 W picosecond Sourcebased on Yb-doped Fiber Amplification of Gain Switch Laser Diode

Authors: Hongjun Liu, Cunxiao Gao, Jintao Tao, Wei Zhao, Yishan Wang

Abstract:

A compact tunable 10 W picosecond source based on Yb-doped fiber amplification of gain switch laser diode has been demonstrated. A gain switch semiconductor laser diode was used as the seed source, and a multi-stage single mode Yb-doped fiber preamplifier was combined with two large mode area double-clad Yb-doped fiber main amplifiers to construct the amplification system. The tunable pulses with high stability and excellent beam quality (M2<1.2) of 10 W average power 150 ps pulse duration at 1 MHz repetition rate were obtained. The central wavelength with the line width of 2.5-3 nm was tunable from 1053 nm to 1073 nm.

Keywords: Fiber laser, fiber amplifier, picosecond laser, highpower laser

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
1617 Durability of Slurry Infiltrated Fiber Concrete to Corrosion in Chloride Environment: An Experimental Study, Part I

Authors: M. F. Alrubaie, S. A. Salih, W. A. Abbas

Abstract:

Slurry infiltrated fiber concrete (SIFCON) is considered as a special type of high strength high-performance fiber reinforced concrete, extremely strong, and ductile. The objective of this study is to investigate the durability of SIFCON to corrosion in chloride environments. Six different SIFCON mixes were made in addition to two refinance mixes with 0% and 1.5% steel fiber content. All mixes were exposed to 10% chloride solution for 180 days. Half of the specimens were partially immersed in chloride solution, and the others were exposed to weekly cycles of wetting and drying in 10% chloride solution. The effectiveness of using corrosion inhibitors, mineral admixture, and epoxy protective coating were also evaluated as protective measures to reduce the effect of chloride attack and to improve the corrosion resistance of SIFCON mixes. Corrosion rates, half-cell potential, electrical resistivity, total permeability tests had been monitored monthly. The results indicated a significant improvement in performance for SIFCON mixes exposed to chloride environment, when using corrosion inhibitor or epoxy protective coating, whereas SIFCON mix contained mineral admixture (metakaolin) did not improve the corrosion resistance at the same level. The cyclic wetting and drying exposure were more aggressive to the specimens than the partial immersion in chloride solution although the observed surface corrosion for the later was clearer.

Keywords: Chloride attack, chloride environments, corrosion inhibitor, corrosion resistance, durability, SIFCON, Slurry infiltrated fiber concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
1616 Synthesis, Characterization and Performance Study of Newly Developed Amine Polymeric Membrane (APM) for Carbon Dioxide (CO2) Removal

Authors: Rizwan Nasir, Hilmi Mukhtar, Zakaria Man, Dzeti Farhah Mohshim

Abstract:

Carbon dioxide has been well associated with greenhouse effect, and due to its corrosive nature it is an undesirable compound. A variety of physical-chemical processes are available for the removal of carbon dioxide. Previous attempts in this field have established alkanolamine group has the capability to remove carbon dioxide. So, this study combined the polymeric membrane and alkanolamine solutions to fabricate the amine polymeric membrane (APM) to remove carbon dioxide (CO2). This study entails the effect of three types of amines, monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA). The effect of each alkanolamine group on the morphology and performance of polyether sulfone (PES) polymeric membranes was studied. Flat sheet membranes were fabricated by solvent evaporation method by adding polymer and different alkanolamine solutions in the N-Methyl-2-pyrrolidone (NMP) solvent. The final membranes were characterized by using Field Emission Electron Microscope (FESEM), Fourier Transform Infrared (FTIR), and Thermo-Gravimetric Analysis (TGA). The membrane separation performance was studied. The PES-DEA and PES-MDEA membrane has good ability to remove carbon dioxide. 

Keywords: Amine Polymeric membrane, Alkanolamine solution, CO2 Removal, Characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
1615 Ablation, Mechanical and Thermal Properties of Fiber/Phenolic Matrix Composites

Authors: N. Winya, S. Chankapoe, C. Kiriratnikom

Abstract:

In this study, an ablation, mechanical and thermal properties of a rocket motor insulation from phenolic/ fiber matrix composites forming a laminate with different fiber between fiberglass and locally available synthetic fibers. The phenolic/ fiber matrix composites was mechanics and thermal properties by means of tensile strength, ablation, TGA and DSC. The design of thermal insulation involves several factors.Determined the mechanical properties according to MIL-I-24768: Density >1.3 g/cm3, Tensile strength >103 MPa and Ablation <0.14 mm/s to optimization formulation of phenolic binder, fiber glass reinforcement and other ingredients were conducted after that the insulation prototype was formed and cured. It was found that the density of phenolic/fiberglass composites and phenolic/ synthetic fiber composite was 1.66 and 1.41 g/cm3 respectively. The ablative of phenolic/fiberglass composites and phenolic/ synthetic fiber composite was 0.13 and 0.06 mm/s respectively.

Keywords: Phenolic Resin, Ablation, Rocket Motor, Insulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4346
1614 Performance Evaluation of Single-mode and Multimode Fiber in LAN Environment

Authors: Farah Diyana Abdul Rahman, Wajdi Al-Khateeb, Aisha Hassan Abdalla Hashim

Abstract:

Optical networks are high capacity networks that meet the rapidly growing demand for bandwidth in the terrestrial telecommunications industry. This paper studies and evaluates singlemode and multimode fiber transmission by varying the distance. It focuses on their performance in LAN environment. This is achieved by observing the pulse spreading and attenuation in optical spectrum and eye-diagram that are obtained using OptSim simulator. The behaviors of two modes with different distance of data transmission are studied, evaluated and compared.

Keywords: Attenuation, eye diagram, fiber transmissions, multimode fiber, pulse dispersion, OSNR, single-mode fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
1613 Time-Dependent Behavior of Damaged Reinforced Concrete Shear Walls Strengthened with Composite Plates Having Variable Fibers Spacing

Authors: R. Yeghnem, L. Boulefrakh, S. A. Meftah, A. Tounsi, E. A. Adda Bedia

Abstract:

In this study, the time-dependent behavior of damaged reinforced concrete shear wall structures strengthened with composite plates having variable fibers spacing was investigated to analyze their seismic response. In the analytical formulation, the adherent and the adhesive layers are all modeled as shear walls, using the mixed Finite Element Method (FEM). The anisotropic damage model is adopted to describe the damage extent of the Reinforced Concrete shear walls. The phenomenon of creep and shrinkage of concrete has been determined by Eurocode 2. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes) have been tested to demonstrate the accuracy of the proposed method. Numerical results are obtained for non-uniform distributions of carbon fibers in epoxy matrices. The effects of damage extent and the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied.

Keywords: RC shear wall structures, composite plates, creep and shrinkage, damaged reinforced concrete structures, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
1612 Beneficiation of Pyrolitic Carbon Black

Authors: Jefrey Pilusa, Edison Muzenda

Abstract:

This research investigated treatment of crude carbon black produced from pyrolysis of waste tyres in order to evaluate its quality and possible industrial applications. A representative sample of crude carbon black was dry screened to determine the initial particle size distribution. This was followed by pulverizing the crude carbon black and leaching in hot concentrated sulphuric acid for the removal of heavy metals and other contaminants. Analysis of the refined carbon black showed a significant improvement of the product quality compared to crude carbon black. It was discovered that refined carbon black can be further classified into multiple high value products for various industrial applications such as filler, paint pigment, activated carbon and fuel briquettes.

Keywords: Activated Carbon, Briquettes, Fuel, Filler, Pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9941
1611 Optimization of Wood Fiber Orientation Angle in Outer Layers of Variable Stiffness Plywood Plate

Authors: J. Sliseris, K. Rocens

Abstract:

The new optimization method for fiber orientation angle optimization of symmetrical multilayer plates like plywood is proposed. Optimization method consists of seeking for minimal compliance by choosing appropriate fiber orientation angle in outer layers of flexural plate. The discrete values of fiber orientation angles are used in method. Optimization results of simply supported plate and multispan plate with uniformly distributed load are provided. Results show that stiffness could be increased up to 20% by changing wood fiber orientation angle in one or two outer layers.

Keywords: Minimal compliance, flexural plate, plywood, discrete fiber angle optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
1610 Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar

Authors: B.S. Al-Tulaian, M. J. Al-Shannag, A.M. Al-Hozaimy

Abstract:

The development of new construction materials using  recycled plastic is important to both the construction and the plastic  recycling industries. Manufacturing of fibers from industrial or  postconsumer plastic waste is an attractive approach with such  benefits as concrete performance enhancement, and reduced needs  for land filling. The main objective of this study is to investigate the  effect of Plastic fibers obtained locally from recycled waste on plastic  shrinkage cracking of ordinary cement based mortar. Parameters  investigated include: fiber length ranging from 20 to 50mm, and fiber  volume fraction ranging from 0% to 1.5% by volume. The test results  showed significant improvement in crack arresting mechanism and  substantial reduction in the surface area of cracks for the mortar  reinforced with recycled plastic fibers compared to plain mortar.  Furthermore, test results indicated that there was a slight decrease in  compressive strength of mortar reinforced with different lengths and  contents of recycled fibers compared to plain mortar. This study  suggests that adding more than 1% of RP fibers to mortar, can be  used effectively for controlling plastic shrinkage cracking of cement  based mortar, and thus results in waste reduction and resources  conservation.

 

Keywords: Mortar, plastic, shrinkage cracking, compressive strength, RF recycled fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3029
1609 Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation

Authors: Chong Zhang, Mu-Xuan Tao

Abstract:

In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses.

Keywords: Biaxial bending moment strength, biaxial seismic excitation, fiber beam-column model, load contour method, strong-column-weak-beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 567
1608 Numerical Investigation of the Jacketing Method of Reinforced Concrete Column

Authors: S. Boukais, A. Nekmouche, N. Khelil, A. Kezmane

Abstract:

The first intent of this study is to develop a finite element model that can predict correctly the behavior of the reinforced concrete column. Second aim is to use the finite element model to investigate and evaluate the effect of the strengthening method by jacketing of the reinforced concrete column, by considering different interface contact between the old and the new concrete. Four models were evaluated, one by considering perfect contact, the other three models by using friction coefficient of 0.1, 0.3 and 0.5. The simulation was carried out by using Abaqus software. The obtained results show that the jacketing reinforcement led to significant increase of the global performance of the behavior of the simulated reinforced concrete column.

Keywords: Strengthening, jacketing, reinforced concrete column, 3D simulation, Abaqus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908
1607 Limiting Fiber Extensibility as Parameter for Damage in Venous Wall

Authors: Lukas Horny, Rudolf Zitny, Hynek Chlup, Tomas Adamek, Michal Sara

Abstract:

An inflation–extension test with human vena cava inferior was performed with the aim to fit a material model. The vein was modeled as a thick–walled tube loaded by internal pressure and axial force. The material was assumed to be an incompressible hyperelastic fiber reinforced continuum. Fibers are supposed to be arranged in two families of anti–symmetric helices. Considered anisotropy corresponds to local orthotropy. Used strain energy density function was based on a concept of limiting strain extensibility. The pressurization was comprised by four pre–cycles under physiological venous loading (0 – 4kPa) and four cycles under nonphysiological loading (0 – 21kPa). Each overloading cycle was performed with different value of axial weight. Overloading data were used in regression analysis to fit material model. Considered model did not fit experimental data so good. Especially predictions of axial force failed. It was hypothesized that due to nonphysiological values of loading pressure and different values of axial weight the material was not preconditioned enough and some damage occurred inside the wall. A limiting fiber extensibility parameter Jm was assumed to be in relation to supposed damage. Each of overloading cycles was fitted separately with different values of Jm. Other parameters were held the same. This approach turned out to be successful. Variable value of Jm can describe changes in the axial force – axial stretch response and satisfy pressure – radius dependence simultaneously.

Keywords: Constitutive model, damage, fiber reinforcedcomposite, limiting fiber extensibility, preconditioning, vena cavainferior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
1606 An Evaluation on the Effectiveness of a 3D Printed Composite Compression Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

The applications of composite materials within the aviation industry has been increasing at a rapid pace.  However, the growing applications of composite materials have also led to growing demand for more tooling to support its manufacturing processes. Tooling and tooling maintenance represents a large portion of the composite manufacturing process and cost. Therefore, the industry’s adaptability to new techniques for fabricating high quality tools quickly and inexpensively will play a crucial role in composite material’s growing popularity in the aviation industry. One popular tool fabrication technique currently being developed involves additive manufacturing such as 3D printing. Although additive manufacturing and 3D printing are not entirely new concepts, the technique has been gaining popularity due to its ability to quickly fabricate components, maintain low material waste, and low cost. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite compression mold. A 3D printed composite compression mold was fabricated by 3D scanning a steel valve cover of an aircraft reciprocating engine. The 3D printed composite compression mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The 3D printed composite compression mold was evaluated for its performance, durability, and dimensional stability while the fabricated carbon fiber valve covers were evaluated for its accuracy and quality. The results and data gathered from this study will determine the effectiveness of the 3D printed composite compression mold in a mass production environment and provide valuable information for future understanding, improvements, and design considerations of 3D printed composite molds.

Keywords: Additive manufacturing, carbon fiber, composite tooling, molds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 641
1605 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as representative example of a fiber polymer composite. Such high-performance lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: Digital Linked Process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91
1604 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures

Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha

Abstract:

5

In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.

Keywords: Concrete beam, FRP bars, spacing effect, thermal deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579
1603 The Evaluation of Low-Carbon Economy Jiangsu, China

Authors: Qiu Dong-Fang, Li Bao-bao, Min Xing

Abstract:

Low-carbon economy means the energy conservation and emission reduction. How to measure and evaluate the regional low-carbon economy is an important problem which should be solved immediately. This paper proposed the eco-efficiency ratio based on the ecological efficiency to evaluate the current situation of the low-carbon economy in Jiangsu province and to analyze the efficiency of the low-carbon economy in Jiangsu and other provinces, compared both advantages and disadvantages. And then this paper put forward some advices for the government to formulate the correct development policy of low-carbon economy, to improve the technology innovation capacity and the efficiency of resource allocation.

Keywords: Eco-efficiency ratio, Jiangsu, China, low-carbon economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
1602 Determination of Alkali Treatment Conditions Effects Which Influence the Variability of Kenaf Fiber Mean Cross Sectional Area

Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Shahruddin Mahzan @ Mohd Zin, Saparudin Ariffin

Abstract:

Fiber cross sectional area value is a crucial factor in determining the strength properties of natural fiber. Furthermore, unlike synthetic fiber, a diameter and cross sectional area of natural fiber has a large variation along and between the fibers. This study aims to determine the main and interaction effects of alkali treatment conditions which influence kenaf bast fiber mean cross sectional area. Three alkali treatment conditions at two different levels were selected. The conditions setting were alkali concentrations at 2 and 10 w/v %; fiber immersed temperature at room temperature and 1000C; and fiber immersed duration for 30 and 480 minutes. Untreated kenaf fiber was used as a control unit. Kenaf bast fiber bundle mounting tab was prepared according to ASTM C1557-03. Cross sectional area was measured using a Leica video analyzer. The study result showed that kenaf fiber bundle mean cross sectional area was reduced 6.77% to 29.88% after alkali treatment. From analysis of variance, it shows that interaction of alkali concentration and immersed time has a higher magnitude at 0.1619 compared to alkali concentration and immersed temperature interaction which was 0.0896. For the main effect, alkali concentration factor contributes to the higher magnitude at 0.1372 which indicated are decrease pattern of variability when the level was change from lower to higher level. Then, it was followed by immersed temperature at 0.1261 and immersed time at 0.0696 magnitudes.

Keywords: Natural fiber, kenaf bast fiber bundles, alkali treatment, cross sectional area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
1601 Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling

Authors: Salah Al-Enezi, Rashed Al-Zufairi, Naseer Ahmad

Abstract:

A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.

Keywords: Softening, high-pressure, polystyrene, CO2 diffusions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
1600 Insertion of Thiazolidinediones into Carbon Nanotube

Authors: Behnoush Zare, Mojdeh Akhavan, Ahmad Reza Dehpour

Abstract:

In this study we investigate the insertion of pioglitazone, a Thiazolidinedione, into the two different sizes of Carbon nanotub. It was shown that the insertion of pioglitazone into the carbon nanotube in a water solute environment could be related to the diameter of the nanotube and in the flow of the waters via hydrophilic interactions. This encapsulated drug-carbon nanotube molecule can be further applicable in other investigations in target therapy with these agents regarding to reduce their potential toxic effects.

Keywords: Carbon Nanotube, MD Simulation, Thiazolidinedions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
1599 Thermodynamic Analysis of Activated Carbon- CO2 based Adsorption Cooling Cycles

Authors: Skander Jribi, Anutosh Chakraborty, Ibrahim I. El-Sharkawy, Bidyut Baran Saha, Shigeru Koyama

Abstract:

Heat powered solid sorption is a feasible alternative to electrical vapor compression refrigeration systems. In this paper, activated carbon (powder type Maxsorb and fiber type ACF-A10)- CO2 based adsorption cooling cycles are studied using the pressuretemperature- concentration (P-T-W) diagram. The specific cooling effect (SCE) and the coefficient of performance (COP) of these two cooling systems are simulated for the driving heat source temperatures ranging from 30 ºC to 90 ºC in terms of different cooling load temperatures with a cooling source temperature of 25 ºC. It is found from the present analysis that Maxsorb-CO2 couple shows higher cooling capacity and COP. The maximum COPs of Maxsorb-CO2 and ACF(A10)-CO2 based cooling systems are found to be 0.15 and 0.083, respectively. The main innovative feature of this cooling cycle is the ability to utilize low temperature waste heat or solar energy using CO2 as the refrigerant, which is one of the best alternative for applications where flammability and toxicity are not allowed.

Keywords: Activated carbon, Adsorption cooling system, Carbon dioxide, Performance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3617
1598 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite

Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan

Abstract:

Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.

Keywords: Natural fibers, polymer matrix composites, jute, compression molding, biodegradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004